首页

毕业论文

首页 毕业论文 问题

主成分回归做毕业论文

发布时间:

主成分回归做毕业论文

1、首先打开SPSSAU,右上角【上传数据】,点击或者拖拽原始数据文件上传。

2、选择【进阶方法】->【主成分】,选择需要分析的题目,拖拽到右侧。点击“开始主成分分析”。

3、可以自行设置好要输出的主成分个数,而不是让软件自动识别。

4、完成以上操作后,即可得到分析结果,结果如下:KMO 和 Bartlett 的检验,及智能分析。

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

直接帮你把几个因子都已经算出来了,就是FAC1-1列就是因子F1,同理可以得知F2,F3....不用算的,如果问F1怎么来的,就说是F1=.如果你进行主成分分析之后又要进行回归分析,应该是用提取出来的主因子作为自变量进行计算的,回归的话是只能有一个自变量,一个因变量才算回归的呢,如果不是的话,建议你使用多项式分析。

主成分分析和逐步回归分析一起用就是主成分回归分析

主成分回归分析毕业论文

主成分分析法对于写论文难。主成分分析法一般指主成分分析。主成分分析(PrincipalComponentAnalysis,PCA),是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

你的邮箱发不进去,请换一个,这里发部分供你参考Principal component analysisPrincipal component analysis (PCA) is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of uncorrelated variables called principal components. The number of principal components is less than or equal to the number of original variables. This transformation is defined in such a way that the first principal component has as high a variance as possible (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it be orthogonal to (uncorrelated with) the preceding components. Principal components are guaranteed to be independent only if the data set is jointly normally distributed. PCA is sensitive to the relative scaling of the original variables. Depending on the field of application, it is also named the discrete Karhunen–Loève transform (KLT), the Hotelling transform or proper orthogonal decomposition (POD).PCA was invented in 1901 by Karl Pearson.[1] Now it is mostly used as a tool in exploratory data analysis and for making predictive models. PCA can be done by eigenvalue decomposition of a data covariance matrix or singular value decomposition of a data matrix, usually after mean centering the data for each attribute. The results of a PCA are usually discussed in terms of component scores (the transformed variable values corresponding to a particular case in the data) and loadings (the weight by which each standarized original variable should be multiplied to get the component score) (Shaw, 2003).PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can be thought of as revealing the internal structure of the data in a way which best explains the variance in the data. If a multivariate dataset is visualised as a set of coordinates in a high-dimensional data space (1 axis per variable), PCA can supply the user with a lower-dimensional picture, a "shadow" of this object when viewed from its (in some sense) most informative viewpoint. This is done by using only the first few principal components so that the dimensionality of the transformed data is is closely related to factor analysis; indeed, some statistical packages (such as Stata) deliberately conflate the two techniques. True factor analysis makes different assumptions about the underlying structure and solves eigenvectors of a slightly different matrix.

硕士毕业论文做回归

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

那肯定没有的啊

老师同意就有说服力。 你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。首先要确定课题,是调研类的还是什么?一般毕业论文大体框架结构都差不多:摘要,目录,第一章绪论(文献综述,现状什么的),第二章是方法或者比较共性的问题,第三章和第四章一般是全篇的重点,论述自己的内容;第五章是措施之类的。可以去万方、维普、CNKI网上下载一些类似课题的文章看看:)祝顺利祝成功!1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

回归分析是一种非常常用的统计分析方法,可以用来研究自变量和因变量之间的关系。下面是一般回归分析的步骤:

1.明确研究对象和问题:需要确认要研究的自变量和因变量,并明确研究的目的。

2.收集数据:需要搜集并整理数据,确保数据的质量和一致性。

3.数据描述和探索:对数据进行初步探索,包括描述性统计、散点图等分析方法,了解数据的分布情况。

4.模型建立:根据研究问题选取合适的模型,比如线性回归模型(简单线性回归和多元线性回归)等,利用计算机软件进行模型拟合和检验。

5.模型诊断:对模型进行诊断,验证模型是否符合回归分析的基本假设,如无自相关性、正态性、同方差性等。

6.结果解释和分析:根据分析结果,解释模型中每个自变量对因变量的影响,同时探讨可能的解释和实际意义。

7.

