关于毕业论文怎么写,内容要怎么取材是很多同学迟迟没有下笔写的原因之一。写完毕业论文的同学还有其它的内容要写,比如:毕业论文结束语之类的。而且这是必须写的,结束语就是总结写好的论文的重点是上面,阐述关于自己写这篇论文想要有什么样的结果。一般结束语放在致谢之前。可以写学习怎么写论文,再写论文结束语。《毕业论文怎么写》一文会提供一些帮助。毕业论文结束语是什么?要怎么写?有些同学对于论文结束语跟致谢傻傻分不清,其实这两者是不一样的。论文的结束语是对整体论文的总结或对研究的问题做出的一个结论;致谢是描写那些对论文的完成有帮助的人,比如指导老师还有同学的一些感谢的话语。简单来说,致谢的内容就是一些客套话,而结束语是对于论文的结论。要把两者区分开来才能写的清楚,写的明白,才能给论文加分。网上也有很多论文结束语的范文,不知道怎么写的同学,也可以先借鉴他人写的,但是不能抄袭,这样是不能通过中国知网的查重的。关于论文结束语的字数要求,也是根据学校的要求来看的。每个学校的要求也都不一样,几百或者几千字都有可能。论文的每个部分都需要经过中国知网的严格检测,不要因为某个部分不起眼就去网上抄袭,这样会导致论文的查重率过高,一旦查重率超过学校的要求,论文就会被打回重新修改。可以使用papertime论文查重进行了提交对论文初中稿查重,一般的论文写作总是得反反复复的进行多次修改,修改后在进行多次查重,部分高校不支持知网多次查重,提前使用其他论文查重系统平台能避免查重后的痕迹。虽然论文一次通过的可能性很小,但是把该掌握的格式都掌握好了,写起论文起码会顺理成章一点。
根据以上研究,本文的目的是探讨XXXX的影响因素,研究发现,XXXX的影响因素是XX、XX、XX等等。希望本研究可以为今后的研究者提供有价值的参考,为XXXX的发展奠定良好基础。最后,本论文尝试聚焦于探讨XXXX的影响因素,从而发现XXXX的影响因素及其机理。本文研究结果表明,不同因素对XXXX的影响不同,政府应出台相应政策,以更好地促进XXXX的发展。
Then he held it with his hands trying.
结尾处可以运用总结性的话语读数学进行总结,具体如下:
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程与三角函数。而其后更发展出更加精微的微积分。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构:代数结构(群、环、域、格,……)、序结构(偏序、全序,……)、拓扑结构(邻域、极限、连通性、维数,……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
具体地,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。
就纵度而言,在数学各自领域上的探索亦越发深入。
第一:许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p'=p*m1+m2(m1旋转缩放矩阵,m2为平移矩阵,p为原向量,p'为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p'=p*M的形式。即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。其次,它可以表示无穷远的点。n+1维的齐次坐标中如果h=0,实际上就表示了n维空间的一个无穷远点。对于齐次坐标(a,b,h),保持a,b不变,|V|=(x1*x1,y1*y1,z1*z1)^1/2的过程就表示了标准坐标系中的一个点沿直线ax+by=0逐渐走向无穷远处的过程。
数字图像,是以二维数字组形式表示的图像,其数字单元为像元,数字图像的恰当应用通常需要数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准,数字图像处理领域就是研究它们的变换算法.数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。由数组或矩阵表示,其光照位置和强度都是离散的。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。像素像素(或像元,Pixel)是数字图像的基本元素,像素是在模拟图像数字化时对连续空间进行离散化得到的。每个像素具有整数行(高)和列(宽)位置坐标,同时每个像素都具有整数灰度值或颜色值。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机、seismographic profiling、airborne radar等等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。
完全可以的 主要看你的内容
论文既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那么毕业论文结尾怎么写呢?
