首页

毕业论文

首页 毕业论文 问题

基于的图像分类的毕业论文

发布时间:

基于的图像分类的毕业论文

SDNET: MULTI-BRANCH FOR SINGLE IMAGE DERAINING USING SWIN 最近,流行的transformer具有全局计算特性,可以进一步促进图像去雨任务的发展。本文首次将Swim-transformer引入图像去雨领域,研究了Swim-transformer在图像去雨领域的性能和潜力。具体来说,我们对Swim-transformer的基本模块进行了改进,设计了一个三分支模型来实现单幅图像的去雨。前者实现了基本的雨型特征提取,而后者融合不同的特征进一步提取和处理图像特征。此外,我们还采用jump connection来融合深层特征和浅层特征。实验表明,现有的公共数据集存在图像重复和背景相对均匀的问题。因此,我们提出了一个新的数据集Rain3000来验证我们的模型。 Transformer[28]最初是自然语言处理(NLP)领域的一个模型,用于并行处理单词向量,以加速模型推理。它的全局计算特性适用于远距离传递特征。这正是计算机视觉领域中卷积运算所不擅长的。Dosovitskiy等人[29]将图像分割成16x16个图像块,将不同的图像块作为不同的词输入到transformer中,提高了图像分类的精度。近年来,人们从深度[30]、多尺度[31]等角度应用transformer来完成相关任务。然而,Transformer也有不可忽视的缺点,例如计算量与图像大小之间存在二次关系,这限制了它的应用环境。Liu等人[32]提出的Swin-transformer使用滑动窗口使模型具有线性计算复杂度,通过跨窗口连接改善了窗口间的信息交换,最终提高了模型在图像分类、目标检测和实例分割等方面的性能。 本文提出了一种新的图像去雨网络SDNet,它是利用Swim-transformer强大的特征表示能力构建的端到端去雨网络。具体地说,我们改进了Swim-transformer的基本模块,重新设计了一个双分支模型,实现了单图像去雨。前者实现了基本的雨型特征提取,后者融合了不同分支的特征。此外,我们采用jump connection来融合深度特征和浅层特征,以提高网络模型的性能。 本文贡献如下: 最近有大量的研究工作将transformer引入CV域,并取得了良好的效果。具体来说,Dosovitskiy等人[29]将图像分成16X16个图像块,然后将其拉伸成一维向量,然后送入网络中完成图像分类任务。Chen等人[38]提出了一种基于卷积运算的transformer与Unet相结合的TransUnet方法,实现医学图像的分割。蒋等[39]设计了与对抗生成网络结构相同的图像生成transformer。transformer中的self-attention导致模型计算直线增长,导致transformer不能在低计算能力的硬件上运行。Liu[32]提出了一种利用滑动窗口方法使网络计算线性增长并加速网络推理的方法。我们的方法是基于这种方法来实现一个单一的图像去雨任务的融合特征。 本文的方法是基于这种方法[32]来实现一个单一的图像去雨任务,融合不同分支的特征、深度特征和浅层特征。 Transformer是一个功能强大的网络模块,可以取代CNN操作。但其中的Muti-Head Attention导致模型的计算量迅速增加,导致transformer模型无法在许多底层硬件中测试和使用,注意力的数学表达式如下:本文使用一个简单而强大的前馈网络作为主干,如图2所示。SDnet网络基本上由三个多分支融合模块组成,称为MSwt,一个多分支模块MSwt-m和两个基本block模块。此外,还增加了跳转连接,目的是融合深特征和浅特征,以提高网络去雨的性能。为了更灵活地构建网络,提出了Basic-block的概念,并设计了两个三分支特征融合块。如图4和图5所示,与后者相比,前者有一个用于融合特征的附加基本块。数学表达式如下: 其中F(·)表示基本块的操作。x表示模块Mswt的输入。这种设计的思想来源于自我注意中的多头注意机制。通过学习F1、F2、F3,可以自适应地学习不同的特征。将输入映射到不同的子空间,分别提取不同的特征。与自我注意不同的是,我们对提取的特征求和,而不是级联操作。通过F4融合增加的特征,实现进一步的特征提取。由于设计思想来源于多头注意机制,多分支具有与该机制相同的特点,即在一定范围内,分支越多,模型性能越好。为了平衡模型的规模和模型的性能,我们选择了三个分支进行特征提取。 虽然transformer可以保持特征在长距离传播,但是仍然需要在网络中结合深特征和浅特征,为此我们设计了一个没有特征融合的Mswt模块,我们称之为Mswt-m,如图5所示,其数学表达式如下: F1、F2、F3将输入映射到三个不同的空间进行特征提取,对提取的特征求和,然后与第二个Mswt模块的输出求和,再经过一个基本块,实现深度特征和浅层特征的融合,如图2中的小跳跃连接所示,而图2中相对较长的跳跃连接则考虑了主要特征中包含的丰富的空间和纹理信息,有助于完成深度特征中缺失的纹理信息。 其中,O为雨图像,B为对应标签。是绝对差(SAD)之和,用于计算相似预测图像和标签之间的像素损失,如等式6所示。SSIM(结构相似性)是结构相似性,最初用作评估两个图像内容的结构相似性的度量。Ren等人[41]证明了SSIM作为损失函数在图像降额任务中的有效性的负面作用,其数学表达式如等式7所示。尽管使用该损失函数可以获得高SSIM度量,但图像仍然存在失真和低峰值信噪比(PSNR)。identity loss(等式8)由CycleGAN[42]导出,CycleGAN[42]用于约束生成图像的颜色丢失,这里我们使用它来约束图像去雨后的图像样式,这减少了图像失真,提高了网络性能。α , β , λ 是SAD损失、SSIM损失和identity loss的系数。在本文中,分别设置为、4和1。 实验使用Tesla V100 16G GPU进行训练,使用Pytorch框架和(Adam)[43],初始学习率为5× 10−4,减少到5× 10−5和5× 10−6当训练迭代次数分别为总迭代次数的3/5和4/5时。输入模型的图像大小设置为231×231. batch size为5。 我们提出了一个全新的数据集用于网络训练和消融实验。该数据集是从ImageNet中随机抽取的10万幅图像,保证了图像的多样性。从Efficientderain[12]降雨模式数据集中随机选择一到四种降雨模式,并添加到选定的图像中。我们最终选择了3000张合成图像作为训练集,400张作为测试集。我们把这个数据集命名为Rain3000。此外,我们还使用公开的数据集Rain100L和Rain100H[44]来验证SDnet模型。两个公开的数据集都包含1800个训练图像和200个测试图像。 使用SSIM和PSNR作为评价指标,这两种指标已被广泛用于评价预测图像的质量。PSNR是根据两幅图像之间的像素误差来计算的,误差越小,值越大,图像越相似,除雨效果越好。相反,图像去雨的效果越差 首先,本文提出了一种基于Swin-transformer的三分支端到端除雨网络,它充分利用了Swin-transformer强大的学习能力,用一种改进的Swin-transformer代替卷积运算,并设计了一个多分支模块来融合不同空间域的信息,使用跳转连接来融合深特征和浅特征。此外,我们提出了一个新的数据集,由3000个训练对和400个测试对组成。该数据集是基于ImageNet生成的,具有丰富的背景和雨型组合,便于模型的推广。我们提出的模型在数据集Rain3000和公共数据集Rain100L、Rain100H上都达到了最佳性能。我们的工作还有些不足。例如,在参数数目相同的情况下,哪种方法更适合于并行或串行的图像去噪任务还没有详细探讨。以及是否可以使用多个不同大小的滑动窗口来实现窗口间的进一步信息交换,以提高网络降容的性能。此外,我们正在使用更简单的前馈网络,更复杂的网络仍然值得研究

