来看看SPSSAU的分析结果,格式规范并且更易解读。
第一步:首先对模型整体情况进行分析
包括模型拟合情况(R²),是否通过F检验等。
由上图可知,模型R²值为,意味着平台交互性,教学资源,课程设计,课程实施可以解释学生在线学习课程满意度的变化原因。回归模型通过F检验(F=,P<),说明至少一个变量会对满意度产生影响关系。
第二步:分析X的显著性
分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。
可以看到,四个解释变量对满意度的显著性分析P值均小于,说明X对Y均有显著性影响关系。
第三步:判断X对Y的影响关系方向及影响程度
结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
通过回归系数来看,模型中四个解释变量的B值分别为、、、。说明平台交互性,教学资源,课程设计,课程实施对满意度均呈现出显著的正向影响关系。
第四步:写出模型公式
模型公式为:满意度= + *平台交互性 + *教学资源 + *课程设计 + *课程实施
第五步:对分析进行总结
SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果,具体分析如下:
回归分析法的步骤如下:
1、根据自变量与因变量的现有数据以及关系,初步设定回归方程;
2、求出合理的回归系数;
3、进行相关性检验,确定相关系数;
4、在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间。
回归分析法指利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。
回归分析法主要解决的问题;
1、确定变量之间是否存在相关关系,若存在,则找出数学表达式;
2、根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。步骤1.确定变量明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。2.建立预测模型依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。3.进行相关分析回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。4.计算预测误差回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。5.确定预测值利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
一、回归分析主要内容:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
二、回归分析的步骤:
1、确定变量
明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2、建立预测模型
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析
回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。
因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4、计算预测误差
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5、确定预测值
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
扩展资料:
回归分析法的有效性和注意事项:
1、有效性:
用回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用;
2、注意事项:
为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件从定量方面计算或改进定性判断。
参考资料来源:百度百科——回归分析
多元回归分析:一种统计分析方法
1、数据录入spss并且处理好。
2、分析——回归——线性。
3、选择自变量和因变量到对应的框,如下图。
4、点击下一页,如下图。
5、控制变量放进来,如下图。
6、结果都会有两个模型,可以对比控制变量放进来之后的各指标变化,一般看R放和系数表,如下图。
扩展资料:
spss软件的特点:
spss直接就有多元回归的按钮,控制变量和主要验证的自变量你自己能区分开就好,一起输入。这张图其实是做了四个多元回归。第一列也就是第一个模型,是以公司综合绩效为因变量,第一大股东持股比例为自变量,资产规模与资产负债率为控制变量的多元回归模型。
第二列是以公司综合绩效为因变量,前五大股东持股比例为自变量,资产规模与资产负债率为控制变量的多元回归模型。
问题一:如何建立多元回归模型 用eviews做回归分析的过程如下: 首先下载eviews安装包,不用解压,首先点击一个reg文件,即成功注册; 然后点击一个exe执行文件,即可以打开软件; 然后,开始进行数据分析,首先建立一个时间序列文件,输入开始与截止时间; 第二步,输入命令建立序列,data y c x,中间需要有间隔,按enter返回; 第三步,导入数据; 第四步,输入命令ls y x,得出结果; 对数据进行分析,观察因变量与自变量的关系。 回归分析(regression *** ysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 问题二:如何用spss建立多元回归模型 纳入多个变量即可 问题三:如何用spss建立多元回归模型 跟一元回归差不多,都在“回归”里面,你只是选择的时候把多个自变量都选到”自变量“那个格子里就行了 问题四:利用怎么matlab软件建立多元回归数学模型 如何利用matlab软件建立多元回归数学模型的方法有: 1、多元回归数学模型是线性的,可以用regress()函数求得。例如 f(x1,x2,x3)=a1+a2*x1+a3*x2+a4*x3 %多元线性回归函数 求解方法: x1=[。。。];x2=[。。。];x3=[。。。]; X=[ones(n,1) x1 x2 x3]; y=[。。。]; a = regress(y,X); %ai为多元线性回归函数的拟合系数 2、多元回归数学模型是非线性的,可以用lsqcurvefit()或nlinfit()函数求得。例如 f(x1,x2,x3)=a1+a2*exp(x1)+a3*exp(x2)+a4*exp(x3) %多元非线性回归函数 求解方法: x1=[。。。];x2=[。。。];x3=[。。。];y=[。。。]