协方差矩阵的计算公式如下:
Conv=frac {1} {n-1}tilde {X} tilde {X}^ {T}\ ktimes n 和 ntimes k 的矩阵相乘,得到 ktimes k 维的矩阵。
概念:
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 这个解释摘自维基百科,看起来很是抽象,不好理解。其实简单来讲,协方差就是衡量两个变量相关性的变量。
当协方差为正时,两个变量呈正相关关系(同增同减);当协方差为负时,两个变量呈负相关关系(一增一减)。而协方差矩阵,只是将所有变量的协方差关系用矩阵的形式表现出来而已。通过矩阵这一工具,可以更方便地进行数学运算。
两个变量的协方差矩阵:
有了上面的数学定义后,我们可以来讨论协方差矩阵了。当然,协方差本身就能够处理二维问题,两个变量的协方差矩阵并没有实际意义,不过为了方便后面多维的推广,我们还是从二维开始。
协方差矩阵的作用:
虽然我们已经知道协方差矩阵的计算方法了,但还有一个更重要的问题:协方差矩阵有什么作用?作为一种数学工具,协方差矩阵经常被用来计算特征之间的某种联系。
在机器学习的论文中,协方差矩阵的出现概率还是很高的,用于降维的主成分分析法(PCA)就用到了协方差矩阵。另外,由于协方差矩阵是一个对称矩阵,因此它包含了很多很有用的性质,这也导致它受青睐的程度较高。
在统计学与概率论中,协方差矩阵(或称共变异矩阵)是一个矩阵,其每个元素是各个向量元素之间的方差。这是从标量随机变量到高维度随机向量的自然推广。
假设X是以n个标量随机变量组成的列向量,
并且μi 是其第i个元素的期望值, 即, μi = E(Xi)。协方差矩阵被定义的第i,j项是如下协方差:
矩阵中的第(i,j)个元素是Xi与Xj的协方差。这个概念是对于标量随机变量方差的一般化推广。
提供一些经济类毕业论文的题目,供参考。1、企业全面预算应用研究。2、企业内控制度与方法研究3、东西部上市公司绩效比较研究4、上市公司行业绩效比较研究5、重庆市上市公司绩效比较研究6、上市公司会计信息披露改进研究7、新旧会计准则下上市公司财务信息差异研究8、企业管理费用、财务费用、销售费用与企业绩效关系研究9、上市公司财务控制与公司治理关系研究10、财务管理或管理会计理论与方法的应用研究11、完善上市公司股权结构的对策分析12、上市公司股权结构成因分析13、上市公司募集资金流向分析14、上市公司融资方式的选择分析15、中国上市公司融资行为分析16、企业财务风险预警与控制分析17、高校财务运作模式分析18、高等教育投入体制改革分析20、集团财务集权管理模式分析21、上市公司资本结构优化探讨--XX行业的分析22、上市公司股利政策研究23、上市公司募集资金变更投向分析24、上市公司质量评价指标体系研究25、上市公司融资结构研究研究26、国有企业财务评价指标体系探讨27、内部控制制度的评价研究28、上市公司内部控制信息披露分析29、上市公司内部控制环境分析30、企业内部控制与会计监管31、银行中间业务在中小城市的推广策略分析32、运用战略管理会计理论对实例的分析(三个)33、运用价值链分析法对实例的分析34、运用波士顿矩阵对实例的分析35、运用SWOT法对实例的分析36、个人投资理财方式比较37、上市公司的财务报告分析方法分析41、上市公司利益相关者治理机制及其实现途经探析42、上市公司资金募集方式及资金流向分析43、国有企业股权结构的成因与多元化改革的新思路44、中国上市公司盈余管理的制度背景与行为初探45、试论企业并购的价值创造与衡量46.新旧企业所得税法对比分析47.鼓励自主创新税收政策研究48.建立节约型社会的税收政策研究49.新企业所得税法的反避税措施50.预约定价制度研究51.反资本弱化避税52.完善我国资源税收制度的思考53.建立我国绿色税收制度的探讨54.对我国就业税收问题的研究55.