首页

毕业论文

首页 毕业论文 问题

润唇膏的制备毕业论文

发布时间:

润唇膏的制备毕业论文

要想自制润唇膏,可以试试以下方法:第一、准备材料:蜜蜡(自家熬制) 蜂蜜(自家产) 维E(来益牌) 橄榄油(欧蕾) 消毒柜 烧杯 玻璃棒 加热炉 唇膏空管 精度称第二、具体做法:1.工具消毒,没有消毒柜可用酒精消毒后风筒吹干。2.油蜡比7:3放入烧杯加热融化(无加热炉可用隔水加热),待完全融化取下,加入两颗维E(剪刀剪开加入液体)加入半勺蜂蜜3.灌装,待烧杯稍微凝固开始灌装,灌装时候注意要高出管口一部分(热胀冷缩),想要完成后平口的可以分两次灌装第一次八分满第二次灌满(第二次温度高于第一次温度,防断裂)完成后冷却二十分钟就可以使用了。只需三步,蜂蜜橄榄油唇膏就制作完成了,同理还可以DIY紫草唇膏 蜂蜜口红 非常简单。第三、常见问题小锦囊(建议阅读)1.需要润唇专用材料(皂材料不可加入唇膏中),因为水油不相融!2.唇膏管不可用开水烫,会变形,若想消毒,可用酒精棉擦拭。3.唇膏中间都会有小孔,可分两次灌入,来缩小中间的孔。4.不管是任何材料,任何价格的唇膏管,都请在50~60度之间灌装,温度太低唇膏会分层断裂,温度太高会渗漏出唇膏管。5.若做口红请加口红粉。

蜡的性质如熔点、结晶状态对唇膏质地、耐热稳定性、使用肤感、产品稳定性等都有很大影响。1、巴西棕榈蜡巴西棕榈蜡是高熔点的固体,质地硬而不脆,算是化妆品原料中硬度最高的那一类了,和蓖麻油等油脂的相容性非常好。在唇膏中可以作为硬化剂,并且可以提高产品的熔点而不会影响其触变性,同时赋予产品较好的光泽和稳定性,在唇膏形态和光亮有很好的作用。通常使用1~3%,不超过5%,过多会使唇膏变得很脆,可以混合蜂蜡加以缓解。2、蜂蜡也是唇膏中常见的蜡原,能够提高唇膏的熔点,却又不会明显改变唇膏的硬度,和其他成分配伍兼容性良好,效果和地蜡类似,可以使唇膏更容易从模具中脱出。3、合成蜡来自高分子量的室友——分馏产物的一类蜡,它的硬度和熔点随着分子量的变化而变化。合成蜡包括微晶蜡、纯地蜡和其他复配石蜡,这类蜡的作用是提高唇膏的熔点,对唇膏结晶结构影响不大,配方中常常使用两种合成蜡。

10个自制润唇膏的配方,来看看这些吧

关于润唇膏的毕业论文

润唇膏一年四季都需要,尤其是在秋季和冬季。润唇膏的主要成分就是甘油,锁住水分,滋润双唇,秋冬必备佳品。

唇膏的作用有什么

唇膏的作用有什么,人的身体很脆弱,各个方面都需要注意防护。在冬季寒冷的时候,或者长期处于空调房中,就会发现嘴唇干燥起皮,紧绷绷的让人非常难受。下面和大家介绍唇膏的作用有什么,希望大家喜欢。

保湿作用——谈到润唇膏,其第一大作用无疑就是保湿。秋冬的时候,人的嘴唇干燥不舒服,会不自觉地舔唇,往往越舔越干,口唇周围皮肤粗糙变厚,甚至嘴唇肿胀,非常难看。而润唇膏含有基本成分凡士林和蜡质,能够为双唇锁住水分,提供屏障。

防晒功能——有些润唇膏还可以有防晒功能。有些人的唇色暗沉,选择具有防晒系数的护唇品,兼顾保湿和防晒功能,给双唇全方位、双重的呵护。

滋润甲床——指甲边缘会出现干燥的现象,有倒刺。用一点的润唇膏涂抹在甲床和甲缘上,并轻轻按摩,直到甲床吸收进去,就会滋润甲床。

打底功能——很多女性爱美,经常会化妆。在涂口红、唇彩前,先上润唇膏,作为打底,使口红的色泽更加娇艳。如果不打底,化妆品中的色素会让唇色和唇纹加深,而润唇膏可以起到隔离作用。

修饰唇形。

唇膏不仅是MM们的日常护理品,它也能起到彩妆的作用,沿着唇线涂抹唇膏,能让唇部轮廓看起来非常立体哦。

营造光泽感。

唇膏的成分非常光滑透亮,涂在嘴上能反射光线,让双唇充满光泽感。

以上只是唇膏对于嘴唇的作用,除此之外,唇膏还可以用来滋润手部和脚部肌肤,过期的唇膏还能用来保养银饰,或者当鞋油或顺滑拉链的甘油用呢!

润唇膏多用的副作用:

有需求就会有买卖,因为广大女性的需要所以市面上的润唇膏也五花八门,几块到几十,甚至几百块的都有。但是有一些滥竽充数的劣质润唇膏,不但没有润唇的作用,还会产生副作用!