; x=[x1 x2 x3]; func=@(a,x)a(1)+a(2)*exp(x:1)+a(3)*exp(x:2)+a(4)*exp(x:3);%自定义函数 x0=[1 1 1]; %初值(根据问题来定) a=lsqcurvefit(func,x0,x,y) %ai为多元非线性回归函数的拟合系数 或 a= nlinfit(x,y,func,x0) 问题五:一元线性回归模型建立的步骤是怎样的 一个自变量 一个因变量 如果要进行线性回归,无论是一元还是多元,第一步首先应该先画下散点图,看是否有线性趋势,如果有线性趋势了,再使用线性回归。这个是前提,现在很多人都忽略这一点 直接使用的。 至于判断线性方程 拟合的好坏,看R方和调整的R方就可以了,R方越接近1,说明拟合的效果越好。你这个里面 R方为,调整的R方为,说明这个自变量可以解释因变量57%左右的变异,不能说好,也不能说坏。看具体情况而定 Anova(b)这个表格是检验 回归方程是否显著的,sig的值= 小于,说明回归模型有意义,可以使用。 下面一个标准化回归系数 和非标准化回归系数 则是回归方程自变量的系数,非标准化的系数用来拟合方程使用,标准化的系数是剔除了不同自变量的不同计量单位影响的,用于比较多个自变量的影响大小 问题六:怎样用eviews做多元线性回归模型的软件实现?需要详细操作步骤 50分 1、建立workfile2、建立序列对象,将你的数据输入或者导入,比如序列分别为 y x1 x2 x3 3、在命令窗口中输入ls y c x1 x2 x3 回车,得到结果。 第一步是基础,它的含义其实是建立一个容纳eviews对象的“容器”,第二步是建立数据对象,实际上可以看错是定义变量,第三步是分析结果。 问题七:多元线性回归分析的优缺点
首先,论文的开端――选题 1 价值性原则 对于拿学位的人来说,写论文不单单是完成任务,更主要的是论文的内容要具有价值性,所以在选题时,不单单要看难易程序,要从两方面考虑其价值,即理论价值或者应用价值,这里以应用价值为首选,否则写出来的东西将没有实际应用和交流的意义,那么纵使华丽丰富,也是华而不实,所谓应用价值就是针对现实中的问题,当下社会中出现的问题,做到理论联系实际去分析。 2 可行性原则 选题时要充分考虑主、客观条件,即要选择那些客观上需要,主观上又有能力完成的题目。 所谓客观条件主要是写作的时间、地点、环境;主观条件包括个人的才能、学识和所掌握的材料等。只有量力而行,才能有所发挥。 在这里试举一例,如学企业管理专业的学生,可以选题的范围非常广,你可以从企业的产、购、销等流程某一环节入手,从财务、人员、工序、战略等等方面入手,当然时下人们比较关注的是人才的引进和培养,以及外资的合作上,那么就可以在此基础上提出有价值性的问题来讨论,但如果你只是感兴趣,却对此知之甚少的话,最好放弃,从其它入手,否则很难有始有终,最后只能中途放弃。 其次,当选题确定后,接下来就是搜集材料。材料从哪里来?途径有三: 1 来源于生活。 生活是取之不竭的素材来源,尤其对于已经有一定的工作经验的人来说,许多的实践经验,将是写作中的最鲜明的好材料。 2 来源于书本和网络 书中自有黄金屋,当你的选题已经确定,便可以寻这条线索,去查找相关的书籍、报刊,把它们汇聚在一起,自然会在阅读中寻出文章的脉络来,当然,提醒你,在阅读中做笔记是个事半功倍的好办法,这样当你在回头想起什么时,不会海里寻针,同时对于论文最后的参考出处也会水到渠成。另外,由于目前网络的发达,在网上找资料也变得很方便,但一般来讲网上资料不易过多,这样可能会使你的文章权威分量下降。最后,最好在阅读前了解毕业论文对于文献的数目分量和来源要求,这样在查找时可以准备出允足的数量和比例安排,才不至于最后麻烦。 3 来源于一手资料。 在有些论文的写作中,学校要求学生亲自做一些调查和采访,这样的材料就是一手材料,那么上面所提到的第二种途径可以称之为二手材料。一般来说,如果学校没有特殊要求,最好是以二手资料为主,因为相比于自已所做的调查,其一不但耗费精力、物力、财力,更主要的是不一定可以说明问题的实质。 第三步下来,就是立意。 当你寻着选题方向备好资料并阅读后,从中你会发现你要写的问题可以是什么,有的时候会有好几个,那么在选择时就要注意几个原则: 1 符合现实需要,体现时代精神。 2 反映客观事物本质。 3 要有独到的见解。 这里就不多说了,主要说说下面文章框架的建立吧。 第四,谋篇布局 所谓谋篇布局,就是考虑和安排文章的整体结构。结构是文章的骨架。确定了主题,选定了材料,接着就要把文章的框架搭起来。 一般来说,毕业论文是遵寻:提出问题→分析问题→解决问题,三部分来安排的,开头和结尾会有摘要和结论,当然根据各人的不同情况,也不能一概而论。无论怎么样,一定切记脉络清楚,符合一定的逻辑性,而不能忽东忽西,杂乱无章,而且还要做到在安排结构时,做为重点段落要多着笔墨,有详有略,重点突出,这样才能做到文章层层深入,发展流畅,并且赏心阅目。 以下介绍一下构局要点: 安排结构的基本要求是:(一)要围绕主题安排结构;(二)要有明确、清楚的层次;(三)要完整、自然、严密。 第五,起草论文。此前的一切工作准备就绪后,就可以开始动笔了。把思绪沉淀下来,不要顾虑什么,只要一气把它写下来就好。 第六,修改。好文章都是改出来的,没有哪一个作者可以写完就订稿,修改是无论什么写作都必需经过的程序。然而修改也不是盲目的,当一篇文章完成后,你可以试着从以下方面入手: 1 斟酌主题。 主题是文章的价值所在。主题要正确、鲜明、深刻、集中、新颖。主题如果有问题,就非改不可。 2.掂掇材料。可以从以下几点: * 引用材料的地方是否恰当,是否可以说明问题 * 看是否有还需要增、删材料的地方 * 全文引用材料比例是否合适,一般来说不易过多,当然太少也不会有说明力 * 材料引用出处是否完整,正确 补充一下,一般引用的材料都要有一定的介绍或分析在里面,这样才能使材料更加有说服力,在修改时需要注意。 3.调整结构。 畅读全文,思考结构安排是否合理,如有不妥之处,还需要进一步调整。 4.锤炼语言。 语言是思想的载体。在修改中,要注意那些罗嗦,烦琐、空话、长话、粗糙的语言地方,以及错字、多字、标点不合适的地方,努力把它们修改得简洁、准确、清楚、正确,这样才能使一篇文章更鲜明,阅目起来。
如何写论文?很多人都会告诉你,写论文的第一步是要先阅读大量文献。
为什么呢?你的导师身经百战阅文无数,祥衡他不会知道你连最起码的论文是什么东西都没搞清楚。但事实上大部分人第一次写毕业论文的时候,确实根本没搞明白论文是什么东西。甚至没见过一篇像样的论文。在这种情况下,大量看文献是只会耽误时间,而且看的越多越乱。
因为每一篇文献都很长,有很多论文用词语序又非常涩(可能是降重的后果),如果从头读到尾需要花很长时间。再次,你如果从来没有写过论文,可能无法分辨论文中的垃圾和精华,知网上的论文多如牛毛,毫不夸张的说,很多垃圾文献,读完之后对你的研究成果毫无帮助。就好比,你从来没进过厨房,连菜都不会选不会切,就开始弊答看研读大厨的菜谱,准备做一道大菜了,是不是感觉少了什么步骤?