新企业所得税法的制度创新财务管理1、基于市场经济的个人理财规划探析2、传统文化与企业理财观3、无形资产与企业核心竞争力的构建4、财会交叉学科与创新分析5、试论私人理财规划及职业发展前景6、试论基于管理视角的财务管理框架7、试论基于会计视角的财务管理框架8、试论基于金融视角的财务管理框架9、试论新形势下财会职业形象设计10、试论和谐社会观下的财务指标评价11、试论企业生产与运作管理会计的构建12、试论企业集团一元与多元财务战略评价13、试论企业集团持股模式与管理控制14、试论企业集团核心编造下的财务指标的建立绿色贸易1.浅谈绿色税收2.环境税收的国际经验与我国环境税构想3.税务会计与财务会计差异分析4.避税规制研究5.财务管理中企业所得税的纳税筹划6。我国增值税法的完善7.我国房产税制的改革8.国外纳税人保护制度比较研究及其对我国的启示9.香港物业税基本制度及其对我国的借鉴意义10.我国开征遗产税的思考11.税收筹划在企业管理中的应用12.西方国家环境税的发展及启示13.我国个人所得税法的完善14.税收优先权研究15.税收风险控制分析16.税收筹划与政府反避税17.试探企业管理中的增值税筹划18.国际纳税筹划方法与风险防范措施公司治理1、独立董事背景与公司经营绩效关系分析2、内部控制与企业价值相关性分析3、公司治理结构与公司绩效的关系分析4、对我国企业高比例短期借款与高比例现金流量同时存在的原因分析5、新资产减值准则对财务分析的影响公司上市1、论上市公司的盈利质量2、企业财务危机预警体系3、企业价值评估方法的比较分析4、论企业并购中的融资问题5、股权分置下的上市公司融资行为6、论上市公司的股利政策选择内部控制1、大学生个人理财意识及财商教育研究分析2、财务策略分析3、企业内控环境缺陷与完善4、企业信息披露与企业业绩关系分析5、中小企业融资担保问题分析公司1、公司治理结构与独立董事2、企业所得税改革3、论我国个人信用体系的构建4、对社会信用构建的思考5、上市公司信息披露体系研究请采纳答案,支持我一下。
我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
数学领域中的一些著名悖论及其产生背景
matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 : corrcoef(X,Y) ;函数功能:其中%返回列向量X,Y的相关系数,等同于corrcoef([X Y]);函数举例:在命令窗口产生两个10×3阶的随机数组x和y,计算关于x和y的相关系数矩阵:x=rand(10,3);y=rand(10,3);cx=cov(x)cy=cov(y)cxy=cov(x,y)px=corrcoef(x)pxy= corrcoef(x,y)
matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 corrcoef(X,Y) 函数功能:其中%返回列向量X,Y的相关系数,等同于corrcoef([X Y]);函数举例:在命令窗口产生两个10*3阶的随机数组x和y,计算关于x和y的相关系数矩阵:x=rand(10,3);y=rand(10,3);cx=cov(x) cy=cov(y) cxy=cov(x,y) px=corrcoef(x) pxy= corrcoef(x,y)矩阵相当于向量,行列式相当于向量的模。一般教学上都先介绍行列式,再进行对矩阵的介绍,我觉得这样是不好的。应该先了解矩阵。一开始,在实际应用的时候,会出现很多很多的未知数,为了通过公式解出这些未知数,就进行联立方程组进行求解。比如要知道x1,x2的值,就联立方程{a*x1+b*x2=ic*x1+d*x2=j},这样子来求解。可是啊,现实生活中,特别遇到一些复杂的工艺的时候,就会出现超级多的未知数,所以就会有超级多的方程需要联立求解
好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!