结论和应用:根据分析结果,得出结论或建议,并应用到实际问题中。同时,需要对结论及应用进行审慎的评估和解释, 以提高回归分析的可靠性和可行性。

需要注意的是,回归分析的具体步骤可能因为不同的问题而有所变化,但基本的思路是相似的。同时,回归分析本身也有很多变体和扩展,可以根据具体的问题选择合适的方法或者工具。

毕业论文主回归显著性

相关性不显著回归显著论文里面怎么解释?答:相关性分析不通过可以不放,但毕业论文最好要放,对相关性分析不显著结果需要进行合理解释。 一般期刊论文不放的,因为篇幅有限。但是作为一个规范,会做这个检验,只是不在论文里面贴出来。一般实证论文中,相关性分析主要用途在于检查回归...《》《》《》《》《》答:怎么在论文中解释stata的R方,关于这个问题有以下解释:正确解释 在stata 面板回归结果中有三个R方 ,分别是within between overall。然后仔细看一下里面关于within estimator那一部分,基础知识还是要自己看看才能掌握的比较好。搞明白了wi...

(1)对回归方程的整体显著性进行说明根据输出结果,R-SQUARE 为 ,其中,R-SQUARE 越接近 1,表明模型的拟合效果越好,代表回归方程的整体显著性越高。因此,可以认为本次回归方程的整体显著性较高。(2)写出回归方程,对回归系数的显著性进行说明,并说明回归系数的经济含义回归方程为:收入水平= + * 初始工资 + * 工作经验 + * 受雇时间 + * 受教育时间。根据输出结果,回归系数分别为:初始工资的回归系数为 ,P-value 为 ;工作经验的回归系数为 ,P-value 为 ;受雇时间的回归系数为 ,P-value 为 ;受教育时间的回归系数为 ,P-value 为 。由此可见,这四个回归系数的显著性均高于 ,表明它们对收入水平的影响都是显著的,具有一定的经济意义。

毕业论文分层回归

回归分析是一种非常常用的统计分析方法,可以用来研究自变量和因变量之间的关系。下面是一般回归分析的步骤:

1.明确研究对象和问题:需要确认要研究的自变量和因变量,并明确研究的目的。

2.收集数据:需要搜集并整理数据,确保数据的质量和一致性。

3.数据描述和探索:对数据进行初步探索,包括描述性统计、散点图等分析方法,了解数据的分布情况。

4.模型建立:根据研究问题选取合适的模型,比如线性回归模型(简单线性回归和多元线性回归)等,利用计算机软件进行模型拟合和检验。

5.模型诊断:对模型进行诊断,验证模型是否符合回归分析的基本假设,如无自相关性、正态性、同方差性等。

6.结果解释和分析:根据分析结果,解释模型中每个自变量对因变量的影响,同时探讨可能的解释和实际意义。

7.

结论和应用:根据分析结果,得出结论或建议,并应用到实际问题中。同时,需要对结论及应用进行审慎的评估和解释, 以提高回归分析的可靠性和可行性。

需要注意的是,回归分析的具体步骤可能因为不同的问题而有所变化,但基本的思路是相似的。同时,回归分析本身也有很多变体和扩展,可以根据具体的问题选择合适的方法或者工具。

分层逐步多元回归分析,是指分层回归,每一层都用逐步回归的方法。

分层回归的SPSS操作参考下面网址

逐步回归参考下面步骤:

所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。 分层回归其实是对两个或多个回归模型进行比较。我们可以根据两个模型所解释的变异量的差异来比较所建立的两个模型。一个模型解释了越多的变异,则它对数据的拟合就越好。假如在其他条件相等的情况下,一个模型比另一个模型解释了更多的变异,则这个模型是一个更好的模型。两个模型所解释的变异量之间的差异可以用统计显著性来估计和检验。 模型比较可以用来评估个体预测变量。检验一个预测变量是否显著的方法是比较两个模型,其中第一个模型不包括这个预测变量,而第二个模型包括该变量。假如该预测变量解释了显著的额外变异,那第二个模型就显著地解释了比第一个模型更多的变异。这种观点简单而有力。但是,要理解这种分析,你必须理解该预测变量所解释的独特变异和总体变异之间的差异。 一个预测变量所解释的总体变异是该预测变量和结果变量之间相关的平方。它包括该预测变量和结果变量之间的所有关系。 预测变量的独特变异是指在控制了其他变量以后,预测变量对结果变量的影响。这样,预测变量的独特变异依赖于其他预测变量。在标准多重回归分析中,可以对独特变异进行检验,每个预测变量的回归系数大小依赖于模型中的其他预测变量。 在标准多重回归分析中,回归系数用来检验每个预测变量所解释的独特变异。这个独特变异就是偏相关的平方(Squared semi-partial correlation)-sr2(偏确定系数)。它表示了结果变量中由特定预测变量所单独解释的变异。正如我们看到的,它依赖于模型中的其他变量。假如预测变量之间存在重叠,那么它们共有的变异就会削弱独特变异。预测变量的独特效应指的是去除重叠效应后该预测变量与结果变量的相关。这样,某个预测变量的特定效应就依赖于模型中的其他预测变量。 标准多重回归的局限性在于不能将重叠(共同)变异归因于模型中的任何一个预测变量。这就意味着模型中所有预测变量的偏决定系数之和要小于整个模型的决定系数(R2)。总决定系数包括偏决定系数之和与共同变异。分层回归提供了一种可以将共同变异分配给特定预测变量的方法。分层回归 标准多重回归可以测量模型所解释的变异量的大小,它由复相关系数的平方(R2,即决定系数)来表示,代表了预测变量所解释的因变量的变异量。模型的显著性检验是将预测变量所解释的变异与误差变异进行比较(即F值)。 但是,也可以采用相同的方式来比较两个模型。可以将两个模型所解释的变异之差作为F值的分子。假如与误差变异相比,两个模型所解释的变异差别足够大,那么就可以说这种差别达到了统计的显著性。相应的方程式将在下面详细阐述。 分层回归就是采用的这种方式。分层回归包括建立一系列模型,处于系列中某个位置的模型将会包括前一模型所没有的额外预测变量。假如加入模型的额外解释变量对解释分数差异具有显著的额外贡献,那么它将会显著地提高决定系数。 这个模型与标准多重回归的差异在于它可以将共同变异分配到预测变量中。而在标准多重回归中,共同变异不能分配到任何预测变量中,每个预测变量只能分配到它所解释的独特变异,共同变异则被抛弃了。在分层回归中,将会把重叠(共同)变异分配给第一个模型中的预测变量。因此,共同变异将会分配给优先进入模型的变量。 重叠的预测变量(相关的预测变量Predictor variables that overlap)简单地看来,由一系列预测变量所解释的变异就像一块块蛋糕堆积在一起。每个预测变量都有自己明确的一块。它们到达桌子的时间是无关紧要的,因为总有同样大小的蛋糕在等着它们。不同部分变异的简单相加就构成了某个模型所解释的总体变异。 但是,这种加法的观点只有在每个预测变量互相独立的情况下才是正确的。对于多重回归来说,则往往不正确。假如预测变量彼此相关,它们就会在解释变异时彼此竞争。归因于某个预测变量的变异数量还取决于模型中所包含的其他变量。这就使得我们对两个模型的比较进行解释时,情况变得更为复杂。 方差分析模型是建立在模型中的因素相互独立的基础上的。在ANOVA中,因素对应于多重回归中的预测变量。这些因素具有加法效应,变异(方差)可以被整齐地切开或分割。这些因素之间是正交的。 但是,在多重回归中,变量进入模型的顺序会影响该变量所分配的变异量。在这种情况下,预测变量就像一块块浸在咖啡杯中的海绵。每一块都吸收了一些变异。在分层多重回归中,第一块浸入咖啡杯的海绵首先吸收变异,它贪婪地吸收尽可能多的变异。假如两个预测变量相关,那它们所解释的变异就存在重叠。如果一个变量首先进入模型,那它就将重叠(共同)变异吸收据为己有,不再与另一个变量分享。 