劣质润唇膏含有化学物质,涂抹以后,在说话胡吃东西的时候,就不可避免的会将润唇膏一起吃进肚子,危害人体健康,严重的`还会导致接触性唇炎。

润唇膏使用次数多了之后,会产生依耐性,使唇部自身的抵抗力下降,在吸附空气中的灰尘的杂质后,还会影响唇部卫生,导致唇炎。

润唇膏过频使用,就好像给嘴唇穿上了一件“隔离衣”,会阻碍其正常代谢,容易引起嘴唇表皮细胞剥脱,使口唇黏膜更感干燥、不适。同时口唇黏膜抵御外界环境的能力也会下降,更容易发生各种口唇疾病。

有些人体质比较敏感,过频使用润唇膏还会引发口唇炎、复发性唇炎等,这在临床上并不少见。

润唇膏一天使用几次合适:

使用润唇膏,每天在2~3次为宜,尽量不要超过3次。一般润唇膏的滋润时间都在4个小时左右,每天保持这样的使用次数就可以达到很好的效果。

涂抹润唇膏注意事项:

1、润唇膏每天使用最好不要超过3次,在第2次、第3次涂抹时,要用干净的纸巾将之前残留的唇膏拭净后再涂抹,防止嘴唇上吸附的灰尘入口。

2、不要舔唇、咬唇,舔嘴唇偶尔一次OK,但频繁为之反而会使水分蒸发,使嘴唇更加干燥,还可能造成唇角发炎。

3、嘴唇有硬皮时,不要用手硬撕,最好用热毛巾敷一会儿,令硬皮软化,除去后,再涂用润唇膏。

4、每晚临睡前,涂些润唇膏可以使润唇效果加倍;若唇部干裂,涂用橄榄油效果更佳。

5、饭后为防止嘴唇的油分影响唇膏效果,最好先用餐巾纸擦净唇部,再用润唇膏涂抹。

6、使用润唇膏为口红打底,可以使口红的色泽更加娇艳。

用润唇膏还真的是有副作用的,一天用2到3次就好了,不能用太多次。

用润唇膏擦脸的可以吗

唇膏不可以擦脸。

每一样护肤品都有其针对的一种肤质,身体上每一个区域的皮肤的角质层和水分含量都不一样,所以应该要使用专门针对这块皮肤区域的护肤品用、才有最佳的效果。如果乱用护肤品的话,可能还会造成这块区域的皮肤无法吸收,出现皮肤问题。

润唇膏有什么成分与作用

润唇膏的基本成分离不开凡士林和蜡质,不过1976年以后也有不含蜡质的新配方。而维生素A、E等抗氧化成分,以及SPF防晒功能,都是时下热门润唇膏的卖点。如果唇部的皮肤比较敏感,最好选择含天然香料和香油成分的润唇膏。

凡士林:较滋润而不渗透,能长时间留在嘴唇上。

薄荷:一种香料,有洁凉和消炎止痒的作用。

樟脑:有消炎、镇痛和帮助伤口愈合的作用。

羊毛脂:一种很有效的润肤剂。

芦荟:有防晒、润肤、保湿和祛斑的功效。

维生素E:可防止皮肤粗糙、开裂、出现斑疹、皱纹和粉刺。

唇膏为什么不可以擦脸

1、唇膏不可以擦脸因为肤质不同

唇部肌肤和脸部肌肤有很大的不同,嘴唇的皮肤很薄,所以角质层也很薄,水分流失得非常快,唇膏都是根据嘴唇的这一特性来制作的。但是脸部的皮肤和唇部皮肤不一样,因此面霜和唇膏的补水滋润方式也不一样,如果用唇膏擦脸,也不能缓解面部皮肤的干燥。

2、唇膏不可以擦脸因为太油

嘴唇的水分流失速度是脸部皮肤的好几倍,所以唇膏除了滋润以外,保湿的效果也要非常好,这就导致了唇膏会比较油,所以把唇膏涂在脸上的话,不但起不到理想的滋润效果,还会让脸变得很油,甚至会导致毛孔堵塞,引发炎症。

3、唇膏不可以擦脸因为容易敏感

唇膏不可以擦脸,尤其是一些敏感性肌肤的人,因为唇膏里的某些成分可能会对脸部皮肤造成刺激性,导致过敏症状产生。而且唇膏太油了,擦在脸上以后皮肤无法吸收,反而导致了皮肤难以呼吸,引起长痘痘等皮肤问题。

4、唇膏也不可以当眼霜

眼周皮肤是我们身体上最娇嫩的一块皮肤,而且也最敏感,如果把唇膏当做眼霜使用的话,那么很容易刺激到眼周肌肤。并且由于唇膏很油,涂在娇嫩的眼周后很容易长出脂肪粒。

1、唇部保湿:谈到润唇膏,其第一大作用无疑就是保湿。秋冬的时候,人的嘴唇干燥不舒服,会不自觉地舔唇,往往越舔越干,口唇周围皮肤粗糙变厚,甚至嘴唇肿胀,非常难看。而润唇膏含有基本成分凡士林和蜡质,能够为双唇锁住水分,提供屏障。

2、软化嘴唇死皮:润唇膏也可以软化嘴唇上的死皮,在嘴唇干裂起皮时,可以先厚厚地涂抹一层润唇膏,等半个小时后用热毛巾敷在嘴唇上,就能轻松去除嘴唇上的死皮了。

3、嘴唇防晒:嘴唇的肌肤很脆弱,在太阳暴晒后,嘴唇的颜色很容易变得暗沉,这时就可以选用一些带有防晒系数的唇膏,兼顾保湿和防晒功能,给双唇全方位、双重的呵护。

4、打底功能:很多女性爱美,经常会化妆。在涂口红、唇釉之前,先涂上一层润唇膏作为打底,这样能让口红的显色度和持久度更好,除此之外还能有效隔离口红中的化学物质,保护嘴唇。