Abstract

我们训练了一个大型的深度卷积神经网络,将ImageNet lsvprc -2010竞赛中的120万幅高分辨率图像分类为1000个不同的类。在测试数据上,我们实现了top-1和top-5的错误率,分别为和,这与前的最高水平相比有了很大的提高。该神经网络有6000万个参数和65万个神经元,由5个卷积层(其中一些后面接了最大池化层)和3个全连接层(最后的1000路softmax)组成。为了使训练更快,我们使用了非饱和神经元和一个非常高效的GPU实现卷积运算。为了减少全连通层的过拟合,我们采用了一种最近发展起来的正则化方法——dropout,结果显示它非常有效。我们还在ILSVRC-2012比赛中输入了该模型的一个变体,并获得了的top-5测试错误率,而第二名获得了的错误率.

1 Introduction

当前的物体识别方法主要利用机器学习方法。为了提高它们的性能,我们可以收集更大的数据集,学习更强大的模型,并使用更好的技术来防止过度拟合。直到最近,标记图像的数据集在成千上万的图像(例如,NORB [16], Caltech-101/256 [8,9], CIFAR-10/100[12])中相对较小。使用这种大小的数据集可以很好地解决简单的识别任务,特别是如果使用保存标签的转换来扩展它们。例如,MNIST数字识别任务的当前最佳错误率(<)接近人类性能[4]。但是现实环境中的物体表现出相当大的可变性,所以为了学会识别它们,有必要使用更大的训练集。的确,小图像数据集的缺点已经被广泛认识(例如,Pinto等人的[21]),但直到最近才有可能收集数百万张图像的标记数据集。新的更大的数据集包括LabelMe[23],它由成千上万的全分段图像组成,和ImageNet[6],它由超过22000个类别的超过1500万标记的高分辨率图像组成。

要从数百万张图像中了解数千个物体,我们需要一个具有巨大学习能力的模型。 然而,对象识别任务的巨大复杂性意味着即使像ImageNet这样大的数据集也无法指定这个问题,因此我们的模型也应该具有大量的先验知识来补偿我们没有的所有数据。卷积神经网络(Convolutional neural networks, CNNs)就是这样一类模型[16,11,13,18,15,22,26]。它们的能力可以通过改变深度和宽度来控制,而且它们还对图像的性质(即统计的平稳性和像素依赖的局部性)做出了强有力且最正确的假设。 因此,与具有相似大小层的标准前馈神经网络相比,CNNs具有更少的连接和参数,因此更容易训练,而其理论上最好的性能可能只会稍微差一些。

尽管CNNs的质量很吸引人,尽管它们的本地架构相对高效,但在高分辨率图像上大规模应用仍然非常昂贵。幸运的是,当前的gpu与高度优化的2D卷积实现相结合,已经足够强大,可以方便地训练有趣的大型CNNs,而最近的数据集(如ImageNet)包含了足够多的标记示例,可以在不严重过拟合的情况下训练此类模型。

本文的具体贡献如下:

最后,网络的大小主要受到当前gpu上可用内存的大小和我们愿意忍受的训练时间的大小的限制。我们的网络需要5到6天的时间来训练两个GTX 580 3GB GPU。我们所有的实验都表明,只要等待更快的gpu和更大的数据集可用,我们的结果就可以得到改善。

2 The Dataset

ImageNet是一个包含超过1500万张高分辨率图像的数据集,属于大约22000个类别。这些图片是从网上收集来的,并由人工贴标签者使用亚马逊的土耳其机械众包工具进行标记。从2010年开始,作为Pascal视觉对象挑战赛的一部分,每年都会举办一场名为ImageNet大型视觉识别挑战赛(ILSVRC)的比赛。ILSVRC使用ImageNet的一个子集,每个类别大约有1000张图片。总共大约有120万张训练图像、5万张验证图像和15万张测试图像。

ILSVRC-2010 是唯一可用测试集标签的 ILSVRC 版本,因此这是我们进行大多数实验的版本。由于我们也在 ILSVRC-2012 竞赛中加入了我们的模型,在第6节中,我们也报告了我们在这个版本的数据集上的结果,对于这个版本的数据集,测试集标签是不可用的。在 ImageNet 上,通常报告两个错误率:top-1 和 top-5,其中 top-5 错误率是测试图像的一部分,其中正确的标签不在模型认为最可能的五个标签中。

ImageNet由可变分辨率的图像组成,而我们的系统需要一个恒定的输入维数。 因此,我们将图像降采样到256 * 256的固定分辨率。给定一个矩形图像,我们首先重新调整图像的大小,使其短边长度为256,然后从结果图像中裁剪出中心的256%256块。除了从每个像素中减去训练集上的平均活动外,我们没有以任何其他方式对图像进行预处理。因此,我们将网络训练成像素的原始RGB值(居中)。

3 The Architecture

ReLU Nonlinearity

Training on Multiple GPUs

Local Response Normalization

Overlapping Pooling

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap (.,[17, 11, 4]). To be more precise, a pooling layer can be thought of as consisting of a grid of pooling units spaced s pixels apart, each summarizing a neighborhood of size z z centered at the location of the pooling unit. If we set s = z, we obtain traditional local pooling as commonly employed in CNNs. If we set s < z, we obtain overlapping pooling. This is what we use throughout our network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by and , respectively, as compared with the non-overlapping scheme s = 2; z = 2, which produces output of equivalent dimensions. We generally observe during training that models with overlapping pooling find it slightly more difficult to overfit.