毕业论文的结尾也就是论文的结果,基本的要点就是围绕中心点,概括全文加深题目的意思,部分对序言中提出的问题分析综合概括,并引出需要强调的结论。
论文结束语切记不要添蛇画足,拖泥带水,这样效果反而不好,在毕业论文结束语中语言一定不要写一些别人都知道的话,将论文主旨概括总结各个的要点就可以了。
论文开题报告应该包括以下几点:
(一)拟选论文题目:
(二)文献综述与选题报告要求:
1、引用外文文献不少于10篇,写出文献综述与选题书面报告,字数在3000字以上。
2、书面报告内容应包括:选题背景和意义,国内外研究动态,本论文的主要研究工作和基本框架,主要参考文献,预期成果和可能的创新点等。
先问清楚老师有没有给出固定的论文选题,如果没有给出具体的写作要求,那么大家可以从自己的兴趣上下手,进行选题,这样写作论文的话会很轻松的哦。
大家可以进行文献梳理,论文的撰写,最重视的就是论文查重了,所以说原创的论文写作是格外重要的,那么大家在进行论文写作的时候,一点就显得格外重要了。有时候就会出现一种情况,论文的选题被其他的人已经进行研究过了,那么自己再做的时候,就是重复性选题了,这样的话,对于大家来说是极其不利的。
毕业论文选题的时候,最重要的一点就是确定选题,论文选题时注意细致具体,千万不要题意模糊不清,以及大而空泛,据了解,选题越小,越容易做的严谨,也更加适合学生把握。
毕业论文结尾是整篇论文的收尾,需要简明扼要地总结论文的主要内容和研究成果,同时也要表达自己对研究的深刻认识和感悟。以下是一些写毕业论文结尾的常用方法:
1. 总结研究成果:简要总结研究的主要成果和发现,强调自己的研究对学术界和实践应用的贡献。
2. 强调研究意义:强调自己的研究对相关领域的发展和进步所带来的重要意义,以及对未来研究的启示和指导。
3. 提出建议和展望:根据自己的研究结论,提出对相关领域的建议和展望,为未来的研究和实践提供参考。
4. 表达感悟和思考:可以适当表达自己在研究过程中的感悟和思考,强调自己的成长和收获。
5. 结束语:简洁明了地总结全文,重申论文的主旨和价值,给读者留下深刻的印象。
需要注意的是,毕业论文结尾不应出现新的内容,而是在前文的基础上进行总结和归纳,突出研究的重点和亮点。同时,要注意语言简练、流畅,让读者能够轻松理解和接受。
声明:该答案来源于“知否AI问答”,一款可提供专业、高速、稳定的文案生成与问答系统!
经过长时间的充分准备,所有设计资料已经准备齐全,在第一草、二草、三草、征稿等阶段的不断推敲上,已全部完成毕业设计(论文)的要求内容。 现已向答辩组提交的内容有:1、毕业设计(论文)任务书,2、毕业设计(论文)开题报告,3、毕业论文,4、毕业设计(论文)指导教师记录表,5、毕业设计(论文)指导教师中期检查表,7、毕业设计(论文)答辩申请表。 综上所述,本人已具备参加答辩能力,现向答辩组提出正式申请,望批准!(第二段要根据学校要求自己改一下)
只要合理利用,是可以保证有利于降低论文查重率。要知道图片的使用是不会被查重检测的,虽然查重系统升级...
毕业论文对插入图片有什么要求?1.图形是示意图,为了简化图形,突出文章的主题,通常大致示意,这样的图形通常不需要标注大小尺度。2.只有看到图像、图片标题和图例,而不是浏览内容,才能领会图形不言而喻的本质。3.内容的事实性,学术...
只要合理利用,是可以保证有利于降低论文查重率。要知道图片的使用是不会被查重检测的,虽然查重系统升级...
毕业论文对插入图片有什么要求?1.图形是示意图,为了简化图形,突出文章的主题,通常大致示意,这样的图形通常不需要标注大小尺度。2.只有看到图像、图片标题和图例,而不是浏览内容,才能领会图形不言而喻的本质。3.内容的事实性,学术...