5、深度养护嘴唇:涂抹滋润性强,有修护作用的润唇膏,可以让嘴唇变得更嫩,也有效淡化唇纹,减轻唇色的效果,可以深度养护嘴唇。

以上内容参考  百度百科-唇膏

通常人们认为只要涂上润唇膏就能令嘴唇得到保护,但事是,一般人们并不懂如何护唇。护唇应该是全面的,因为双唇对抗环境是整个身体肌肤中弱、容易衰老的。嘴唇也需要精心呵护,那么护唇膏用法具体是什么?护唇膏和润唇膏有什么不同?就让小编为大家普及一下。护唇膏和润唇膏有什么不同一、护唇膏用法润唇和护肤是一年四季的事,但到了秋冬天就更为重要了。每天爱它多一点,唇部就会产生无限魅力。护唇膏也有很多种类,当然选择什么还是要看个人喜好。每个女人至少要有两款护唇产品,因为早晨的要求和晚上不一样。早上护唇,环境因素比较复杂。肯定会反复涂抹,经常讲话或吃东西。这就要求润唇膏有以下几个特点:携带使用方便;够润泽但不油腻;不易脱落。这些情况下,大家可以考虑选择旋转型硬膏状润唇膏。提醒一下使用细节,每天早上洗完脸,涂完水就应该先上一层润唇膏,因为如果等你涂完了精华、乳霜再涂护唇膏,你会发觉唇部已经干得吸收不了。其次,涂完粉底之后,将唇部用湿毛巾擦干净后,再涂一遍。DHC护唇膏二、护唇膏和润唇膏有什么不同润唇膏主要是起水润的作用,让唇部看起来水水的,让自己感觉舒适、不难受,护唇膏就多了一些保护作用,比如说防紫外线之类的,所以功效也就比润唇膏强了一些,价格呢也就又贵了一些。脱皮可以用润唇膏,因为护唇膏是在嘴唇没有伤害到的情况下,就是预防,而润唇膏是在嘴唇已经脱皮等的情况下用的。护唇膏以上就是关于护唇膏用法,护唇膏和润唇膏有什么不同的全部文章了,希望小编的信息搜集能给大家带来帮助。后续还会持续更新更多相关美妆内容,敬请关注!

醚的制备毕业论文

乙醚的制备方法

1. 醚的制备方法:聚全氟甲基醚油连续光氧化。

2. 一种以四氟乙烯和氧气为原料,四氟乙烯的流速为1-10L/min,氧气的流速为1-12L/min,合成速率为的连续光氧化制备全氟甲基醚油的方法和装置。送入内部有足够溶剂二氟二氯甲烷的光聚合釜,低温环境由制冷机组提供。在- 60 ~ - 20℃条件下,反应功率 ~ 4kw,波长2000 ~ 3000,紫外灯照射下进行连续光氧化聚合。将反应物从光聚合反应器放入光聚合反应器中。溶剂二氟二氯甲烷、低分子聚合物和未反应物质经过紫外线灯照射和加热后,返回光聚合反应器继续参与反应。光反应器的温度可根据合成产物馏分的组成进行调节。

乙醚的制备如下:

1、在干燥的三角烧瓶中加入12ml乙醇,缓缓加入12ml浓H2SO4昆合均匀。

2、滴液漏斗中加入25ml乙醇。

3、如图连接好装置。

4、用电热套加热,使反应温度比较迅速升到1400C。开始由滴液漏斗慢慢滴加乙醇。

5、控制滴入速度与馏出液速度大致相等(1滴/s)。

6、维持反应温度在135-1450摄氏度内30-45min滴完,继续加热10min,直到温度升到1600摄氏度,停止反应。

乙醚的精制:

1、将馏出液转至分液漏斗中,依次用8ml5%NaO,H8ml饱和NaCI洗涤,最后用8ml饱和CaCI2洗涤2次。

2、分出醚层,用无水CaCI2干燥。

3、分出醚,蒸馏收集33-380摄氏度馏液。

4、计算产率。

乙醚介绍:

乙醚是一种有机物,结构式为C2H5OC2H5。外观为无色透明液体,有特殊刺激气味,带甜味,极易挥发,其蒸汽重于空气。在空气的作用下能氧化成过氧化物、醛和乙酸,暴露于光线下能促进其氧化。主要用作优良溶剂。毛纺、棉纺工业用作油污洁净剂。火药工业用于制造无烟火药。医学用作麻醉剂。

化学性质比较稳定,很少与除酸之外的试剂反应。在空气中会慢慢氧化成过氧化物,过氧化物不稳定,加热易爆炸,应避光保存。

苯胺制备的毕业论文

药学专业毕业论文

药学是连接健康科学和化学科学的医疗保健行业,它承担着确保药品的安全和有效使用的职责。下面是我整理的药学专业毕业论文范文,与大家分享了解。

摘要:

有机化学实验是培养药学人才的一门重要课程。本文主要从教学内容、教学方法和网络虚拟教学等方面阐述实验教学改革,以提高学生学习有机化学的积极性,培养出高素质的应用型药学人才。

关键词:

药学;有机化学;实验教学

目前,重点高等医药院校药学人才培养目标主要是围绕研究型和创新型开展。一个国家民族医药企业的强大除了依靠研究型人才外,还需要大量的技术应用型人才。地方性本科院校现已成为我国高等教育的中坚力量,是本科人才培养的重要基地,其定位于培养为地方服务的大批应用型专门人才。我院于2014年10月被河南省教育厅确定为第二批向技术应用型本科院校转型的试点学校,我院药学专业初步确定为转型示范专业。我院于2013年开设本科药学专业,其办学定位是为医药企业培养高层次的应用型人才。有机化学是药学类专业一门重要的必修课程,有机化学实验[1]的应用性已充分渗透到药学的各领域。近年来,我院把高素质技术应用型人才培养作为教学改革的方向,加大实验教学投入,整合教学资源,把实验室建设和实验教学改革作为培养应用型人才的重要途径[2]。现将我院有机化学实验教学改革总结如下。