矩阵对角化方法探讨摘 要: 本文利用矩阵的相关知识,研究了矩阵可对角化的若干方法.关键词: 可对角化;对角化方法;特征值;特征向量1 引言 形式最简单的矩阵就是对角阵.矩阵对角化使矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,然而并非任何一个 阶矩阵都可以对角化.本文利用矩阵的相关知识,如矩阵秩的知识,矩阵乘法原理,对一些理论进行应用和举例,介绍了矩阵对角化的四种方法,分别是一般方法;用矩阵初等变换将矩阵对角化的方法;利用矩阵乘法运算,探讨矩阵对角化的方法;利用循环矩阵的性质寻找矩阵对角化的方法.2 基本定义定义1 设 是 阶方阵,如果存在数 和 维非零向量 ,使得 则称 是矩阵 的一个特征值, 是 的属于 的一个特征向量. 定义2 设 为 阶方阵,称行列式 为 的特征多项式,记为 ,而称 为 的特征方程. 定义3 阶方阵 称为可逆的,如果存在 阶方阵 ,使得 ,其中 是 阶单位矩阵.定义 4 设 , 是 阶方阵,若存在 阶可逆矩阵 ,使得 ,则称 与 相似, 称为 的相似矩阵. 定义 5 如果数域 上,对 级矩阵 存在一个可逆矩阵 使 为对角形矩阵,则称矩阵 在数域 上可对角化;当 可对角化时,我们说将 对角化,即指求可逆矩阵 使 为对角形矩阵. 3 矩阵对角化的几种方法 一般方法 几个定理定理 阶方阵 相似于对角矩阵的充分必要条件是 由 个线性无关的特征向量,且当 相似于对角矩阵 时, 的主对角线元素就是 的全部特征值.推论1 方阵 相似于对角矩阵的充分必要条件是 的属于每个特征值的线性无关的特征向量个数正好等于该特征值的重数.定理 如果 阶方阵 有 个互不相同的特征值(即 的特征值都是单特征值),则 必相似于对角矩阵. 求 阶方阵的特征值与特征向量的一般步骤.第一步:计算特征多项式 第二步:求出特征方程 的全部根 (重根按重数计算),则 就是 的全部特征值. 如果 为特征方程的单根,则称 为 的单特征根;如果 为特征方程的 重根,则称 为 的 重特征值,并称 为 的重数. 第三步:对 的相异特征值中的每个特征值 ,求出齐次线性方程 的一个基础解系 ,则 就是对应于特征值 的特征空间的一个基,而 的属于 的全部特征向量为 (其中 为不全为 的任意常数) 如果 阶方阵 相似于对角矩阵,则 的相似对角化的一般步骤如下: 第一步:求出 的全部特征值 ;第二步:对 的相异特征值中的每个特征值 ,求出齐次线性方程组 的一个基础解系,将所有这样的基础解系中的向量合在一起,假定这样的向量共有 个,它们就是 的 个线性无关的特征向量 ;第三步:令矩阵 = ,则有 ,其中 是属于特征值 的特征向量 .注意 的列向量的排列次序于与对角矩阵的主对角线元素的排列次序相一致.如图1所示: 图1 阶方阵 的相似对角化过程 应用实例例1 设矩阵 = 当 取何值时, 相似于对角矩阵?在 可对角化时,求可逆矩阵 ,使 成对角矩阵.解 先求 的特征值,由 = = = ,得 的全部特征值为 . 只有一个重特征值-1,故由定理1的推论, 可对角化 属于2重特征值-1的线性无关特征向量正好有2个 齐次线性方程组 的基础解系含2个解向量 而矩阵 的秩为1当且仅当 ,故当且仅当 时 可对角化.当 时,矩阵 为 = .计算可得 的对应于特征值 的线性无关特征向量可取为 ,对应于 的特征值的特征向量可取为 .故所求的可逆矩阵可取为 ,它使得 .注 当 有 个互不相同的特征值时, 必可对角化;当 有重特征值时, 可对角化 的属于每个重特征值的线性无关特征向量的个数正好等于该特征值的重数 对于 的每个重特征值 (设 的重数为 ),矩阵 的秩为 .3 用矩阵初等变换将矩阵对角化的方法 理论依据若矩阵 在数域 上可对角化,则有 上可逆矩阵 使 为对角形矩阵.于是 的主对角线上的元素为 的全体特征值,并且可表示为 ,其中 为初等矩阵, .于是, ,又 也是初等矩阵,由初等矩阵与矩阵的初等变换的关系,即知 相当于对 施行了一次初等行变换与一次初等列变换.这里,我们称此种初等变换为对 施行了一次相似变换. 显然,可对 施行一系列的相似变换化为 . 又由 (注:此处 表单位矩阵)可如下进行初等变换,则可将 化为对角形矩阵 ,且可求得 ,对 只施行相应的初等列变换. 当 不可对角化时,也可经相似变换化简 后,求得其特征值,判定它可否对角化. 