因此,在你弄清论文结构之前,千万不要贸然下载一堆文献(讲真下载谨携做了你也看不下去)。因此建议写论文的第一步:你需要隐清搞清楚一篇合格毕业论文的结构是什么。不管你是本科还是研究生,不管是文科商科还是理工科,毕业论文都穗备山有着相对固定的结构。毕业论文一般分为5-6个章节。(根据每个学校或学科的要求可能有些差异,但万变不离其宗,基本都是这个结构)第一章:绪论第二章:理论基础(或文献综述)第三章:研究假设第四章:论证过程第五章:研究结论第六章:研究不足与展望虽然每个学科的标题和内容不完全一样,但体都是这个思路,并且这几个章节环环相扣,每一章都需要有前一章的佐证。
第一章:绪论第一章一般包含几个二级标题:分别为:研究背景、研究目的和意义、研究方法、论文结构等……一听标题你就应该知道,这一部分基野埋本都是空话套话,主要讲的是研究背景和目的,你既租岁慧然选了这个选题,这些内容闭着眼都能写出来,建议先做到脑中有个初步思路即可,不用着急写,建议放在论文的最后时间来写。(不建议论文按照章节顺序来写,比如绪论部分就可以放在偏后的位置。)关于写作顺序我会在第二步氏信握说。
第二章:理论基础(或叫文献综述)部分相对还是比较重要的,因为写论文与写其他文章最大的不同就是你的每一句观点和结论都必须有出处一要么通过你自己的实验论证,要么需要有前人的研究成果作为支持。因此这一部分的歼庆内容相当于盖楼的地基。但从另一个角度说,这一部分正因为是前人研究基础,很大一部分内容都是引用文献,基本上初稿都不用自己写的,所以也不用花太多时间,最后降重即可严格意义上说,必须是先有了理论基础才能往下一步进行的,但今天如果需要按常理出牌,我就不用来写回答了。既然说的是以毕业为目的完成论文,我给的技巧是:这一步可以放在核心部分之后写。(第二步中我会详细介绍写作顺序)。这里插一句引用文献,关于引用格式可以参考每个学校的引文标注规范。可以边写边标注,也可以写完再统一标注。
第三章:提出研究假设。它和第四章是全文写作的核心!请注意我说的是写作的核心,并非答辩和整个论文的核心(整个论文的核心一般是第坦猛三章和第五章),但是对于写论文来说,这两个章节是我建议必须最先完成的。因为学科不同,这两个章雀游节的差异册扮较大,但是总的方向一致。我就拿我自己的论文(社会学类)举例吧。我的第三章内容是实证分析,包含的二级标题是访谈调研、研究假设与模型的建立、问卷设计与数据收集。简而言之第三章一般是在第二章的理论基础上论述你提出了怎样的研究假设。也是你整篇文论的核心观点。
第四章:论证过程。一般是在第三章提出研究假设的基础上,对收集来的数据进行分析的过程,以验证你的假设是否成立。这个滚穗部分一般在需要花的时间一般比较长(但非写作时间,而是研究的时间),因为会有计算或者研究的过程。(而且如果做出来验证结果有问题,还得反复重新做)
第五章:研究结论。这一部分其实在整个论文中是极为非常重要的,尤其是应用类的学科。因为他不仅阐述你的研究过程得出了怎样的结论,你在第三章中提的假设到底哪些成立哪些不成立?而且关系到你的研究成果或论文的成果到底有什么意义,有没有实用价值。请记住:在论文写作时,第五章研究结论是重点,但不是难点。为什么这么说?因为只要你第三章和第四章搞定了,第五章的研究结论就是顺理成章的事情,基本上可以一气呵成文思泉涌但如果第三章和第四章裹足不前,或出现种种错误,那第五章也不要想写的顺利进行。因此再次强调:第三章和第四章才是写作的重难点。
第六章:就更为简单了:研究不足与展望。这一部分个人认为无关紧要,因为每一篇论文都不是完美的,当你写作的时候你一定能找出一万个缺陷,所以最后自我批评的时候挑几个不那么原则性的问题说一说,比如:调研对象范围不够广,理论模型可以再细化等等希望后人可以继续研究等简单展望一下。这里可以参考借鉴一下别人的文献都是怎样我批评和展望的,基本上都是一个套路。讲到这里,相信你对每一个章节的大体内容已经了解了下面就可以进入第二步,也是学姐认为针对你们这个阶段,开始写论文前比较重要的一步:写作顺序和时间的分配“简单操作”第二步:在搞清楚结构的基础上,安排好每个章节写作的先后顺序和时间投入。为什么我说安排写作顺序和时间分配非常重要?但凡写过论文的同学自己心里应该有点数,即使给你留够一年的时间写论文,你也一定会拖到不能再拖为止所谓DDL是第一生产力,说你有本事提前半年开始每天匀速有条不素的写论文我是不信的,谁不是最后被DDL逼疯,每天不眠不休的赶进度呢?因此用这个骚操作顺序,合理分配好时间投入以后,即使时间比较紧张,也依旧能如期且出色的完成论文。效率最高的写作顺序如下:先简单说一下为什么这样安排顺序:首先前文已经闸述了,第三四五三个章节是整篇论文的核心。其实当你在你准备选题的时候,这三章的计划就应该早已经有了雏形。如果是有实验的研究,可能需要早就把实验做的差不多了。所以一定要趁着研究过程还热乎着赶紧把核心部分写出来,这时候是效率最高的。如果完成了这四个章节,那你的论文初稿基本已经完成90%了、最后两个章节,第一章绪论和第六章不足与展望,那就是洒洒水啦,绝对轻飘飘的搞定。最后说一下时间分配:时间分配上,按照刚才写的写作顺序的章节:第三章(提出假设)——第四章(论证过程)——第五章(研究结论)——第二章(理论综述)——其他(随意),依次送减。为什么这样安排时间呢?第一是重要性决定时间分配。这个上文已经阐述过了。