1转变观念,充分认识实验教学的重要性

传统观念认为有机化学的理论教学占主导地位,实验教学为理论教学服务,处于从属地位。学生也普遍认为理论知识重于实验,因此做实验时,只是按照实验大纲要求和步骤进行,对实验可能出现的结果无预知和分析,难以实现理论与实践教学相结合的教学目标[3]。因此,转变观念,改革实验教学,加强实验教学成为培养应用型药学人才的重要举措。

2改革实验教学模式

实验教学内容改革

[4]验证性、综合性和探究性是实验教学的主要特点。传统实验教学多以验证性实验为主,综合性和探究性实验较少,学生只是机械地重复操作过程,制约了学生的主动性和探究性。为此,我院删减了一部分验证性实验,保留一些基本化学实验操作,同时加强操作技能训练,适当增加一些设计性和创新性实验。在实验教学过程中,不断优化实验内容,使其更科学、更具适用性。蒸馏(包括常压和减压)、重结晶及萃取分离是有机化学实验最常用和最基本的操作,在实验教学中,尽可能多安排与这些操作技能相关的实验。在操作训练中,让学生知道并理解实验操作中的注意事项;熔点、沸点、折光率和旋光度等物理常数的测定在理论教学中着重讲解其原理,实验中则着重训练学生的操作技能。实验课程体系以典型合成实验为主,精选具有综合性和设计性的实验项目。例如,环己烯和1-溴丁烷的制备,将性质验证贯穿于合成实验中,使学生能加深对书本上理论知识的理解。将熔点测定和色谱技术分析融入阿司匹林的合成中,构成一个综合性实验。通过整合实验内容,不但强化学生的基本操作技能,还培养学生运用理论知识综合分析和解决问题能力。引导学生探究实验中出现的一系列问题,激发其探索精神,让学生对理论知识有更进一步的理解。开展设计性实验主要是满足药学专业学生毕业后工作和继续深造的需求,同时也有利于应用型人才的培养。例如,环己酮有多种合成路线,实验课前,让学生发挥主观能动性,设计出可能合理的合成路线及操作步骤。课堂上教师给出文献报道的合成路线,让学生对比一下自己设计的路线与文献中的有何不同,然后教师再引导学生分析讨论得到最佳的合成路线,即用次氯酸钠氧化环己醇得到环己酮,此法可避免重金属污染环境的问题。设计性实验教学可有效激发学生的实验兴趣,且实验后的成就感更能激发他们对有机化学的学习兴趣。

运用新的教学方法

[5]在传统“灌输式”教学过程中,学生只是一味地接受教师传授的知识,未能激发其主动性,教学结果就是学生对知识理解不深且不能灵活运用。因此,改革传统的教学模式势在必行。我院根据开设实验项目的特点,采用不同的教学方法,如启发式、示范式、讨论式等。实验前学生必须做好预习,对本次实验的目的、原理和步骤做到心中有数,并对实验注意事项和实验思考题多加思考。上课时,教师通过提问[6]来检验学生的预习效果,并根据提问情况,对教学内容有所选择地讲授,避免无重点的重复,提高教学效率。对实验操作,请2~3名学生课堂上示范演习,让其他同学找出其正确和错误的地方,然后教师再讲解示范。这种纠错式教学可使学生普遍存在的操作问题得到有效纠正。乙酰苯胺的合成有两种实验方法:(1)冰醋酸法。(2)醋酸酐法。实验前,学生查阅资料比较两种方法的优缺点。用冰醋酸法分馏时温度为什么要控制在100~110度之间,过高可以吗?用醋酸酐法加入盐酸和碳酸钠的目的是什么?等一系列问题,让学生带着问题去思考。做实验时,相邻的两组分别做冰醋酸法和醋酸酐法,这样学生可以相互对比实验效果。在做肉桂酸合成实验时,教师引导学生设计不同投料比、不同催化剂和不同温度的正交试验。对比实验结果得到肉桂酸的最佳合成条件。正交试验法有利于培养学生的探索精神和科研思路。

利用网络虚拟实验辅助教学

[7]随着网络信息技术的飞速发展,其在现代教育中的应用越来越广泛。传统授课方法无法将有些实验操作描述的很清晰,学生也不容易接受。我们教研室采用动态PPT实验操作图或教学视频来讲授实验操作,学生普遍反映良好。这种教学方式能将抽象的内容转变成生动、鲜活的知识,学生的实验操作不规范和失误率大大减少。此外,某些实验因仪器特殊、药品控制较严等原因而无法开展,我们采用网络虚拟实验教学法,学生看过讲义后,在电脑上进行虚拟实验操作并观察实验现象。在进行每步操作时,如果正确,可继续进行;若错误,电脑会提醒学生该如何进行,保证实验顺利进行。网络虚拟可模拟某些特殊实验,弥补了现实无法进行的不足,有助于提高教学质量。

倡导绿色化学理念

[8]现在环境污染越来越严重,已影响到人们的生活,而有机化学实验中的试剂和原料等都会对环境造成污染,如果处理得不恰当,危害更严重。在实验教学中要有意识地引用“绿色”理念,合理设计实验课程体系,联系相关实验,将上一实验产物作为后面实验原料。为尽量减少化学实验对环境的危害,在不改变实验的前提下,尽量采用小规格的容器,如采用50ml的圆底烧瓶做反应装置,大大减少原料和试剂的使用量。选用毒性小的溶剂代替毒性大的'溶剂,如乙醇代替甲醇,甲苯代替苯等。乙醇、乙酸乙酯是化学实验中使用比较多的溶剂,且可回收再利用。将回收的乙醇废液经蒸馏得到大约95%乙醇,可作为清洗剂,也可用于咖啡x因的提取。对实验产生的废弃物让学生加以分类、集中收集,倒入指定地方,最后由教师统一处理,避免有害溶剂腐蚀管道和污染地下水。