类似地,可由 ,做如下初等变换,则可将 化为对角形矩阵 ,且可求得 或由 求 的特征值,判定 可否对角化: ,对 只施行相应的初等行变换.并且在施行相似变换时,不必施行一次行变换后接着施行一次列变换这样进行,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后,最后所得矩阵与 相似即可. 用初等变换将矩阵对角化的方法 有 个特征单根的 阶可对角化矩阵的对角化方法引理1 设 是秩为 的 阶矩阵,且 其中 是秩为 的列满秩矩阵,则矩阵 所含的 个列向量就是齐次线性方程组 的一个基础解系.证明 设 ,对 施以列的初等变换相当于右乘一 阶初等矩阵. 设 其中 是一个 阶可逆矩阵, 是一个 阶矩阵,令 是矩阵 的列向量.由 线性无关,且 所以, 是方程 的 个线性无关的解向量.又 的秩为 ,则上述的 个向量正是该齐次线性方程组的一个基础解系.引理 -矩阵 经列的初等变换可化为下三角的 -矩阵 ,且 的主对角线上元素乘积的 多项式的根恰为 的所有特征根.引理 令 是数域 上一个 阶矩阵,如果 的特征多项式在 内有 个单根,那么由特征列向量构成的 阶可逆矩阵 ,使 .定理1 如果数域 上的 阶矩阵 的特征多项式 在 内有 个单根,则 可通过如下步骤对角化:设 ,且 .其中 为下三角矩阵,则 主对角线上全部元素乘积的 多项式的全部特征根为 的全部特征根,对 的每一特征根 , 中零向量所对应的 中的列向量是属于 的全部线性无关的特征向量.把属于 的特征向量作为列向量组合构成矩阵 ,使 .证明 易知 中非零向量的列构成列满秩矩阵,由引理1,2及引理3知结论成立.例1 设 = .问 是否可对角化?若 可以对角化,求可逆矩阵 ,使得 成对角形.解 .由 解得 的特征值 ,此时3阶矩阵 有3个不同的单根,故可对角化.当 时, 的零向量对应 中的列向量 是属于 的特征向量.同理可知 的属于 的特征向量分别是 和 ,可得 ,使得 . 有重特征根的可对角化矩阵的对角化方法对存在重特征根的矩阵同样可用上述方法,只是此时 中非零向量可能不构成列满秩矩阵,需将上述方法加以改进.我们先看引理4 设 是数域 上一个 阶矩阵, 可对角化的充要条件是 的特征根都在 内; 对于 的每一特征根 ,秩 ,这里 是 的重数.再由引理2,可知要判断 是否可对角化只需考察 的秩,并可得对角化步骤如下:定理 2 设 ( 是数域 一个 阶矩阵),则 ,其中 是下三角矩阵,且 主对角线元素乘积而得的 多项式的根恰为 的特征根. 若 的特征根都在 内, 可对角化的充要条件是:对 的每一特征根 ,秩 ,这里 是 的重数; 若 可对角化,对 的每一特征根 ,若 中非零向量构成列满秩矩阵,则 的零向量对应的 中的列向量是属于 的全部线性无关的特征向量,可组合而得 ,使 成对角形.否则继续施以列的初等变换: ,使 中非零向量构成列满秩矩阵,由 可得属于 的全部线性无关的特征向量. 证明由引理1,引理2的证明及引理4可得.例2 设(1) (2) 问 , 是否可对角化?若可以对角化,求可逆矩阵 ,使 成对角形.解 ,得 的特征根 (二重根), 由于秩 秩 ,秩 秩 ,故 可对角化.因 的非零向量不构成列满秩矩阵,需继续进行列的初等变换: .此时 的非零向量构成列满秩矩阵,可得 的全部线性无关的特征向量是 和 ,同理可得属于 的线性无关的特征向量是 从而 使 . .由 得 的特征根 (二重), 易判断 可对角化,属于 的特征向量是 和 ,属于 的特征向量是 ,从而 使 .上述方法与传统方法比较显然具有优越性,但对于结果较多的矩阵,计算量仍然很大,可利用计算机采用此方法求解. 利用矩阵的乘法运算,探讨矩阵对角化的方法.定理1 设 是 在数域 上的全部互不相同的特征值.作多项式 则 在 上可以对角化的充要条件是 注 对于阶数较低的矩阵是否可以对角化,可以先求得所有互异特征值 ,再验证是否有 若 则 可以对角化; 若 则 不可以对角化.定理2 设 是 在数域 上的全部互不相同的特征值.若 则 的属于 的 的特征子空间是 的列空间.推论1 设 是 在数域 上的全部互不相同的特征值,其重数分别为 且 若 可对角化.则矩阵 的列向量组中有对应于 的 个线性无关的特征向量 .定理 3 设 是 在数域 上的全部互不相同的特征值.如果对每个 都有 ,那么 这里记 的属于 的特征子空间为 ,而 的列空间为 .