第二是如果时间真的来不及,从第二章到最后的部分可以在查重前大段复制粘贴,先把初稿完成。再通过降重和修改的方式通过查重,以争取时间。第三步:下载相关文献阅读,只读核心部分虽然我不赞成一上来就阅读大量文献,但你完成了论文框架和第二步写作排序以后,就可以有针对性的下载和阅读文献了。但是阅读文献也是有技巧的:首先,通过前两步,你已经熟悉了论文的结构和套路,知道了每篇论文的核心在什么位置,那么你开始读文献的时候,一样只要看他的核心部分就可以了。一般先看摘要,大概只要花几分钟,如果觉得有点参考价值,先拉到第五章的研究结论,再看第三章的假设模型。基本这篇文章的核心内容就掌握了。通过筛选部分你认为有参考价值的文献,你只需要挑选几篇精华文章作为重点参考的内容。那你可能会问,自己写论文时需要的引用文献这么多,真的需要一一看完吗?嘿嘿,这里也分享一个技巧,你筛选的精华论文里,必然也有很多引用文章,所以你可以顺藤摸瓜,直接引用别人论文里引用的文献即可。第四步:按安排好的顺序开始写作。这一步其实已经在第二步中详细讲述了,这里只是提醒一下步骤,前面三步其实都是准备阶段,到这里才开始真正的动笔!第五步:交初稿初稿的写作是从0到1的过程,一定是痛且量大的,但记住,在初稿这个环节,因为工作量巨大,千万别追求完美,只要按我上面的方法,达到字数任务即可。这个时候完成比完美更重要!网上流传一句话:“当你把论文初稿糊完交上去的时候,你就成功的把痛苦转移到导师的身上了,因为他要愁怎么给你改论文。关于导师修改这个环节我不便多阐述,因为不同学校不同导师对论文的要求和审核程度天差地别,负责的导师会给你逐段批注修改,也有很多导师看都不会多看一眼。但不论是哪一种导师,你依然要切记,论文还是得靠自己。在这里非实名点赞我的导师,对我的论文修改十分仔细,甚至格式问题也都一一找出,让我在初稿后就不断优化细节问题,避免了不少麻烦。感动…….第六步:降重导师修改的差不多后,就是降重的环节了。写初稿时那时候糊弄的债要现在来偿还了,但不要被吓到,技术上并不是难事。建议第一遍降重的时候先从学校图书馆检测一下,会有详细的重复的地方标注,便于修改。如果学校提供的查重次数有限,也可以使用蝌蚪论文、维普等可靠的查重系统检测,然后根据查重报告进行修改降重。一般查重率最高的地方就是理论基础,因为可能存在大段大段复制粘贴的情况,以及引用内容较多。关于降重的方法,没有什么捷径,就是一句话一句话的修改,但是没有什么技术难度,只要用语文知识把别人的观点用自己的话重新阐述一遍就行了。这就是为什么我在前面让大家把理论基础不要放这么前面的位置开始写,也不用花太多时间先复制粘贴就好,等降重的时候再逐句修改,但此时已经没有什么难度了,需要的只是一点点时间。下面给大家附上一篇之前总结的一些论文降重技巧。第七步:排版,调整细节,提交终稿——请追求完美。关于排版和细节调整,千万不要小看。虽然每个学校对排版和规范性的要求不完全一样,但严谨的排版和避免低级错误是学术规范的体现,也能最大程度上避免答辩时导师对你学术不严谨的挑刺。这方面一般学校都会有自己的规范手册,主要是细心细心再细心!并严格按照要求来修改规范化。最后祝大家顺利完成毕业论文。
毕业论文中的案例分析法是一种常用的研究方法,可以通过对具体案例的深入分析和比较,揭示其内在的规律和特点,从而为论文的研究问题提供支持和佐证。下面是毕业论文案例分析法的写作步骤:1. 确定研究对象:首先需要确定案例研究的对象,例如某个企业、组织、事件等,以及所要探讨的问题或假设。需要注意的是,所选用的案例应该与研究问题相关联,并且具有代表性和典型性。2. 收集案例材料:收集与所选案例相关的各种材料和信息,包括历史资料、统计数据、采访记录、新闻报道、文献资料等,尽可能全面地了解所选案例的背景、发展过程和影响因素。3. 分析案例数据:根据所收集到的案例材料和信息,对所选案例进行深入分析和比较。可以采用不同的分析方法,例如SWOT分析、PEST分析、五力模型等,以揭示案例的优劣势、机会和威胁等方面的特点和规律。4. 结合理论框架:将所得到的案例分析结果与相关的理论框架进行结合,进一步深化对案例的理解和研究。可以引用相关的理论或概念,对案例中出现的问题或现象进行解释和说明。5. 得出结论:在完成案例分析后,需要根据所得到的研究结果和结论,对毕业论文的研究问题进行回答或支持。需要注意的是,结论应该基于充分的案例分析和理论支持,具有科学性和可信度。6. 引用案例资料:最后,在毕业论文中需要准确地引用所使用的案例资料和信息,遵循相应的学术规范和引用要求,以确保论文的学术性和严肃性。综上所述,毕业论文中的案例分析法需要注意研究对象的选择、数据收集和分析方法的合理运用,以及结论的科学性和可信度等方面的问题。
写毕业论文步骤是怎么样的
写毕业论文步骤是怎么样的,每一位大学生在毕业前夕都是需要写一份毕业论文的,如果论文通过的话,才能拿到毕业证书的,我和大家一起来看看写毕业论文步骤是怎么样的相关资料,一起来看看吧。
1、论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:
a、提出-论点;
b、分析问题-论据和论证;
c、解决问题-论证与步骤;
d、结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的'参考文献要标明序号、著作或文章的标题、作者、出版物信息。