3完善实验教学考核体系,综合客观评定学生成绩

[9]以往实验成绩主要是根据学生上交的实验报告来评定,从报告上无法了解学生对知识和操作技能的掌握情况,因此有必要建立一套能全面客观综合评价学生成绩的实验考核体系。综合评价法可有效评定学生的实验成绩,主要从4方面对学生进行考核:

(1)预习(占10%),主要考查学生预习情况,包括目的、原理等内容;

(2)实际操作能力(占30%),教师考查每组学生的装置安装和操作规范与否等;

(3)考勤及纪律(占10%);

(4)操作考核(占50%),主要以抽题形式进行,考查学生基本操作掌握情况。

通过这一年的改革实践证明:综合考核方式更能引起学生对实验的重视,更能客观评价每一位学生。地方性院校本科药学专业有机化学实验教学改革的目的就是提高学生学习有机化学的积极性,培养出具有技术应用型潜力的优秀人才。虽然实验教学改革取得了一些成绩,但是时代在发展,技术在进步,教学改革也应与时俱进,要积极吸取其他院校教改的成功经验,不断探索,不断完善有机化学实验教学体系。

参考文献:

[1]李如章,王书华.有机化学实验[M].北京:科学出版社,2005.

[2]柯方,周孙英.有机化学实验对药学专业学生素质培养的探讨[J].基础医学教育,2013,15(4):394-396.

[3]唐振林,高吉仁,李惠民,等.高职药学专业有机化学实验教学的改革探索[J].卫生职业教育,2014,32(15):92-93.

[4]付蕾,范卓文,张立剑,等.改革药学专业有机化学实验培养学生创新能力[J].实验室科学,2012,15(6):146-148.

[5]宋尔群,宋杨.药学本科有机化学课程和实验教学探讨[J].药学实践杂志,2013,31(5):398-400.

[6]刘春萍,刘X,孙林,等.基于问题教学法的有机化学实验教学案例[J].实验科学与技术,2011,9(5):142.

[7]熊万明,陈金珠,陈清,等.网络课程辅助下有机化学实验的教学改革研究与实践[J].化工高等教育,2014(6):57-59.

[8]赵丽娜,陆国志.高校化学实验中绿色化学的研究[J].实验技术与管理,2013,30(2):179-181.

[9]姚建文,王虎,孙海军.药学专业有机化学实验教学模式改革的探索[J].中国科教创新导刊,2011(1):26.