Overall Architecture

Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net contains eight layers with weights; the first five are convolutional and the remaining three are fully-connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression objective, which is equivalent to maximizing the average across training cases of the log-probability of the correct label under the prediction distribution.

4 Reducing Overfitting

Data Augmentation

Dropout

结合许多不同模型的预测是减少测试错误的一种非常成功的方法[1,3],但是对于已经需要几天训练的大型神经网络来说,这似乎太昂贵了。然而,有一个非常有效的模型组合版本,它在训练期间只花费大约2倍的成本。最近介绍的技术称为dropout[10],它将每个隐藏神经元的输出设置为0,概率为。以这种方式丢弃的神经元不参与正向传递,也不参与反向传播。所以每次输入时,神经网络都会对不同的结构进行采样,但是所有这些结构都共享权重。这种技术减少了神经元之间复杂的相互适应,因为神经元不能依赖于特定的其他神经元的存在。因此,它被迫学习与其他神经元的许多不同随机子集结合使用的更健壮的特征。在测试时,我们使用所有的神经元,但将它们的输出乘以,这是一个合理的近似值,近似于取由指数型多退出网络产生的预测分布的几何平均值。

我们在图2的前两个完全连接的层中使用了dropout。没有dropout,我们的网络显示出大量的过拟合。Dropout使收敛所需的迭代次数增加了一倍。

5 Details of learning

7 Discussion

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

基于遥感影像的毕业论文

随心所欲的写咯

摄影测量与遥感技术发展论文主要通过对摄影技术与遥感技术的发展进行了研究,并对其在各个方面的运用进行了论述。

摄影测量与遥感技术发展论文【1】

摘要:随着经济的不断发展,科学的不断进步,摄影测量与遥感技术因其运用范围广、作用大而走上了逐渐发展的道路,并且对国民经济生活起着重要的影响。

关键词:摄影测量;遥感技术;发展;应用

摄影测量与遥感技术被划分在地球空间信息科学的范畴内,它在获取地球表面、环境等信息时是通过非接触成像传感器来实现的,并对其进行分析、记录、表达以及测量的科学与技术。

3S技术的应用、运用遥感技术以及数字摄影测量是其主要研究方向。

在多个领域内都可以运用遥感技术与摄影测量,比如:自然灾害、勘查土木工程、监测环境以及国土资源调查等。

随着我国经济的不断发展,运用到遥感技术与摄影测量的领域也在逐渐的增多。

在人类认识宇宙方面,遥感技术与摄影测量为人类提供了新的方式与方法,也为人类对地球的认知以及和谐共处提供了新的方向。

遥感技术和摄影测量可以提供比例不同的地形图以服务于各种工作,并且还能实现基础地理信息数据库的建立;遥感技术与摄影测量与地图制图、大地测量、工程测量以及卫星定位等构成了一整套技术系统,是测绘行业的支柱。

一、摄影测量与遥感技术的发展

从摄影测量与遥感技术的发展来看,摄影测量与遥感技术在近30年的时间里已经涉及到城市建设、水利、测绘、海洋、农业、气象、林业等各个领域,在我国的经济发展中起着至关重要的作用。

摄影测量从20世纪70年代后期从模拟摄影中分离出来,并逐渐步入数字摄影阶段,摄影测量正在逐渐的转变为数字化测绘技术体系。

(一)摄影测量与遥感技术有利于推动测绘技术的进步

我国的摄影测量从上世纪70年代后期经历一个系统的转变。

在经历了模拟摄影测量以及解析摄影测量阶段之后,摄影测量终于步入了数字摄影测量的阶段,这也成为我国传统测绘体系解体,测绘技术新体系兴起的标志。

首先,从数字影像的类型来看,当前我国已经建立了数字栅格图、数字高程模型以及数字正射影像,土地利用与地名数据库也随之建立起来,摄影测量与数据库的多样性在一定程度上为生产运用提供了可能,从而进一步推动了测绘技术的发展。

其次,由于摄影测量与遥感技术的飞速发展,也逐渐被国家所重视,并利用这两项技术来完成了各种地理比例尺地形图的绘制。

此外,还推动了诸多具有全国界别的基础地理信息数据库的建立。

比如:比例尺级别为1:50000,1:1000000等的国家级地理信息数据库;除开国家级的,还有省级、县级等的地理信息数据库等。

(二)摄影测量与遥感技术有利于提升空间数据的获取能力

我国获取空间数据的能力在经过五十年的发展,有了较大的提升。

对具有自主知识产权的处理遥感数据平台进行了研发,从而推动了国产卫星遥感影像地面处理系统的建立,并在摄影测量方面积极进行研究和探索,为我国独立处理信息、获取观测体系的建立提供了坚实的基础。

首先,从获取数据的能力方面来看,传感器在国家863以及973计划的支持上成功被研制出来,成功发射了对地观测的包括通信卫星、海洋卫星、气象卫星以及资源卫星等五十多颗卫星,并推动了资源、风云、环境减灾以及海洋四大民用对地观测卫星体系的建立,实现了从太阳和地球同步轨道对地球多传感器、多平台的观测以及对地球表面分辨率不同的雷达和光学图像的获取,并将这些获取的数据用于对海洋现象、大气成分、自然灾害以及水循环等各个方面的监测。