1、确定论文题目。论文写作首先需要解决的问题就是选择一个好的适合自己的论文题目。题目的选择需要结合个人的专业研究方向与手中已经拥有的想法。优先选择自己熟悉的内容与方向,可以节约时间与精力。及时地将自己的想法与指导老师沟通,请老师把把关,避免走弯路。同时要考虑自己能否将想法用文字很好地组织表达出来,选择一个自己能坚持下去的题目是至关重要的。研读大量与自己的论文题目相关的文献资料,勤思考多总结,保证其可行性。
2、列好提纲。选好论文题目后,不要急于下笔,先整理一份论文提纲。列提纲时要作全方位的考量,多加思考。一定要找到属于自己的亮点,别人写过的东西都是陈词滥调不值得下笔,必须要有新意。根据论文题目整理好自己的写作思路,先主干后枝叶,论文才能如大树般稳固茂盛。
3、收集相关资料。论文的重点在于论据能否支撑你的论点,证明其正确性、合理性。查阅相关的文献资料并加以整理,注意其可信度与权威性,才能使你的论文更具有说服力。将相关材料整合分析,从中汲取有价值的部分丰富自己的论文内容。在收集资料时一定要将其出处记录下来。
4、撰写绪论。绪论是一篇论文的基础部分,也是相当重要的一部分。根据你搜集、整理、分析的文献完成文献综述,用简洁的文字表达从原始文献中得到的东西。其内容应当包括引言、正文、结论,附录。文献综述的全面性、丰富性关系到论文的重心、创新点、闪光点,对论文写作有着相当重要的作用。
5、全文撰写。将论文题目、相关资料、绪论都准备好之后,就可以开始撰写全文的工作了。事先做好计划安排,合理分配写作时间,才能高效率地完成论文。严格按照自己制定的计划进行写作,切勿拖沓,更不能中断。严格把握论文写作的标准与质量。
6、整理格式。完成全文的撰写后,根据相关格式要求进行格式修改。
7、精心修改。以“十年磨一剑”的严谨态度审视修改自己的论文,通读全篇,看能否说服自己。注意行文的思路与结构,乃至每一个标题、每一个段落、每一句话,每一个词。也可以请指导老师指出自己的论文的不足,加以修改。
广东消费需求扩大的制约因素和路径选择论文字数:8896,页数:15内容摘要本文首先参照国内外学者对消费需求不足问题的研究,并结合广东省的数据,研究广东省消费需求不足的原因。本文运用回归分析法,分析总收入与收入差距对消费需求的影响,发现后者对消费的影响远远大于前者,提出扩大消费需求应缩小收入差距的主张。本文运用因果联系识别法,分析创新成果增长率对消费增长率的影响,发现前一期的创新成果增长率与当期的消费增长率有相同的趋势,当期消费增长率是前一期创新成果增长率的结果,得出广东省消费需求不足的另一重要原因是创新的缓慢发展,提出鼓励企业创新、淘汰落后生产的主张。此外,还找出不确定性等因素也制约着广东消费需求的扩大,并提出相应的对策措施。关键词:消费需求 收入差距 创新AbstractAccording to domestic and foreign study about insufficiency in consumption ,this paper try to find out what leads to insufficiency in consumption in Guangdong province,then give some advices to solve the mainly study the influence on consumption by the enlargement of income gap between townsmen and farmers, by innovation as I make contract between total income and income gap ,I find that income gap is by far important to consumption than total income,so I propose to shrink the income I analyse innovation’s effect on consumption ,I find that the previos innovation is close related to current consumption and find out that the low growth rate of previos innovation leads to the low growth rate of current consumption,so I suggest that govenment should encourage enterprises to creat more and eliminate backward addition, there are other reasons contributing to low consumption rate,such as uncertainty. According to different reasons,I propose my different words: Consumption Demand Income Gap Innovation目 录一、引言 …………………………………………………………………… 1(一)合理的消费需求对经济发展的意义 ……………………………… 1(二)广东消费状况分析 ………………………………………………… 11.