摘要:乙酰苯胺是磺胺类药物的原料,可用作止痛剂、退热剂和防腐剂。用来制造染料中间体对硝基乙酰苯胺、对硝基苯胺和对苯二胺。在第二次世界大战的时候大量用于制造对乙酰氨基苯磺酰氯。乙酰苯胺也用于制硫代乙酰胺。在工业上可作橡胶硫化促进剂、纤维脂涂料的稳定剂、过氧化氢的稳定剂,以及用于合成樟脑等。健康危害:吸入对上呼吸道有刺激性。高剂量摄入可引起高铁血红蛋白血症和骨髓增生。反复接触可发生紫绀。对皮肤有刺激性,可致皮炎。能抑制中枢神经系统和心血管系统,大量接触会引起头昏和面色苍白等症。以苯胺、乙酸酐、乙酸为原料合成乙酰苯胺,考察了乙酸酐用量、乙酸用量、反应时间对乙酰苯胺收率的影响。确定了最佳工艺条件:n(苯胺):n(乙酸):n(乙酸酐)=1:,反应时间为 h。此条件下,乙酰苯胺收率达%~%,纯度达%~%。关键词:乙酰苯胺 苯胺 乙酸酐乙酸 合成 前言:分子式 CH3COC6H4NH2 分子量 号 103-84-4性质 白色有光泽片状结晶或白色结晶粉末。可燃。无臭。在空气中稳定,呈中性。相对密度(15/4℃)。熔点℃。沸点304℃。闪点℃。自燃点546℃。微溶于冷水,溶于热水、甲醇、乙醇、乙醚、氯仿、丙酮、甘油和苯等。 用途 用于染料, 医药中间体 毒性 由呼吸和消化系统进入体内,能抑制中枢神经系统和心血管系统,大量接触会引起头昏和面色苍白等症。大鼠经口LD50为800mg/kg。生产设备应密闭。操作人员应穿戴好防护用具,避免直接接触。下班后用温水沐浴。 包装储运 采用内层塑料袋、外层麻袋或帆布袋包装,每袋净重50kg。贮存在阴凉、干燥、通风处,防火、防潮。用汽车或火车运输均可。按有毒化学品规定贮运。 一、实验目的 1、掌握制备乙酰苯胺的原理和方法2、进一步学习重结晶和纯化固体的操作方法【关键词】乙酰苯胺重结晶 冰醋酸 热过滤有机化学实 验 难 点:乙酰苯胺合成的原理和方法 二、实验原理 乙酰苯胺可以通过苯胺与酰基化试剂如乙酰氯、乙酸酐或冰醋酸作用来制备。乙酰氯、乙酸酐与苯胺反应过于剧烈,不宜在实验室内使用,而冰醋酸与苯胺反应比较平稳,容易控制,且价格也最为便宜,故本实验采用冰醋酸做酰基化试剂。反应式为: 该反应是可逆反应,产率较低,为减少逆反应的发生,得到较高的收率,可曾加乙酸的用量,另外还采用分馏法,控制柱顶温度在105°-110°,不断出去生成的水,有效的使平衡向正反应方向移动。由于苯胺易氧化,加入少量锌粉,防止苯胺在反应过程中氧化纯乙酰苯胺为白色片状结晶,熔点为114°,稍溶于热水、乙醇、乙醚、氯仿、丙酮等溶剂,而难溶于冷水,故可用热水进行重结晶。 三、实验用品 ⒈仪器:50mL圆底烧瓶、50mL锥形瓶、烧杯、分馏柱、热浴漏斗、150℃温度计、 抽滤装置一套。⒉药品:苯胺、冰醋酸、锌粉、活性炭3.实验装置图4.物理常数:苯胺:密度、沸点184OC乙酸:密度、沸点118OC 四、实验步骤 1、乙酰苯胺的合成 在50ml圆底烧瓶中加入5ml新蒸馏的苯胺、冰醋酸和锌粉。在圆底烧瓶中安装分馏柱,柱顶装配150℃温度计,安装分馏装置。将圆底烧瓶用电热套加热,保持温度在100-110℃之间约60min,当反应生成的水及部分醋酸被蒸出时,温度计读数会下降,表明反应已经完成,即可停止加热。在搅拌下趁热将反应物倒入100ml冷水中,待反应冷却析出结晶后,抽气过滤,用冷水洗涤,即得粗乙酰苯胺。 2、粗乙酰苯胺的精致 将所得粗乙酰苯胺用50ml的水加热煮沸,待油状物完全溶解后(如不能完全溶解,可补加适量水并记录加水体积),停止加热,稍冷后加活性炭,搅拌,再继续煮沸5-10min进行脱色,趁热过滤,滤液冷却后有大量的晶体析出,再次抽滤,结晶用少量水洗涤2次,抽干,烘干,得精制的乙酰苯胺。称重,计算产率。 五、注意事项 1、反应所用玻璃仪器必须干燥。2、锌粉的作用是防止苯胺氧化,只要少量即可。加得过多,会出现不溶于水的氢氧化锌。3、反应时分馏温度不能太高,以免大量乙酸蒸出而降低产率。4、重结晶过程中,晶体可能不析出,可用玻璃棒摩擦烧杯壁或加入晶种使晶体析出。5、冰醋酸具有强烈刺激性,要在通风橱内取用。6、切不可在沸腾的溶液中加入活性炭,以免引起暴沸。 六、注释1、久置的苯胺因为氧化而颜色较深,使用前要重新蒸馏。因为苯胺的沸点较高,蒸馏时选用空气冷凝管冷凝,或采用减压蒸馏。2、若让反应液冷摘要:乙酰苯胺是磺胺类药物的原料,可用作止痛剂、退热剂和防腐剂。用来制造染料中间体对硝基乙酰苯胺、对硝基苯胺和对苯二胺。在第二次世界大战的时候大量用于制造对乙酰氨基苯磺酰氯。乙酰苯胺也用于制硫代乙酰胺。在工业上可作橡胶硫化促进剂、纤维脂涂料的稳定剂、过氧化氢的稳定剂,以及用于合成樟脑等。健康危害:吸入对上呼吸道有刺激性。高剂量摄入可引起高铁血红蛋白血症和骨髓增生。反复接触可发生紫绀。对皮肤有刺激性,可致皮炎。能抑制中枢神经系统和心血管系统,大量接触会引起头昏和面色苍白等症。以苯胺、乙酸酐、乙酸为原料合成乙酰苯胺,考察了乙酸酐用量、乙酸用量、反应时间对乙酰苯胺收率的影响。确定了最佳工艺条件:n(苯胺):n(乙酸):n(乙酸酐)=1:,反应时间为 h。此条件下,乙酰苯胺收率达%~%,纯度达%~%。关键词:乙酰苯胺 苯胺 乙酸酐乙酸 合成 前言:分子式 CH3COC6H4NH2 分子量 号 103-84-4性质 白色有光泽片状结晶或白色结晶粉末。可燃。无臭。在空气中稳定,呈中性。相对密度(15/4℃)。熔点℃。沸点304℃。闪点℃。自燃点546℃。微溶于冷水,溶于热水、甲醇、乙醇、乙醚、氯仿、丙酮、甘油和苯等。 用途 用于染料, 医药中间体 毒性 由呼吸和消化系统进入体内,能抑制中枢神经系统和心血管系统,大量接触会引起头昏和面色苍白等症。大鼠经口LD50为800mg/kg。生产设备应密闭。操作人员应穿戴好防护用具,避免直接接触。下班后用温水沐浴。 包装储运 采用内层塑料袋、外层麻袋或帆布袋包装,每袋净重50kg。贮存在阴凉、干燥、通风处,防火、防潮。用汽车或火车运输均可。按有毒化学品规定贮运。 一、实验目的 1、掌握制备乙酰苯胺的原理和方法2、进一步学习重结晶和纯化固体的操作方法【关键词】乙酰苯胺重结晶 冰醋酸 热过滤有机化学实 验 难 点:乙酰苯胺合成的原理和方法 二、实验原理 乙酰苯胺可以通过苯胺与酰基化试剂如乙酰氯、乙酸酐或冰醋酸作用来制备。乙酰氯、乙酸酐与苯胺反应过于剧烈,不宜在实验室内使用,而冰醋酸与苯胺反应比较平稳,容易控制,且价格也最为便宜,故本实验采用冰醋酸做酰基化试剂。反应式为: 该反应是可逆反应,产率较低,为减少逆反应的发生,得到较高的收率,可曾加乙酸的用量,另外还采用分馏法,控制柱顶温度在105°-110°,不断出去生成的水,有效的使平衡向正反应方向移动。由于苯胺易氧化,加入少量锌粉,防止苯胺在反应过程中氧化纯乙酰苯胺为白色片状结晶,熔点为114°,稍溶于热水、乙醇、乙醚、氯仿、丙酮等溶剂,而难溶于冷水,故可用热水进行重结晶。 三、实验用品 ⒈仪器:50mL圆底烧瓶、50mL锥形瓶、烧杯、分馏柱、热浴漏斗、150℃温度计、 抽滤装置一套。⒉药品:苯胺、冰醋酸、锌粉、活性炭3.实验装置图4.物理常数:苯胺:密度、沸点184OC乙酸:密度、沸点118OC 四、实验步骤 1、乙酰苯胺的合成 在50ml圆底烧瓶中加入5ml新蒸馏的苯胺、冰醋酸和锌粉。在圆底烧瓶中安装分馏柱,柱顶装配150℃温度计,安装分馏装置。将圆底烧瓶用电热套加热,保持温度在100-110℃之间约60min,当反应生成的水及部分醋酸被蒸出时,温度计读数会下降,表明反应已经完成,即可停止加热。在搅拌下趁热将反应物倒入100ml冷水中,待反应冷却析出结晶后,抽气过滤,用冷水洗涤,即得粗乙酰苯胺。 2、粗乙酰苯胺的精致 将所得粗乙酰苯胺用50ml的水加热煮沸,待油状物完全溶解后(如不能完全溶解,可补加适量水并记录加水体积),停止加热,稍冷后加活性炭,搅拌,再继续煮沸5-10min进行脱色,趁热过滤,滤液冷却后有大量的晶体析出,再次抽滤,结晶用少量水洗涤2次,抽干,烘干,得精制的乙酰苯胺。称重,计算产率。 五、注意事项 1、反应所用玻璃仪器必须干燥。2、锌粉的作用是防止苯胺氧化,只要少量即可。加得过多,会出现不溶于水的氢氧化锌。3、反应时分馏温度不能太高,以免大量乙酸蒸出而降低产率。4、重结晶过程中,晶体可能不析出,可用玻璃棒摩擦烧杯壁或加入晶种使晶体析出。5、冰醋酸具有强烈刺激性,要在通风橱内取用。6、切不可在沸腾的溶液中加入活性炭,以免引起暴沸。 六、注释1、久置的苯胺因为氧化而颜色较深,使用前要重新蒸馏。因为苯胺的沸点较高,蒸馏时选用空气冷凝管冷凝,或采用减压蒸馏。2、若让反应液冷却,则乙酰苯胺固体析出,沾在烧瓶壁上不易倒出。3、趁热过滤时,也可采用抽滤装置。但布氏漏斗和吸滤瓶一定要预热。滤纸大小要合适,抽滤过程要快,避免产品在布氏漏斗中结晶。却,则乙酰苯胺固体析出,沾在烧瓶壁上不易倒出。3、趁热过滤时,也可采用抽滤装置。但布氏漏斗和吸滤瓶一定要预热。滤纸大小要合适,抽滤过程要快,避免产品在布氏漏斗中结晶。