其次,从数据储备方面来看,数据积累已经成功的覆盖了全国海域、陆地以及我国周围国家和地区的包括一千五百万平方公里的地球表面数据。

二、摄影测量与遥感技术在国民经济各项领域中的运用

(一)摄影测量与遥感技术在应对自然灾害中的运用

在发生自然灾害时,为了能够第一时间了解灾情的具体分布,获取高分辨率灾区遥感影像,可以采用低空无人遥感、航天、航空遥感等方式,对灾区原有的地理信息以及尺度进行整合,推动地理信息服务平台的建立,将多尺度影像地图制作出来,及时、有效的提供地理信息以及地图数据支持,为及时制定出应对自然灾害的措施提供了依据。

比如在汶川地震时,在灾区道路交通与通信严重受损的情况下,通过摄影测量与遥感技术在第一时间获取了灾区的详细信息与资料,并利用航空遥感技术和无人机连续、动态的实现对灾区的监测,并对道路交通以及房屋倒塌等情况进行分析,建立起灾区地理信息综合服务平台,将灾区的地理信息数据进行整合,比如水系、居民地以及交通等,为各级抗震救灾指挥部门作出正确的决策以及救援人员的搜救工作提供了及时有效的灾情信息。

在灾区的救援工作中,发挥着至关重要的作用。

(二)摄影测量与遥感技术在气象中的运用

在气象方面中,摄影测量与遥感技术主要运用在对各种气象灾害的.预报和监测两方面。

在热带天气系统的监测方面,气象卫星发挥着极其重要的作用,尤其是对于台风的预报和监测。

在我国的春、夏季中,雷雨、暴雨等作为多发性的灾害性天气,在监测和分析方面,如果运用常规的气象观测资料是非常困难的。

利用具有高空间分辨率和高时间密度特点的卫星云图以及卫星产品,可以对对流系统的演变、发生、移动以及发展过程进行全方位的监测,从而为对流天气的分析和提前预警提供了非常重要的信息。

三、结语

摄影测量与遥感技术的应用已经逐渐步入信息化阶段。

随着我国航空航天技术的不断发展,如何将各行各业的发展与摄影测量和遥感技术相结合从而推动我国经济的发展,已经成为未来摄影测量和遥感技术发展的主要方向。

【参考文献】

[1]张景雄.地理信息系统与科学[M].武汉:武汉大学出版社,2010:108―114

[2]张剑清.潘励.王树根.摄影测量学[M].武汉:武汉大学出版社,2009:89―93

[3]李德仁.王树根.周月琴.摄影测量与遥感概论[M].北京:测绘出版社,2008:131―137

[4]乔瑞亭.孙和利.李欣.摄影与空中摄影学[M].武汉:武汉大学出版社,2008:178―182

[5]窦超.李兆钧.浅谈摄影测量与遥感的发展应用[M].青海国土经略,2011(06):29―31

摄影测量与遥感技术的新特点及技术【2】

摘要:本文主要分析了近年来我国摄影测量与遥感技术表现出的许多新的特点,分别从航空摄影自动定位技术、近景摄影测量、低空摄影测量、SAR数据处理、多源空间数据挖掘等方面进行了总结与论述。

关键词:电子科技论文发表,科技论文网,自动定位技术,近景摄影测量,低空摄影测量,SAR数据处理,多源空间数据挖掘

前言:摄影测量与遥感是从摄影影像和其他非接触传感器系统获取所研究物体,主要是地球及其环境的可靠信息,并对其进行记录、量测、分析与应用表达的科学和技术。

随着摄影测量发展到数字摄影测量阶段及多传感器、多分辨率、多光谱、多时段遥感影像与空间科学、电子科学、地球科学、计算机科学以及其他边缘学科的交叉渗透、相互融合,摄影测量与遥感已逐渐发展成为一门新型的地球空间信息科学。

1、航空摄影自动定位技术

近年来,随着卫星导航和传感器技术的进步,遥感对地目标定位逐步摆脱了地面控制点的束缚,向少控制点甚至是无控制点的方向发展。

利用基于载波相位测量的GPS动态定位技术测定航空影像获取时刻投影中心的3维坐标,以此为基础研究了GPS辅助空中三角测量理论和质量控制方法,在加密区四角布设地面控制点的GPS辅助光束法区域网平差的精度可满足摄影测量规范的精度要求,大量减少了航空摄影测量所需的地面控制点。

研究成果已大规模用于国家基础测绘,产生了显著的社会和经济效益。

开展利用在飞机上装载IMU和GPS构成的POS系统直接获取航摄像片6个外方位元素的多传感器航空遥感集成平台研究,可实现定点航空摄影和无地面控制的高精度对地目标定位。

研究成果表明,在1:5万及以下比例尺的4D产品生产中,可直接使用POS系统测得的像片外方位元素进行影像定向,基本无需地面控制点和摄影测量加密,从而改变了航空摄影测量的作业模式,并使无图区、困难地区的地形测绘和空间信息数据的实时更新成为可能。

2、近景摄影测量技术

近景摄影测量的研究应用领域已涉及空间飞行器制造、航空工业、船舶工业、汽车工业、核能工业、化学工业以及医学、生物工程、公安刑事侦破、交通事故及其他事故现场处理、古建筑建档和恢复、大型工程建设监测等方面。

利用数字相机与实时数字近景摄影测量技术相结合建立相应的工业零件检测系统。

该类系统使用高重叠度序列图像作为影像数据源,利用较多同名特征的冗余观测值成功地进行粗差剔除,根据2维序列图像导出物体不同部位的3维信息,然后将这些3维信息融为统一的表面模型,实现了高精度3维重建。

利用数码相机与全站仪集成形成一个全新的测量系统——摄影全站仪系统。

尽管传统近景摄影测量近年来得巨大发展,但必须在被测物体表面或周围布设一定数量的控制点,摄影测量工作者心中的“无接触测量“没有真正实现。

全站仪作为一种高精度测量仪器在工程测量中被广泛接受,本质上它是一种基于”点“的测量仪器。

将它与基于”面“的摄影测量有机地结合起来,形成一个全新的测量系统——摄影全站仪系统。

在该系统中,量测数码相机安装在全站仪的望远镜上,测量时利用全站仪进行导线测量,在每个导线点利用量测数码相机对被测物体进行摄影。

每张影像对应的方位元素可以由导线测量与全站仪的读数中获取。

3、低空摄影测量技术

近年来随着低空飞行平台(固定翼模型飞机、飞艇、直升机、有人驾驶小型飞机)及其辅助设备的进一步完善、数码相机的快速普及和数字摄影测量技术的日趋成熟,由地面通过无线电通讯网络,实现起飞、到达指定空域、进行遥感飞行以及返回地面等操作的低空遥感平台为获取地面任意角度的清晰影像提供了重要途径。