在标准多重回归中,所有预测变量同时进入模型,就像将所有海绵同时扔进咖啡杯一样,它们互相分享共同变异。在这种情况下,偏相关的平方(sr2)与回归系数相等,它们检验了相同的东西:排除了任何共同变异后的独特变异。这样,在多重回归中,对回归系数的T检验就是sr2的统计显著性检验。但是,在分层回归或逐步回归中,sr2不再与回归系数相等。但T检验仍然是对回归系数的检验。要估计sr2是否显著,必须对模型进行比较。 模型比较就是首先建立一个模型(模型a),使它包括除了要检验的变量以外的所有变量,然后再将想要检验的变量加入模型(模型b),看所解释的变异是否显著提高。要检验模型b是否要比模型a显著地解释了更多的变异,就要考察各个模型所解释的变异之差是否显著大于误差变异。下面就是检验方程式(Tabachnik and Fidell, 1989)。(R2b-R2a)/MF = ————————(1+ R2b) /dferror(2为平方,a,b为下标。不知道在blog里如何设置文字格式)原文(DATA ANALYSIS FOR PSYCHOLOGY, George Dunbar)如此,但参考了其他书后,觉得这是误印,真正的公式应该是这样的:(R2b-R2a)/MF = ————————(1- R2b) /dferror注:M是指模型b中添加的预测变量数量R2b是指模型b(包含更多预测变量的模型)的复相关系数的平方(决定系数)。R2a是指模型a(包含较少预测变量的模型)的复相关系数的平方(决定系数)。dferror是指模型b误差变异的自由度。 分层回归与向前回归、向后回归和逐步回归的区别 后三者都是选择变量的方法。 向前回归:根据自变量对因变量的贡献率,首先选择一个贡献率最大的自变量进入,一次只加入一个进入模型。然后,再选择另一个最好的加入模型,直至选择所有符合标准者全部进入回归。 向后回归:将自变量一次纳入回归,然后根据标准删除一个最不显著者,再做一次回归判断其余变量的取舍,直至保留者都达到要求。 逐步回归是向前回归法和向后回归法的结合。首先按自变量对因变量的贡献率进行排序,按照从大到小的顺序选择进入模型的变量。每将一个变量加入模型,就要对模型中的每个变量进行检验,剔除不显著的变量,然后再对留在模型中的变量进行检验。直到没有变量可以纳入,也没有变量可以剔除为止。 向前回归、向后回归和逐步回归都要按照一定判断标准执行。即在将自变量加入或删除模型时,要进行偏F检验,计算公式为:(R2b-R2a)/MF = ————————(1- R2b) /dferrorSPSS回归所设定的默认标准是选择进入者时偏F检验值为,选择删除者时的F检验值为。 从上面可以看出,分层回归和各种选择自变量的方法,其实都涉及模型之间的比较问题,而且F检验的公式也相等,说明它们拥有相同的统计学基础。但是,它们又是不同范畴的概念。分层回归是对于模型比较而言的,而上面三种方法则是针对自变量而言的。上面三种选择自变量的方法,都是由软件根据设定标准来自动选择进入模型的变量。而分层回归则是由研究者根据经验和理论思考来将自变量分成不同的组(block),然后再安排每一组变量进入模型的顺序,进入的顺序不是根据贡献率,而是根据相应的理论假设。而且,研究者还可以为不同组的自变量选用不同的纳入变量的方法。分层回归在SPSS上的实现 在线性回归主对话框中,在定义完一组自变量后,在因变量不变的情况下,利用block前后的previous和next按钮,继续将其他变量组加入模型。

分层回归通常用于中介作用或者调节作用研究中。

分析时通常第一层放入基本个人信息题项或控制变量;第二层放入核心研究项。使用SPSSAU在线spss分析,输出格式均为标准格式,复制粘贴到word即可使用。

分层回归其实是对两个或多个回归模型进行比较。我们可以根据两个模型所解释的变异量的差异来比较所建立的两个模型。一个模型解释了越多的变异,则它对数据的拟合就越好。

假如在其他条件相等的情况下,一个模型比另一个模型解释了更多的变异,则这个模型是一个更好的模型。两个模型所解释的变异量之间的差异可以用统计显著性来估计和检验。

扩展资料:

前面介绍的回归分析中的自变量和因变量都是数值型变量,如果在回归分析中引入虚拟变量(分类变量),则会使模型的应用范围迅速扩大。在自变量中引入虚拟变量本身并不影响回归模型的基本假定,因为经典回归分析是在给定自变量X的条件下被解释变量Y的随机分布。

但是如果因变量为分类变量,则会改变经典回归分析的基本假定,一般在计量经济学教材中有比较深入的介绍,如Logistics回归等。

参考资料来源:百度百科-多元回归分析

相关百科

热门百科

首页
发表服务