1、 [制药工程]新型食品保鲜剂——1-甲基环丙烯的合成 摘要使用氨基钠和3-氯-2-甲基丙烯作为反应物,合成1-甲基环丙烯,通过改变溶剂、温度、反应时间来确定高产率合成1-甲基环丙烯的最佳条件。研究结果表明使用溶液A作溶剂,在某特定温度B℃下,反应6小时的... 类别:毕业论文 大小:811 KB 日期:2008-10-09 2、 [药学]半乳糖介导的药质体——给药载体的合成 摘要:目的 合成半乳糖介导药质体的给药载体。方法 以阿昔洛韦、丁二酸酐为原料,在对二甲氨基吡啶的催化下经酯化反应合成了琥珀酰阿昔洛韦,再与单硬脂酸甘油酯合成了琥珀酰阿昔洛韦单硬脂酸甘油酯,最后与半乳糖... 类别:毕业论文 大小:741 KB 日期:2008-10-03 3、 [药学]对羟基苯甲酸酯的设计合成 摘 要对比了多种催化剂(三氯化铁、硫酸铜、硫酸铁铵、对甲苯磺酸)下,用微波辐射法合成对羟基苯甲酸丁酯。与常规加热方法相比,微波辐射法具有反应速度快,操作简便,酸醇比小,无需加入带水剂,且产率高,更突... 类别:毕业论文 大小:91 KB 日期:2008-10-02 4、 [药学]4,4′,4〃-三氨基三苯胺的合成 摘 要:本文从对氯硝基苯与对硝基苯胺为原料出发,经过两步反应合成三偶氮类医药中间体4,4′,4〃-三氨基三苯胺,第一步以氟化钾/季铵盐为催化剂,进行常规的加热合成方法以及微波辐射合成方法进行收率比较... 类别:毕业论文 大小:92 KB 日期:2008-08-29 5、 [药学]新型药物辅料2-氧-(2-羟丙基)-β-环糊精的合成 摘 要目的:本研究主要对羟丙基化β-环糊精的合成条件进行摸索,以期能得到较理想的结果。方法:对碱浓度、反应时间、环氧丙烷的加入量及加入方式、不同的缩合试剂、不同的溶剂、不同的展开条件等方面进行考察。... 类别:毕业论文 大小:116 KB 日期:2008-08-17

退热冰?退烧药中间体,也是合成染料的中间体。这样的论文在维普里很多的

制剂制备毕业论文

【关键词】 靶向给药;药剂学;药物载体0引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒( μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在 μm范围的占总数,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为,比未修饰纳米粒的靶向效率高倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.【参考文献】〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1): ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8): L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12): Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7): JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.