建立基于无人驾驶飞行器的低空数字摄影测量与遥感硬件系统。

硬件平台包括无人驾驶遥控飞行平台,差分GPS接收机,姿态传感器,高性能数码相机和视频摄像机,数据通讯设备,影像监视与高速数据采集设备,高性能计算机等等。

需要深入研究无人驾驶飞行平台的飞行特性,并研制三轴旋转云台、差分GPS无线通讯、视频数据的自动下传、自动曝光等关键技术。

研究无人驾驶飞行平台的自动控制策略。

在飞行器上搭载飞控计算机,由差分GPS数据得到飞艇(相机)的精确位置,在此基础上对较低分辨率的视频序列影像进行匹配,结合姿态传感器的输出信号实时自动确定飞行器的姿态,从而进行飞行自动控制,并将所有数据同时下传到地面监控计算机。

研究多基线立体影像中连接点的多影像匹配方法与克服影像几何变形的稳健影像匹配方法。

数字表面模型与正射影像的自动获取及立体测图。

4、SAN数据处理技术

SAR成像具有全天时、全天候的工作能力,它与可见光红外相比具有独特的优势。

随着我国SAR传感器研制技术的进一步发展,先后研制了不同波段,不同极化方式,空间分辨率达到 In的传感器,并在SAR立体测绘方面设计了不同轨道和相同轨道的重复观测,为我国开展SAR技术的相关研究奠定了数据基础。

根据不同应用目的的SAR图像与可见光图像的融合。

利用SAR和可见光反映地物不同特性的特点,在提取不同土壤性质以及洪水监测和灾害评估方面采用不同的融合方法,取得了一定的理论成果,并完成了国家和部门的科研课题。

SAR图像噪声去除方法。

由于SAR的成像特点,造成了SAR图像的信噪比低,噪声严重。

提出了自适应滤波思想,基于图斑的去噪方法以及噪声去除方法的评价等。

机载和星载重复轨道的SAR立体测图技术以及星载的InSAR技术和D—InSAR的突破。

完成了星载InSAR生成DEM及D—InSAR形变检测的相关软件开发,利用极化SAR数据提取地物目标,开展极化干涉测量的研究。

5、多源空间数据挖掘技术

多源空间数据挖掘技术主要研究应用数学方法和专业知识从多源对地观测数据中,提取各种面向应用目的的地学信息。

从遥感图像数据中挖掘GIS数据。

在统计模式识别的基础上,通过神经网络、模糊识别和专家系统等技术实现图像光谱特征自动分类。

基于纹理分析的分类识别。

包括基于统计法的纹理分析、基于分形法的纹理分析、基于小波变换的纹理分析、基于结构法的纹理分析、基于模型法的纹理分析和空间/频率域联合纹理分析等。

遥感图像的解译信息提取。

把计算机自动识别出来的影像,结合GIS数据库或解译员的知识,确定其对应的地学属性。

包括基于GIS数据的图像信息识别、基于地学知识辅助的图像信息识别、基于专家知识辅助的图像信息识别、基于立体观察的图像信息识别、基于矢量栅格转化的信息提取和基于多源数据融合的信息识别等。

摄影测量与遥感的现状及发展趋势【3】

摘 要:随着信息时代的来临,人类社会步入全方位信息时代,各种新兴的科学技术迅猛发展,并广泛应用于人类生活中去。

摄影测量与遥感技术被广泛应用于我国测绘工作去,本文探讨了我国摄影测量与遥感的发展现状以及展望了发展趋势。

关键词:摄影测量;遥感;现状

随着信息时代的来临,人类社会步入全方位信息时代,各种新兴的科学技术迅猛发展,并广泛应用于人类生活中去。

摄影测量经历了模拟摄影测量、解析摄影测量和数字摄影测量三个阶段。

而在这期间,从遥感数据源到遥感数据处理、遥感平台和遥感器以及遥感的理论基础探讨和实际应用,都发生了巨大的变化。

数字地球(digitalearth)的概念是基于信息高速公路的假设和地理空间信息学的高速发展而产生的,数字地球为摄影测量与遥感学科提供了难得一遇的机会和明确的发展方向,与此同时,也向摄影测量和遥感技术提出了一些列的挑战。

而摄影测量和遥感学科是为数字地球提供空间框架图像数据及从数据图像中获得相关信息惟一技术手段

一、国内外摄影测量与遥感的现状

(一)摄影测量现状

摄影测量经历了漫长的发展过程,随着计算机技术以及自动控制技术的高数发展,进入20世纪末期的时候,基于全数字自动测图软件的完成,数字摄影测量工作站获得了迅猛发展并普遍存在于测量工作中。

进入21世纪后,科学技术的提升帮助摄影测量进入了数字化时代,数字摄影测量学学科与计算机科学有了大面积的知识交叉,摄影测量工具也变为较为经济的计算机输入输出设备,这种革命性的变革,使得数字摄影测量提升到了另一个台阶,数字摄影测量的语义信息提取、影像识别与分析等方面均产生了从质到量的变化。

目前我国各省测绘局均已广泛应用了数字摄影测量,建立了数字化测绘生产基地,实现了全数字化摄影测量与全球定位系统之间的有机合成,并且应用与测量实际工作中。

(二)遥感技术现状

目前遥感技术主要应用在日常的天气、海洋、环境预报及灾害监测、土地利用、城市规划、荒漠化监测、环境保护等方面,为社会带来了巨大的经济利益。

尤其要提出的是航天遥感,是利用卫星遥感获取各种信息是目前最有效的方法。

在实现数字地球概念,卫星遥感技术具有很重要的地位。

数字地球的实际意义就是将地球转为一个虚拟的球体,以数字形式来表达地球上的不同种类的信息,实现三维式和多分辨形式的地球描述。

数字地球是一个数量庞大的工程,从长远来看,信息量的更新一集信息的收取都需要卫星遥感技术提供可靠的信息源,换句话说,卫星遥感是实现数字地球的必要手段,也是其他手段不能够替代的。