占总收入的比重偏低 …………………………………………………… 12.消费对总产值的贡献率偏低 …………………………………………… 23.消费增长率低于经济增长率 …………………………………………… 2二、广东消费需求不足的成因分析 ……………………………………… 2(一)国内外学者对消费需求不足问题的主要观点 …………………… 21.国外学者对消费需求不足问题的主要研究 …………………………… 22.国内学者有关消费需求不足成因的代表性观点 ……………………… 3(二)制约广东消费需求扩大的因素 …………………………………… 41.收入差距扩大 …………………………………………………………… 42.创新停滞 ………………………………………………………………… 53.不确定性问题 …………………………………………………………… 74.其他因素 ………………………………………………………………… 8三、扩大广东消费需求的路径选择 ……………………………………… 9(一)缩小收入差距 ……………………………………………………… 9(二)激发企业创新能力,淘汰落后生产 …………………………… 10(三)建立健全的社会保障体系 ………………………… …………… 10(四)发展现代信贷 …………………………………………………… 10(五)建设诚信的商业环境 …………………………………………… 10(六)增加高收入群体的消费 ………………………………………… 11注释 ……………………………………………………………………… 12参考文献 ………………………………………………………………… 13附录 ……………………………………………………………………… 14致谢1. 论转轨时期如何建立个人信用体系2. 金融危机对我国经济型酒店的负面影响及对策分析3. 关于助学贷款的财政政策研究4. 陕西省装备制造业竞争力及影响因素研究5. 陕西第三产业发展与经济增长的相关性分析6. 基于城市竞争力分析的城市定位研究——以西安市为例7. 浅谈我国上市公司增发新股的股价效8. 我国商业银行电子银行业务安全问题浅析9. 我国商业银行中间业务拓展问题浅析10. 股指期货对我国股票市场的影响分析11. 关于农村金融体制改革的思考12. 国有商业银行金融创新提高竞争力的研究13. 农村信用社在农业产业结构调整中的信贷投入策略14. 农户小额贷款存在的问题及对策探讨15. 简析我国商业银行信用卡业务的风险管理16. 浅谈信用社信贷管理中存在的风险问题及对策17. 人身保险营销问题研究18. 我国商业银行资本充足率的管理研究19. 商业银行信用风险度量模型在我国的适用性研究20. 商业银行信用卡业务信用风险管理研究21. 我国工商银行信用风险管理的对策22. 我国商业银行不良资产证券化研究23. 我国商业银行操作风险管理对策研究24. 我国商业银行贷款定价的问题及对策分析25. 我国商业银行的市场营销策略分析26. 我国商业银行个人理财业务发展策略研究27. 我国商业银行汇率风险管理研究28. 商业银行会计风险及防范措施29. 我国商业银行金融创新的策略探讨30. 我国商业银行开展投资银行业务研究31. 我国商业银行消费信贷风险管理研究32. 我国商业银行信贷风险管理研究33. 我国商业银行引进战略投资者的效用和对策分析34. 我国上市商业银行的竞争力分析35. 我国商业银行资本结构研究36. 广东房地产市场研究--金融专业37. 我国汽车金融的现状与对策38. 试析我国的网上证券交易39. 对中国创业板市场建设的探讨40. 对中国股市的宏观调控状况的研究41. 农村信用社中间业务发展的现状、问题与对策42. 农村信贷资产证券化的初步探讨43. 米德冲突下人民币均衡汇率分析44. 认沽权证及其对我国推出金融衍生品的指导意义45. 玩具市场分析及奥迪公司营销策略研究46. 我国证券市场的IPO热发行47. 不同学历水平的教育投资成本与收益48. 论我国个人理财与外汇相关的理财研究49. 中国通货膨胀的货币性分析50. 通货膨胀的成因及应对措施51. 关于在农村居民中开展个人理财的研究52. 我国化妆品品牌营销管理53. 论中国信用卡市场的创新54. 风险导向下的商业银行资本管理研究55. 中国汇率制度改革:选择有管理的浮动56. 对我国保险公估业发展的探讨57. 我国开发环境责任保险的初步探究58. 中国网上银行发展现状及对策59. 国际资本流动对我国市场体系的影响60. 解读UCP600及应对之策61. 信用卡的风险控制与管理62. 农村小额信贷可持续发展研究63. 关于我国银行资产证券化研究64. 探索我国住房抵押贷款证券化模式65. 中国资信评级业发展现状66. 我国商业银行综合竞争力分析67. 我国中小企业融资难的问题研究68. 对我国国有商业银行不良资产处置问题的探析69. 中美两国股市相关性研究70. 我国金融衍生品市场发展的税收模式71. 浅谈商业银行个人理财业务在中国的发展72. 探讨祢合农村资金供求缺口的对策73. 中国通货膨胀率与失业率关系初探74. 浅析我国农村小额信贷发展现状及对策75. 