药剂学的毕业论文

一段充实而忙碌的大学生活即将结束,我们都知道毕业前要通过毕业论文,毕业论文是一种有准备、有计划的检验大学学习成果的形式,写毕业论文需要注意哪些格式呢?下面是我收集整理的药剂学的毕业论文,仅供参考,大家一起来看看吧。

[摘要]

近年来,微生物在药学研究中被广泛应用,展现出良好的发展前景。通过查阅相关的医学文献资料,了解到微生物与药学之间有密切的关系,通过对微生物进行转化和发酵,将其应用到药学研究及生产工作中,展现出微生物在药学中的应用价值及广阔的发展前景。

[关键词]

微生物;药学;发酵

一、微生物与药学的关系

(1)微生物与药学存在着密切的关系,许多抗生素是微生物的代谢产物或合成的类似物,在小剂量情况下,能够有效抑制微生物的存活及生长,不会对宿主产生严重的毒性。在临床应用过程中,抗生素起到了抑制病原菌生长的目的,被广泛应用于细菌感染性疾病的治疗中。除了具备抗感染作用外,一些抗生素自身还具备较强的抗肿瘤活性,被应用于肿瘤化学治疗中。

(2)微生物在医药卫生方面被广泛应用,维生素及辅酶被大量应用。

(3)近年来,人们在微生物学检验的.基础上加大了对药品卫生行业的

关注力量,加大对药品卫生质量进行控制。

(4)药品及生物制剂被广泛应用于生物工程技术生产中,采用工程菌生产胰岛素、生长因子及干扰素等[1]。

二、微生物在药学中的应用

(一)微生物转化在药学中的应用

1、在手性药物合成中的应用

不同的化合物光学活性不同,自身展现出了不同的生物学活性。现阶段,手性药物拥有广阔的发展前景,拆分及不对称合成手性药物成为热点研究问题。在生物体系中,酶展现出了高度的立体选择性,通过利用及筛选微生物或酶的过程,能够产生活性较高及立体结构专一的化合物,是一种可行性和有效性较高的方法。例如,将氯—酮丁酸甲酯及乙酯作为底物,将酮基还原为羟基时,展现出较高的立体选择性。通过生物转化的过程,不仅能够得到立体结构专一的手性化合物,同时也完成了对手性化合物的拆分。微生物转化中的合成手性化合物被广泛应用于制药工业中。

2、在药物代谢中的应用

药物在动物体内代谢是较为复杂的过程,展现出生物学活性功能,会生成有毒性的气体和不良反应的产物,在药学中占有重要位置。现阶段,微生物转化主要是利用产生的代谢产物,将其作为制备代谢产物的标准样品,应用在鉴别哺乳动物代谢产物中,完成对毒理学及药理学的研究。甾体羟基化在哺乳动物体内展现出了较强的生理学特性,是引发外源性甾体药物中毒的主要原因,转化成的相关模型是哺乳动物代谢有用信息的来源,产生的代谢产物对人类的孕激素受体具有较强的亲和能力,对人的糖皮质激素及盐皮质激素受体产生了一定的亲和性,对雄性激素产生了较弱的亲和性。黄腐酚作为一种化合物,被广泛应用于骨质疏松治疗中,通过利用真菌模型来寻找哺乳动物产生的代谢产物,为代谢产物及黄腐酚在哺乳动物体内的生物学活性研究提供了方向。

3、在天然药物中的应用

天然活性药物自身具有资源有限、含量低、结构复杂等特点,增加了药物的开发难度,利用生物转化方法合成有活性的天然产物,为开发新药提供了有效途径。羟基喜树碱是从自然植物中分离和提取出来的,毒性较低,拥有良好的治疗效果,被广泛应用于抗癌治疗中。主要是利用微生物对喜树碱来完成转化。青蒿素具有溶解度低、复燃性高等特点,是一种有效的抗疟药物。加大对其结构的改造,寻找合适的青蒿素衍生物,成为现阶段的重点研究课题。通过微生物转化方法,能够快速寻找到新的青蒿素衍生物[2]。

(二)微生物发酵在药学中的应用

近年来,微生物学基础理论及实验技术发现迅速,微生物学的应用范围越来越广阔。主要是利用微生物发酵来制备各种药物,在医药领域形成了一门独立的微生物药物学科。目前,医学上常见的微生物发酵制品有维生素、抗生素、氨基酸及酶抑制剂等。

生物发酵工艺多种多样,包括菌种的选育、培养及培植。培植出合适的菌种,是发酵工程的前提,菌种需要从自然界中找,但是该种方法寻找到的菌种产量相对较低。到了20世纪40年代,微生物学家开始使用激光、紫外线及化学诱变剂等处理方法来寻找菌种,使筛选出来的菌种更加优良,科学家通过构建工程菌,对其进行发酵,生产出一般微生物不能生产出来的产品。医用抗生素自身的特点包括:

(1)差异独立较大。差异毒力由抗生素的作用机制所决定,被广泛应用于临床抗感染中,抗生素的差异毒力越大,临床应用效果越好。

(2)抗菌活性强。抗生素自身展现出了杀灭微生物及药物抑制等能力,极微量的抗生素就能够展现出抗菌活性作用,抗生素的抗菌活性强弱主要是运用最低抑菌浓度来衡量,最低抑菌浓度是指抗生素能抑制微生物生长的最低浓度,值越小,说明抗生素作用越强。

(3)不良反应及副作用小。抗生素在使用过程中,对人体的毒性较小,对病原菌具有较强的杀伤力,这主要是针对理想的抗生素,一般的抗生素都或多或少会对人体产生一些不良反应及副作用。

综上所述,本文通过对微生物与药学的关系,微生物转化及发酵在药学中的应用进行分析,印证了微生物在药学中的应用可行性及应用价值。因此,制药行业在未来的发展中,需要进一步对微生物进行研究和分析,了解微生物内存在的药学价值,促使其在药学中的价值最大化,提升药物工业生产效果。

参考文献:

[1]张孝林,马世堂,俞浩.浅谈药学专业《微生物学》教学中创新型应用人才培养[J].中国科技信息,2012(7):229.

[2]任春萍.抗微生物药物的临床应用调查结果分析与药学研究[J].中国医药指南,2015,13(18):143-145.

相关百科

热门百科

首页
发表服务