二、摄影测量与遥感的应用与主要技术

(一)摄影测量与遥感在地籍测量中的应用

应用数字摄影测量与遥感模式进行地籍测量前景非常广阔。

航空航天事业的飞速发展,为高分辨率卫星遥感影像技术为空间地理信息提供主要的数据元。

主要以激光成像雷达、双天线SAR系统等三维数字摄影测量系统。

利用卫星遥感进行土地资源调查和土地利用动态监测,为快速及时的变更地籍测量做好参照,同时还能顺利的完成地籍线画图的测绘,还可以得到正射影像地籍图、三维立体数字地籍图等附属产品。

数字摄影测量主要以大比例尺航空像片为数据采集对象,利用该技术在航片上采集地籍数据,实行空三加密。

数字摄影测量与模式得到的地籍图信息丰富,实时性强;大部分工作均在室内完成,降低劳动强度与人工成本,还能大幅度提高工作效率,是一种非常实用的地籍测量模式。

(二)摄影测量在三维模型表面重建的应用

三维物体的重建技术可广泛应用于古建筑重建和文物保护、医学重建、工业量测、人脸重建、人体重建及程勘察等方面,这种技术主要通过手持量测数码相机进行操作,得到一组具有短基线和多度重叠的图片,通过立体匹配获取可靠的模型点数据。

基于短基线多影像数字摄影测量的快速三维重建技术能够解决静静摄影测量中不能同时兼顾变形早点近景和远景的问题,在操作过程中采用量测数码相机以及手持拍摄方式,使得这种技术简单快速,并且具有高度自动化的有点。

(三)遥感自动定位技术的应用

遥感自动定位技术能够确定影响目标的实际位置,并且准确的解译影响属性,在GPS空中三角测量的基础上,利用惯性导航系统,形成航空影响传感器,实现高精度的定点摄影成像。

在卫星遥感条件下,精度甚至可以达到米级。

遥感自动定位技术的应用,有助于实现实时测图和实时数据更新的作业流程,能够大量减少野外像控测量的工作量。

三、摄影测量与遥感发展展望

目前,摄影测量与遥感技术在数据获取与处理、信息服务和数据分析方面都有了新的进展,数据获取装备发展迅猛,数据处理系统自动化程度相应的提高,航空摄影测量软件实现模块化和标准化,实现了内外一体化的航空摄影测量方法,遥感影像信息管理能力增强。

除此之外,还可以看到测绘领域的全球化进程日益加剧。

四、结语

虽然现在摄影测量与遥感技术相对发展迅速,并且已经广泛应用与测绘工作中,逐步实现数字化与智能化。

在我国目前,摄影测量与遥感装备存在产品种类单一、生产效率低等实际生产问题,这是与飞速发展的信息产业背道而驰的,达不到国际水平。

需要国家发展测绘仪器制造业和专业软件开发能力,跨学科展开合作,集中优势力量,通过政府出台政策来引导市场发展,我国想要在摄影测量与遥感上取得更大的飞跃,还有一段很长的路要走。

参考文献:

[1]李德仁等.地球空间信息学与数字地球[C].空间数据基础设施与数字地球论文集,1999.

[2]刘经南.激光扫描测高技术的发展与现状[M].武汉大学学报,2003(2):132-137.

[3]郑立中,陈秀万.中国卫星遥感与定位技术应用的现状和发展[A].中国遥感奋进创新二十年学术论丈集[C].北京:气象出版社,2001.

浅议遥感技术在环境污染监测中的应用论文

1概述

随着我国经济的高速发展,环境污染和生态破坏日益严重,突发性环境污染事故也时有发生。环境监测作为环境管理和污染控制的主要手段之一,正在发挥不可替代的作用。但是,由于我国面积辽阔,地面环境监测网点分散,仅依靠现有的监测台站和传统监测技术方法不能满足连续、动态、宏观、快速监测环境污染的要求,也满足不了及时、准确地做出环境质量报告和污染预报的要求。因此,日益恶化的环境迫切需要实时、快速、宏观、准确的监测技术,以便更加全面准确地反映环境污染对生态系统和人体健康的影响。近年来国内外大量实践表明,遥感技术是获取环境信息的强有力手段,是实现这一目的的极其有效的技术。运用遥感技术监测环境污染及生态环境状况,正确评价环境质量,寻求改善生态环境的途径和措施,具有重要的意义。

遥感技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优势,还能发现用常规方法往往难以揭示的污染源及其扩散的状态,因此遥感技术正广泛地应用于监测水污染、大气污染等环境问题。它不仅可以快速、实时、动态、省时省力地监测大范围的环境变化和环境污染,具有其它常规方法不可替代的优越性;也可实时、快速跟踪和监测突发环境污染事件的发生、发展,并及时制定处理措施,减少污染造成的损失。因此,发展我国的环境污染遥感监测技术,建立重大环境事故的预报、预警和应急响应系统,对保护我国环境及发展经济都具有重要作用,能产生巨大的社会、经济和环境效益。

2环境污染遥感监测技术

遥感技术是一种利用物体反射或辐射电磁波的固有特性,远距离不直接接触物体而识别、测量并分析目标物性质的技术。根据所利用的波段,遥感监测技术主要分为可见光、反射红外遥感技术,热红外遥感技术,微波遥感技术三种类型。当前,遥感的应用已深入到农业、林业、渔业、地理、地质、海洋、水文、气象、环境监测、地球资源勘探、城乡规划、土地管理、和军事侦察等诸多领域,从室内的工业测量到大范围的陆地、海洋、大气信息的采集以至全球范围的环境变化的监测。

遥感技术在环境污染监测中的应用发展很快,现在已可测出水体的叶绿素含量、泥沙含量、水温、水色;可测定大气气温、湿度、CO、NOx、CO2、O3、ClOx、CH4等主要污染物的浓度分布;可测定固体废弃物的堆放量、分布及其影响范围等,还可对环境污染事故进行遥感跟踪调查,预报事故发生点、污染面积、扩散程度及方向,估算污染造成的损失并提出相应的对策。近几年来,随着全球环境问题日益突出,具有全球覆盖、快速、多光谱、大信息量的遥感技术已成为全球环境变化监测中一种主要的技术手段。国际上相继提出了一系列的全球环境遥感监测计划,其中主要有美国宇航局(NASA)的对地观测计划(EOS)、欧空局的对地观测计划和日本的对地观测计划等。这些计划将极大地推动环境遥感技术的实用化和遥感技术的发展。