我国商业银行中间业务的发展现状及对策76. 论农村信用社产权制度的改革和创新77. 外资的引进对我国股份制商业银行的影响以及对策研究78. 中国证券投资的基金投资行为79. 外汇保证金交易在我国金融市场的发展分析80. “返券促销”对企业和国家的影响81. 中国蔬菜出口贸易发展的政策82. 我国现状信用卡发展方向研究83. 新股发行制度改革84. 国有商业银行竞争力影响因素分析85. 中国个人投资理财的初步研究86. 我国商业银行个人理财产品销售方针分析87. 探讨我国利率市场化的问题88. 谈论商业系统成长企业市场(宝石)89. 如何扩大农业利用外资规模、提高利用外资效率的对策90. 浅析怎样提高中国IPO发行效率91. 浅谈我国企业债券发展的必要性92. 浅谈独生子女时代的理财规划93. 广东省农业保险情况分析和研究94. 广东农业风险的实证研究--金融论文95. 广东外商直接投资的区位分布以及广东的区位优势因素
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
回归分析是一种非常常用的统计分析方法,可以用来研究自变量和因变量之间的关系。下面是一般回归分析的步骤:
1.明确研究对象和问题:需要确认要研究的自变量和因变量,并明确研究的目的。
2.收集数据:需要搜集并整理数据,确保数据的质量和一致性。
3.数据描述和探索:对数据进行初步探索,包括描述性统计、散点图等分析方法,了解数据的分布情况。
4.模型建立:根据研究问题选取合适的模型,比如线性回归模型(简单线性回归和多元线性回归)等,利用计算机软件进行模型拟合和检验。
5.模型诊断:对模型进行诊断,验证模型是否符合回归分析的基本假设,如无自相关性、正态性、同方差性等。
6.结果解释和分析:根据分析结果,解释模型中每个自变量对因变量的影响,同时探讨可能的解释和实际意义。
7.
结论和应用:根据分析结果,得出结论或建议,并应用到实际问题中。同时,需要对结论及应用进行审慎的评估和解释, 以提高回归分析的可靠性和可行性。
需要注意的是,回归分析的具体步骤可能因为不同的问题而有所变化,但基本的思路是相似的。同时,回归分析本身也有很多变体和扩展,可以根据具体的问题选择合适的方法或者工具。
回归分析表中总计值怎么求 回归分析(线性回归分析)研究影响关系情况,回归分析实质上就是研究X(自变量,通常为量数据)对Y(因变量,定量数据)的影响关系情况。操作SPSSAU操作如下图:结果将数据放入分析框中,SPSSAU系统会自动生成分析结果如下:分析结果解读以及计算公式:(1)Beta(标准化回归系数计算):计算公式如下:(2)t=回归系数/回归系数的标准误;t=常数项/常数项的标准误;例:;(3)VIF(方差膨胀因子):对于VIF说明:其值介于1~ \infty之间。其值越大,自变量之间存在共线性的可能越大;(4)它是判断线性回归直线拟合优度的重要指标,表明决定系数等于回归平方和在总平方和中所占比率,体现了回归模型所解释的因变量变异的百分比;例: =,说明变量y的变异中有%是由变量x引起的, [公式] =1,表明因变量与自变量成函数关系。 (5)调整R方值计算公式其中,k为自变量的个数;n为观测项目。自变量数越多,与 的差值越大;例: [公式](6)F值F值=回归均方/残差均方(7)DW值DW是用于判断自相关性,比如上一个records是否影响下一个records,DW计算公式要先生成残差值然后计算。扩展:(1)容忍度:Toli=1/VIF;其值介于0~1之间。其值越小,自变量xi与其他自变量x之间的共线性越强。PS:使用容忍度作为共线性量度指标的条件比较严格,观测值一定要近似于正态分布。(2)DW的取值范围0
问题一:SPSS中回归分析结果解释,不懂怎么看 首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig 问题二:请问SPSS的回归分析结果怎么看 前面的几个表是回归分析的结果,主要看系数,表示自变量增加一个单位,因变量平均增加个单位。后面的sig值小于,说明系数和0的差别显著。 还要看R2=,说明自变量解释了因变量的变化。 最后一个图表明,残差服从正态分布。 希望对你有帮助,统计人刘得意 问题三:spss回归分析结果图,帮忙看一下,麻烦详细地解释解释 R平方就是拟合优度指标,代表了回归平方和(方差分析表中的)占总平方和(方差分析表中的)的比例,也称为决定系数。你的R平方值为,表示X可以解释的Y值,拟合优度很高,尤其是在这么大的样本量(1017对数据点)下更是难得。 系数表格列出了自变量的显著性检验结果(使用单样本T检验)。截距项()的显著性为(P值),表明不能拒绝截距为0的原假设;回归系数(X项)为,其显著性为(表明P值小于,而不是0。想看到具体的数值,可以双击该表格,再把鼠标定位于对应的格子),拒绝回归系数(X项)为0的原假设,也就是回归系数不为0;标准化回归系数用于有多个自变量情况下的比较,标准化回归系数越大,该自变量的影响力越大。由于你的数据仅有一个自变量,因此不需要参考这项结果。 对于线性回归,我在百度还有其他的回答,你可以搜索进行补充。 问题四:请教spss回归分析结果解读 首先看 方差分析表 对应的sig 是否小于,如果小于,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于,就说明回归模型不显著,下面的就不用再看了。 