推论2 设 是 在数域 上的全部互不相同的特征值,其重数分别为 则 与对角矩阵相似的充要条件是 的秩 .推论3 若 阶可对角化矩阵 只有两个相异的特征值 ( 重)和 ( 重),则矩阵 (或 )的 (或 )个线性无关的列向量就是对应 (或 )的特征向量组的极大线性无关组.例1 判断下列矩阵是否可以对角化,若可以,求可逆矩阵 ,使 成对角形. 解 易知 的特征值是 (2重根), 它们都在数域 中,尽管如此, 不能对角化,因为 . 易求得 的特征值是 (2重根).由于 ,故 可以对角化.并且通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的2个线性无关的特征向量 和 令 ,则 利用循环矩阵性质寻找矩阵对角化的方法 基本循回阵相似于对角阵 阶矩阵 称为基本循回阵.它满足于如下性质: 求出基本循回阵 的特征多项式: 因为特征多项式 有 个不同特征根: 所以,基本循回阵 相似于对角阵.下面求出特征向量:取 则有 (因 ), 从而 为特征根 对应的 的特征向量.作矩阵: ,因为 为 行列式, 所以 可逆,则: . 循回方阵相似于对角阵矩阵 称为循回阵, 可以由基本循回阵的多项式求出来: .设: ,所以循回阵可以对角化. 任意 阶矩阵 可以对角化的充要条件是 相似于一个 阶循回阵证明 充分性 若 相似于循回阵.即存在可逆阵 使 ,但 所以 即 相似于对角阵.必要性 若 可以对角化,即存在可逆方阵 使得 .用 次多项式 作一方程组如下: ,即 该方程组的系数行列式为 行列式, 从而由 法则知方程由唯一解.设阶为 则 次多项式为 ,取矩阵 ,其中 为基本循回矩阵,从而 为循回阵,且有 所以, 即 相似于循回阵 . 结束语综上所述,复数域上的 阶矩阵,如果按相似关系分类后,含有循回阵的类可以对角化.参考文献【1】 魏站线.线性代数要点与解题 陕西:西安交通大学出版社,2006.【2】 高吉全.矩阵特征根与特征向量的同步求解方法探讨 数学通报,. 【3】 张禾瑞,郝鈵新.高等代数 北京:高等教育出版社,1993.【4】 陈汉藻.矩阵可对角化的一个重要条件 数学通报,1990. 2.【5】 周伯.高等代数 北京:人民教育出版社,1978.【6】 王萼芳,石生明.高等代数 北京:高等教育出版社, The Method of The Diagonalization of MatrixZhao Shuang-ling(Mathematics & Statistics Industry School, Anyang Normal University, Anyang, Henan 455002)Abstract:In this paper, by the use of the matrix-related knowledge, three methods of the diagonalization of matrix were words: diagonalizable; the method of diagonalization ; eigenvalues; eigenvectorsI hope that it could help you a little!!!
找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.
秩:线性代数术语
这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500001(当然你也可以把第2行乘以-1)这个矩阵的非零行就是3行,所以秩就是3因为第一行的以一个1他下面的全部是0所以这个1是消不去le第2行的-1他的那一列也全部是0同理第三行
行列式都是方阵,没有第二种那么分的
定理里只有,主对角线,下三角,上三角三种形式的分块矩阵。没有反对角线的,不要靠猜测强行造个定理然后问为什么不对。这种反对角线型的,是可以可以通过列交换变成主对角线型的的。
注意副分块对角矩阵的行列式计算公式是若D=O AB O其中A,B分别为m,n阶方阵,则|D|=(-1)^mn|A||B|如果你按第一种方式分块,则结果是(-1)^4|A||B|=2如果你按第二种分块方式,则结果是(-1)^2|A||B|=2结果是相同的。
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文