3遥感在环境监测中的应用

水环境污染遥感监测

对水体的遥感监测是以污染水与清洁水的反射光谱特征研究为基础的。总的看来,清洁水体反射率比较低,水体对光有较强的吸收性能,而较强的分子散射性仅存在于光谱区较短的谱段上。故在一般遥感影像上,水体表现为暗色色调,在红外谱段上尤其明显。为了进行水质监测,可以采用以水体光谱特性和水色为指标的遥感技术。

遥感监测视野开阔,对大面积范围里发生的水体扩散过程容易通览全貌,观察出污染物的排放源、扩散方向、影响范围及与清洁水混合稀释的特点。从而查明污染物的来龙去脉,为科学地布设地面水样监测提供依据。在江河湖海各种水体中,污染物种类繁多。为了便于遥感方法研究各种水污染,习惯上将其分为泥沙污染、石油污染、废水污染、热污染和水体富营养化等几种类型。

大气污染遥感监测

大气遥感是利用遥感器监测大气结构、状态及变化。大气遥感器除了测量气温、水蒸汽、大气中的微量成分气体、气溶胶等的三维分布以外,还用来进行风的测量及地球辐射收支的测量等。

影响大气环境质量的主要因素是气溶胶含量和各种有害气体。这些物理量通常不可能用遥感手段直接识别。水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射和吸收光谱,所以,实际上是通过测量大气的散射、吸收及辐射的光谱而从其结果中推算出来的。通过对穿过大气层的太阳(月亮、星星)的直射光,来自大气和云的散射光,来自地表的反射光,以及来自大气和地表的热辐射进行吸收光谱分析或发射光谱分析,从而测量它们的光谱特性来求出大气气体分子的密度。测量中所利用的电磁波的光谱范围很宽,从紫外、可见、红外等光学领域一直扩展到微波、毫米波等无线电波的领域。大气遥感器分为主动式和被动式,主动方式中有代表性的遥感器是激光雷达,被动式遥感器有微波辐射计、热红外扫描仪等。

4国内发展现状

我国环境污染遥感监测技术发展和应用的主要问题有:①环境污染遥感监测系统和技术方法基本上处于起步阶段。虽然我国的遥感理论、技术和应用发展很快,但与国外相比差距甚大,在环境污染监测中的应用基本还没有开展起来,目前在全国范围内基本上没有建立起环境遥感的监测体系与系统。②对于环境监测而言,传感器的技术性能要求较高,不仅要求传感器能提供高分辨率的探测,而且要求具有全天候、全天时、大范围、多谱段和灵敏度高的特点,这样才能满足环境污染动态、实时、多样的监测需求。当前所用的高分辨率传感器基本上依靠进口,在地面和飞机上测量化学成分的遥感技术还处于实验室的摸索阶段,而在环境污染监测中的应用基本空白。③遥感信息源缺乏。目前我国尚未发射自己的环境污染监测遥感卫星,遥感信息源主要来自于国外的相关卫星资料。同时国际上用于环境监测的遥感商业卫星寥寥无几,从而客观上制约了我国环境遥感监测技术和应用水平的发展。④新型遥感技术在环境污染监测上应用的理论和方法有待探索和发展,缺少环境污染遥感监测体系与系统。

5结论与展望

目前,遥感技术正从单一遥感资料的分析,向多时相、多数据源(包括非遥感资料数据)的信息复合与综合分析过渡;从资源环境静态分布研究,向动态过程监测过渡;从动态监测,向预测、预报过渡;从定性调查、系列制图,向计算机辅助的.数字处理、定量自动制图过渡;从对各种事物的表面性的描述,向内在规律分析、定量化分析过渡。就环境污染遥感监测技术而言,有待于在以下几方面加强研究:

(1)利用环境污染遥感监测技术,建立突发性环境污染事故的实时监测和预警系统。通过集成多种遥感传感器,并结合地面环境监测网站的监测数据,进行多环境参数的自动监测,并实时监测各种指标的时空变化趋势,以便在某些指标刚刚接近警戒线时预报可能出现的危机,确定环境污染事故所在的空间位置,并提供其空间影响范围的模拟和模型方法,为突发性事故管理决策提供信息,实现连续、自动监测和总量控制。如利用环境污染遥感监测技术,通过建立城市大气环境质量预测预报系统,可以对城市大气环境质量状况进行预报,并对可能发生的大气污染事件提出预警。

(2)高性能传感器的研制。重点发展能够选择监测某种或某类优先污染物(如氯苯和硝基苯等)浓度的遥感器。

(3)研制环境污染物的定量遥感监测技术。如利用水面反射光谱测量与水质参数进行回归分析,建立某一谱段上光谱反射率与某些水质参数的函数关系式。一般来说,水质参数中的透明度、固体悬浮物浓度、叶绿素含量和水面混浊度与光谱反射率或卫星影像的密度值之间往往存在比较明显的对应关系。

(4)将环境污染遥感监测技术与GIS(地理信息系统)、GPS(全球定位系统)、ES(专家系统)技术集成。利用环境污染遥感监测集成系统,可以大大提高环境监测的科学性、合理性及智能化程度,从而大大扩展环境监测的应用范围。集成技术应用于环境污染遥感监测中的优越性具体体现如下:遥感监测技术为集成系统提供正确、迅速、宏观的环境污染监测数据,GIS可利用其强大的空间信息管理功能,建立各类有毒、有害、易燃、易爆物质的理化特性数据库,有关自然、经济、社会、生态环境数据库和图形库及模型库,同时可结合地面监测数据,经由GPS提供的精确位置信息,在ES技术支持下对监测数据进行有效的管理、分析和计算并将综合数据以直观、形象的图形化方式输出或显示出来,从而使环境管理者迅速了解和掌握各类突发事故的多发地带、发生频率、潜在事故发生源的时空分布、事故发生后污染物的影响范围及时空变化,更好地实现事故的预防、应急处置和灾后恢复。