其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。 第三 看具体回归系数表中每个自变量 对应的sig值,如果sig小于,说明该自变量对因变量有显著预测作用,反之没有作用。 问题五:怎么从eviews回归分析结果中看出有没有显著影响 10分 模型中解释变量的估计值为,标准差是,标准差是衡量回归系数值的稳定性和可靠性的,越小越稳定,解释变量的估计值的T值是用于检验系数是否为零的,若值大于临界值则可靠。估计值的显著性概率值(prob)都小于5%水平,说明系数是显著的。R方是表示回归的拟合程度,越接近1说明拟合得越完美。调整的R方是随着变量的增加,对增加的变量进行的“惩罚”。D-W值是衡量回归残差是否序列自相关,如果严重偏离2,则认为存在序列相关问题。F统计值是衡量回归方程整体显著性的假设检验,越大越显著 问题六:SPSS回归分析结果该怎么解释,越详细越好 50分 首先看 方差分析表 对应的sig 是否小于,如果小于,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于,就说明回归模型不显著,下面的就不用再看了。 其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。 第三 看具体回归系数表中每个自变量 对应的sig值,如果sig小于,说明该自变量对因变量有显著预测作用,反之没有作用。 问题七:相关因素logistic回归分析结果怎么看 logistic回归与多重线性回归一样,在应用之前也是需要分析一下资料是否可以采用logistic回归模型。并不是说因变量是分类变量我就可以直接采用logistic回归,有些条件仍然是需要考虑的。 首要的条件应该是需要看一下自变量与因变量之间是什么样的一种关系。多重线性回归中,要求自变量与因变量符合线性关系。而logistic回归则不同,它要求的是自变量与logit(y)符合线性关系,所谓logit实际上就是ln(P/1-P)。也就是说,自变量应与ln(P/1-P)呈线性关系。当然,这种情形主要针对多分类变量和连续变量。对于二分类变量就无所谓了,因为两点永远是一条直线。 这里举一个例子。某因素y与自变量x之间关系分析,y为二分类变量,x为四分类变量。如果x的四分类直接表示为1,2,3,4。则分析结果为p=,显示对y的影响在水准时无统计学意义,而如果将x作为虚拟变量,以1为参照,产生x2,x3,x4三个变量,重新分析,则结果显示:x2,x3,x4的p值分别为,和。也就是说,尽管2和1相比无统计学意义,但3和1相比,4和1相比,均有统计学意义。 为什么会产生如此结果?实际上如果仔细分析一下,就可以发现,因为x与logit(y)并不是呈线性关系。而是呈如下图的关系: 这就是导致上述差异的原因。从图中来看,x的4与1相差最大,其次是2,3与1相差最小。实际分析结果也是如此,上述分析中,x2,x3,x4产生的危险度分别为,,。 因此,一开始x以1,2,3,4的形式直接与y进行分析,默认的是认为它们与logit(p)呈直线关系,而实际上并非如此,因此掩盖了部分信息,从而导致应有的差异没有被检验出来。而一旦转换为虚拟变量的形式,由于虚拟变量都是二分类的,我们不再需要考虑其与logit(p)的关系,因而显示出了更为精确的结果。 最后强调一下,如果你对自变量x与y的关系不清楚,在样本含量允许的条件下,最好转换为虚拟变量的形式,这样不至于出现太大的误差。 如果你不清楚应该如何探索他们的关系,也可以采用虚拟变量的形式,比如上述x,如果转换的虚拟变量x2,x3,x4他们的OR值呈直线关系,那x基本上可以直接以1,2,3,4的形式直接与y进行分析。而我们刚才也看到了,x2,x3,x4的危险度分别为,,。并不呈直线关系,所以还是考虑以虚拟变量形式进行分析最好。 总之,虚拟变量在logistic回归分析中是非常有利的工具,善于利用可以帮助你探索出很多有用的信息。 统计的分析策略是一个探索的过程,只要留心,你就会发现在探索数据关系的过程中充满了乐趣,因为你能发现别人所发现不了的隐藏的信息。希望大家多学点统计分析策略,把统计作为一种艺术,在分析探索中找到乐趣。 样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。他们大都是想到就开始做,但是事后他们会寻求研究中样本量的依据,尤其是在投文章被审稿人提问之后。可能很少有人想到研究之前还要考虑一下样本够不够的问题。其实这也难怪,临床有临床的特点,很多情况下是很难符合统计学要求的,尤其一些动物试验,可能真的做不了很多。这种情况下确实是很为难的。 本篇文章仅是从统计学角度说明logistic回归所需的样本量的大致估计,不涉及临床特殊问题。 其实不仅logistic回归,所有的研究一般都需要对样本量事前有一个估计,这样做的目的是为了尽可能地得出阳性结果。比如,你事前没有......>>
r方是评价的主要指标,F值,t值是两个检验,一般要小于.你可以自学下,实在没时间可以找我
在对数据进行回归计算分析的过程中,这些数字分别代表的就是这一个回归方程的准确度,也就是对数据预测的准确度。