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
今天博士学姐给大家分享一下关于毕业论文里面的图片如何用Word快速统一论文图片的大小,很多同学在写毕业论文的时候发现图片的不容易统一,有的图片大小不太好调整规范,论文的格式调整的不太好。那么今天学姐就来教大家如何用Word就可以快速...
毕业论文纸张大小和页边距的要求是什么(一般word页边距设置多少合适)【百科全说】毕业论文纸张大小和页边距的要求是什么纸张大小:A4,单页打印.页边距及行间距:上厘米,下厘米,左厘米,右厘米,左侧装订,页眉,页脚.除...
今天博士学姐给大家分享一下关于毕业论文里面的图片如何用Word快速统一论文图片的大小,很多同学在写毕业论文的时候发现图片的不容易统一,有的图片大小不太好调整规范,论文的格式调整的不太好。那么今天学姐就来教大家如何用Word就可以快速...
毕业论文纸张大小和页边距的要求是什么(一般word页边距设置多少合适)【百科全说】毕业论文纸张大小和页边距的要求是什么纸张大小:A4,单页打印.页边距及行间距:上厘米,下厘米,左厘米,右厘米,左侧装订,页眉,页脚.除...
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
参考文档
在格式合理的情况下,3、5、6张图都可以。大论文指的是研究生论文答辩时发表的,是不用在刊物上发表,根据学校的要求来撰写论文。小论文指的是需要发表在期刊上的,需要评职称的人员,职称级别不同对论文的要求也是不同的。作者要根据职称单位的要求,来发表论文。撰写不同大论文属于答辩论文,需要按照答辩论文的格式要求撰写,包括确定主题、开题报告完成、论文书写及查新完成、送外审通过等过程。一个月时间就可以完成,撰写的字数比较多,最起码得上万。小论文则是根据专业内容来撰写论文,论文得体现出论点、论证以及论据三大要素,要在职称评定截止时间之前准备好。论文字数要求在几千字,审核周期比较长,所以作者要提前做好准备。
分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。
例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
分形几何与传统几何相比有什么特点:
(1)从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
(2)在不同尺度上,图形的规则性又是相同的。上述的海 岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的, 还有一些是用来描述混沌和非线性系统的。
分形理论是当今世界十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家曼德布罗特()首先提出的。1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractalgeometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractaltheory)。自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。分维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。分维,又称分形维或分数维,通常用分数或带小数点的数表示。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(Hausdoff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,称为豪斯道夫维数。记作Df,一般的表达式为:K=LDf,也作K=(1/L)-Df,取对数并整理得Df=lnK/lnL,其中L为某客体沿其每个独立方向皆扩大的倍数,K为得到的新客体是原客体的倍数。显然,Df在一般情况下是一个分数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为。有了分维,海岸线的长度就确定了。分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。=============================================分形理论及其发展历程被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。