当前,我国环境污染遥感监测技术应依托我国的对地观测技术和对地观测系统的发展计划,同时充分利用国际上资源环境卫星系统,开展广泛的国际合作和交流,大力发展我国的环境污染遥感监测技术,并充分利用现有的环境监测网点和常规监测方法,采用遥感技术与地面监测相结合的方法,建立我国的环境污染遥感监测系统。

毕业论文图像分类

你可以到中国图书馆分类法网站去查询,网址:。你的毕业论文可能涉及几个不同的小类,在填写中图分类法的时候可以填写一个或多个,多个分类号请用/分开即可。

市场学 市场营销学入此上边是中图分类法

根据GB3469-83《文献类型与文献载体代码》规定,以单字母标识: M——专著(含古籍中的史、志论著) C——论文集 N——报纸文章 J——期刊文章 D——学位论文 R——研究报告 S——标准 P——专利 A——专著、论文集中的析出文献 Z——其他未说明的文献类型 电子文献类型以双字母作为标识: DB——数据库 CP——计算机程序 EB——电子公告 非纸张型载体电子文献,在参考文献标识中同时标明其载体类型: DB/OL——联机网上的数据库 DB/MT——磁带数据库 M/CD——光盘图书 CP/DK——磁盘软件 J/OL——网上期刊 EB/OL——网上电子公告 一、参考文献著录格式 1 、期刊作者.题名〔J〕.刊名,出版年,卷(期)∶起止页码 2、 专著作者.书名〔M〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码 3、 论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码 4 、学位论文作者.题名〔D〕.保存地点.保存单位.年份 5 、专利文献题名〔P〕.国别.专利文献种类.专利号.出版日期 6、 标准编号.标准名称〔S〕 7、 报纸作者.题名〔N〕.报纸名.出版日期(版次) 8 、报告作者.题名〔R〕.保存地点.年份 9 、电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期 二、文献类型及其标识 1、根据GB3469 规定,各类常用文献标识如下: ①期刊〔J〕 ②专著〔M〕 ③论文集〔C〕 ④学位论文〔D〕 ⑤专利〔P〕 ⑥标准〔S〕 ⑦报纸〔N〕 ⑧技术报告〔R〕 2、电子文献载体类型用双字母标识,具体如下: ①磁带〔MT〕 ②磁盘〔DK〕 ③光盘〔CD〕 ④联机网络〔OL〕 3、电子文献载体类型的参考文献类型标识方法为:〔文献类型标识/载体类型标识〕。例如: ①联机网上数据库〔DB/OL〕 ②磁带数据库〔DB/MT〕 ③光盘图书〔M/CD〕 ④磁盘软件〔CP/DK〕 ⑤网上期刊〔J/OL〕 ⑥网上电子公告〔EB/OL〕参考:

点我用户名,空间博文有介绍详细各种论文检测系统软件介绍见我空间各种有效论文修改秘籍 111

桩基的分类毕业论文

水下灌注桩施工工程中的若干问题(清孔、泥浆护壁、防止钢筋笼上浮、坍孔、断桩)的研究我来帮你吧Q我

桩基础是当前建筑工程基础施工中最常用的基础处理方式,采用桩基础的施工方式不但可以使基础工程更加稳固,也大大的加快了施工进程,提高了工程的施工效率,为此,桩基础在当前建筑工程,尤其是大型高层建筑工程的基础处理施工中有着广泛的应用.

不知道你的题目是什么,我拟个大概的提纲一起探讨吧。 一、绪论 1.静压桩工艺在高层建筑基础中的应用(我随意编的) 2,如何预防静压桩在高层建筑基础应用中易发生的质量事故 二、本论 1、 静压桩工艺在建筑工程施工中的作用 2、高层建筑基础的几种类型分别论述目前高层建筑 基础类型以及在天然地基无法满足荷载要求时,选择的基桩类型;从经济适用、施工难易几个方面论述静压桩与其它桩相比的优点(时间短、成本低、施工相对简单)。 3、静压桩的缺点及预防措施 1.对场地要求的局限性;(工作面、机械自重等) 2.地层对工艺的影响;(障碍物产生偏桩、厚沙层和夹层无法穿透、淤泥跑桩、粘土挤土桩身上浮等) 3.挤土效应对桩以及周边环境的影响;预防及处理措施(重点) 4.基坑开挖对桩的影响;预防及处理措施 (重点) 三、结论 1,概述静压桩在高层基础应用中的局限性; 2.如何才能更好的发挥静压桩在高层基础中的作用。手上有一些资料,不知道你是否有用,需要就把邮箱地址说明

图像分割类毕业论文

①:题目,不妨在百度搜索:毕业 选题 图像处理可以找到其它学校给出的参考题目。②:论文资料,最好去学校图书馆(网上)的期刊论文数据库检索。万方的学位论文,比较有参考价值不知你是否要做设计,涉及到具体问题,再去专门的论坛写论文,没必要在网上瞎搜索的……

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

论文地址:     V-Net 是另一种版本的3D U-Net。它与U-Net的区别在于: 1、3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。2、新的目标函数,基于Dice coefficient。3、数据扩充方法:random non-linear transformations和histogram matching(直方图匹配)。4、加入残差学习提升收敛。 (1)网络结构     其网络结构主要特点是3D卷积,引入残差模块和U-Net的框架,网络结构如图:          整个网络分为压缩路径和非压缩路径,也就是缩小和扩大feature maps,每个stage将特征缩小一半,也就是128-128-64-32-16-8,通道上为1-16-32-64-128-256。每个stage加入残差学习以加速收敛。    图中的圆圈加交叉代表卷积核为5*5*5,stride为1的卷积,可知padding为2*2*2就可以保持特征大小不变。每个stage的末尾使用卷积核为2*2*2,stride为2的卷积,特征大小减小一半(把2x2 max-pooling替换成了2x2 conv.)。整个网络都是使用keiming等人提出的PReLU非线性单元。网络末尾加一个1*1*1的卷积,处理成与输入一样大小的数据,然后接一个softmax。 (2)损失函数     由于前景比较小,在学习过程中不容易被学习到,因此重新定义了Dice coefficient损失函数。两个二进制的矩阵的dice相似系数为:          使用这个函数能避免类别不平衡。

相关百科

热门百科

首页
发表服务