分形几何的概念是美籍法国数学家曼德尔布罗特()1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯()构造了处处连续但处处不可微的函数,集合论创始人康托(,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺()构造了填充空间的曲线。1904年,瑞典数学家科赫( Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基()设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫()开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干()将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金()等引入盒维数。1934年,贝塞考维奇()更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。二1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分形:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特()引入填充维数,1983年格拉斯伯格()和普罗克西娅()提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金()研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。自然界中的分形,与概率统计、随机过程关系密切。确定性的古典分形集加入随机性,就会产生出随机康托集、随机科契曲线等各种随机分形。1968年,曼德尔布罗特研究布朗运动这一随机过程时,将其推广到与分形有关的分数布朗运动。1974年他又提出了分形渗流模型。1988年,柴叶斯()给出了详细的数学分析。1984年,扎乐()通过随机删除而得到十分有趣的分形构造,随机分形能更真实地描述和模拟自然现象。三动力系统中的分形集是近年分形几何中最活跃和引人入胜的一个研究领域。动力系统的奇异吸引子通常都是分形集,它们产生于非线性函数的迭代和非线性微分方程中。1963年,气象学家洛伦兹()在研究流体的对流运动时,发现了以他的名字命名的第一个奇异吸引子,它是一个典型的分形集。1976年,法国天文学家伊侬()考虑标准二次映射迭代系统时获得伊侬吸引子。它具有某种自相似性和分形性质。1986年劳威尔()将斯梅尔的马蹄映射变形成劳威尔映射,其迭代下不稳定流形的极限集成为典型的奇异吸引子,它与水平线的截面为康托集。1985年,格雷波基()等构造了一个二维迭代函数系统,其吸附界是维尔斯特拉斯函数,并得到盒维数。1985年,迈克多纳()和格雷波基等得到分形吸附界的三种类型:(1) 局部不连通的分形集;(2) 局部连通的分形拟圆周;(3) 既不局部连能又不是拟圆周。前两者具有拟自相似性。动力系统中另一类分形集来源于复平面上解析映射的迭代。朱利亚()和法图()于1918-1919年间开创这一研究。他们发现,解析映射的迭代把复平面划分成两部分,一部分为法图集,另一部分为朱利亚集(J集)。他们在处理这一问题时还没有计算机,完全依赖于他们自身固有的想象力,因此他们的智力成就受到局限。随后50年间,这方面的研究没有得到什么进展。随着可用机算机来做实验,这一研究课题才又获得生机。1980年,曼德尔布罗特用计算机绘出用他名字命名的曼德尔布罗特集(M集)的第一张图来。1982道迪()构造了含参二次复映射fc ,其朱利亚集J(fc)随参数C的变化呈现各种各样的分形图象,著名的有道迪免子,圣马科吸引子等。同年,茹厄勒()得到J集与映射系数的关系,解新局面了解析映射击集豪斯道夫维数的计算问题。茄勒特()得到J(fc)集豪斯道夫维数的数值解法。1983年,韦当()进一步推广了部分结果 。法图1926年就就开始整函数迭代的研究。1981年密休威茨()证明指数映射的J集为复平面,解决了法图提出的问题,引起研究者极大兴趣。发现超越整函数的J集与有理映射J的性质差异,1984年德万尼()证明指数映射Eλ的J(Eλ)集是康托束或复平面而J(fc)是康托尘或连通集。复平面上使J(fc)成为连通集的点C组成M集即曼德尔布罗特集,尤更斯()和培特根()认为,M集的性质过去一直是并且将来继续是数学研究的一个巨大难题。通过将数学理论与计算机图形学实验加以融合,及道迪、扈巴德()等人在这方面进行的基础性研究工作,在解决这一难题方面已取得重大进展,使人们加深了对M集的了解。道迪和扈巴德1982年证明M集是连通的和单连通的,人们猜测M集是局部连通的,目前每一张计算机图形都证实了这一猜测,但至今还没有人能给予证明。M是否为弧连通,目前尚不清楚。M集边界的维数也是值得研究的问题之一。M集除了将J集分成连通与非连通的两类之外,还起着无穷个J集的图解目录表作用,即把M集C点周围的图形放大就是与C点有关的J集的组成部分。但这一发现的数学密性至今仍未确定,谭磊(Tan Lei)1985年证明了在每一个密休威茨点邻近M集与相关的J集之间存在着相似性。尤金斯等在M集的静电位研究中获得与自然形貌相似的分形图象。目前包括尤金斯等在内的很多研究人员都致力于借助计算机活动录象探索M集。其它一些分形集的研究工作正在取得进展。1990年德万尼通过数值实验观察到M集的复杂图形由许多不同周期的周期轨道的稳定区域共同构成。1991年黄永念运用他提出的代数分析法证明了这一事实,研究了M集及其广义情况周期轨道整体解析特性。巴斯莱()和德门科()1985年引入迭代函数系统,J集及其其它很多分形集都是某些迭代函数的吸引集,用其它方法产生的分形集也可用迭代函数系逼近。1988年,劳威尔通过数值研究发现毕达哥拉斯树花是一迭代函数系的J集。1985年巴斯莱等研究含参数的函数系迭代动力系统,得到M集D并D与M在连通性上的差异。在一线性映射系迭代下,可以产生著名的分形曲线——双生龙曲线。1986年水谷()等对其动力系统进行了研究。一般动力系统中的分形集,其豪斯道夫维数dH难以通过理论方法或计算方法求得。对于有迭式构造的分形集,贝德浮德()等在1986年已给出卓有成效的算法,但对一般非线性映射迭代动力系统产生的分形集,这些结果都难以应用,其豪斯道夫维数dH的结论与算法实际上没有。卡普兰()和约克() 1979年引入李雅普洛夫维数dL并猜测dL=dH。1981年勒拉皮尔证明dH≤dL。杨()1982年证明二维情况下dH=dL。艾茄瓦()等1986年给出例子说明高维情形卡普兰-约克猜测不成立。这一猜测力图从动力学特征推断几何结构,其反问题是由吸引子维数推断混沌力学,这是值得研究的问题。但目前工作甚少且主要限于计算机研究。此外,含参动力系统在混沌临界态或突变处的分形集维数也有待进一步研究。多重分形(multifractals)是与动力系统奇异吸引子有关的另一类重要分形集,其概念首先由曼德布罗特和伦依()引入。法默()等在1983年定义了多重分形广义维数。1988年博尔()等人将拓扑熵引入多重分形的动力学描述与热力学类比。1988年,阿内多()等人将子波变换用于多重分形研究。费德()、特尔()等人进行了多重分形子集及标度指数的研究。阿姆特里卡等研究了多重分形的逆问题,提出广义配分函数,给出广义超越维数,对过去的维数进行了修正。李()等发现了多重分形热力学形式上的相变。1990年,伯克()得到广义维数的上下界和极限并研究了多重分形的均匀性量度。曼德布罗特研究了随机多重分形及负分维。1991年科维克()等引入双变量迭代系统,最大特征值和吉布斯势导出维数、熵、李雅普洛夫指数,提供了对多重分形相变分类的一般方案。对于多重分形相变分类的一般方案。对于多重分形目前虽已提出不少处理方法,但从数学的观点上看,还不够严格,部分问题的数学处理难度也较大。四分形理论真正发展起来才十余年,并且方兴未艾,很多方面的理论还有待进一步研究。值得注意的是,近年分形理论的应用发展远远超过了理论的发展,并且给分形的数学理论提出了更新更高的要求。各种分形维数计算方法和实验方法的建立、改进和完善,使之理论简便,可操作性强,是应用分形的科学家们普遍关注的问题。而在理论研究上,维数的理论计算、估计、分形重构(即求一动力系统,使其吸引集为给定分形集)、J集和M集及其推广形式的性质、动力学特征及维数研究将会成为数学工作者们十分活跃的研究领域。多重分形理论的完善、严格以及如何用这些理论来解决实际问题可能会引起科学家们广泛的兴趣,而动力学特征、相变和子波变换可能会成为其中的几个热点。在哲学方面,人们的兴趣在于自相似性的普适性,M集和J集表现出的简单性与复杂性,复数与实数的统一性,多重分形相变与突变论的关系,自组织临界(SOC)现象的刻画以及分形体系内部的各种矛盾的转化等。可以预言,一场关于分形科学哲学问题的讨论即将在国内展开。======================================分形理论与波动理论研究迷人的分形理论控制了金融市场分形理论与化学工程中的应用分形理论在城市研究中的应用分形理论及其在水处理工程中的应用分形理论对教育研究的方法论启示