【摘要】分析现有电动汽车由汽车厂家单挑一研发制作的弊端,为使未来电动汽车即能满足用户多样化需求,又可达到大批量专业化精益生产条件的最佳运行模式。综合运用汽车、电机、控制三大基础理论,提出基于四大基础部件的电动汽车最佳结构。要求汽车业联合电机、电控、电子等行业,共同协作潜心于核心技术及其基础研究,制定最佳结构的各零部件标准化,多品种电动汽车即可由多规格零部件组成的多系列基础部件选配组装,以专业化精益生产来极大提高性价比。为此各相关执政部门及行业协会需通过协调,以消除行业壁垒来整合重组新汽车产业链。使我国电动汽车业不失时机地赶超世界领先,并以龙头产业振兴整个民族工业。
论文关键词:电动汽车,最佳结构,基础部件,新产业链,精益生产,运行模式
1 引言
电动汽车是节能环保的未来汽车已被世界所公认,为此各国均已投入大量人力、物力掀起了研发电动汽车热,全球各大汽车业都在为尽快掌握其核心技术占领未来汽车领域而努力。但由于电动汽车结构或其产业链发生了本质变化,需要更多的电机、电子及电池等技术行业来共同参与,并且其性价比要真正能被广大民众所接受,要求各部件能尽快标准化,以专业化流水线方式生产。对于我国在传统汽车领域仍较大地落后于发达国家,其技术还长年受制于国外,而发展电动汽车确是赶超世界领先的极好机遇,但也更须实现跨行业间的联合协作。况且多年来随数控、计算机、手机等技术的发展,电动汽车所需的相关产业在我国也已具备相当的实力基础,即应通过各相关执政部门的协调,尤其面对当前我国极好的汽车市场前景,汽车业需消除行业壁垒,以振兴民族工业为前提,通过联合协作共同努力,即使相关行业能共同分享汽车龙头产业的大蛋糕,也才能使汽车业自身得到快速发展。犹如当年数控机床发展初期,机床需有更好的伺服电机和数控系统来控制,要求电机、电子等行业来共同协作开发,即使当初还属两个部门管辖的机械与电子紧密联合,从而促进了我国机床数控化率的快速提高,也使相关行业得到共同发展。这是迅猛发展的电子技术使更多机械产品向机电一体化发展的需要。
电动汽车三大类间关系为:纯电动汽车是技术基础;混合动力电动汽车是发展中过渡模式;燃料电池汽车是理想目标。且三类电动汽车都要用电机作驱动,所发展电机技术是基础之基础。发展混合动力电动汽车相对我国技术优势不大,成本也总难以下降。燃料电池汽车虽是理想目标,但目前在氢原料上有待作大量研究提高。而抓好纯电动汽车技术基础即可利用我国在市场、资源、技术三大优势:纯电动汽车主要存在能量不富裕特点,特别适于微型车制作,而我国家庭也正呈小型化结构,随生活水平提高私家车销量将占最大部分。作为车载能源蓄电池最具发展潜力是锂电池,而材料锂的储存量约一半在我国。并且我国近几年随电动自行车、手机、笔记本电脑等的发展也极大地带动了电池产业,据去年深圳国际电池会议获悉,世界三分之二的电池产自中国,我国已成为世界第一电池大国。对电动汽车电机驱动最具发展前途的应是轮毂电机,而轮毂电机目前应用最多又在我国,我国处于技术领先且产销量占全球90%的电动自行车均应用了轮毂电机,按技术发展需先易后难、循序渐进,这即为纯电动汽车发展打下相应基础,但在电动汽车上应用关键还需在增大功率和提高性能上下功夫,为此曾提出了两项改进的中国发明专利[1][2]。
尽管对我国应优先发展哪一类电动汽车曾有较大不同争议,但随产业发展必将逐渐趋于一致。笔者一直认为对纯电动汽车应先着力于微型车研发,对载重量较大的才需考虑混合动力电动汽车。而且针对我国私家车销量将会持续看好,并由此引起对交通的巨大压力,结合我国家庭呈小型化,特提出节约交通资源1倍多和能源20多倍的节源环保型三人座电动微轿车[3]作为普及型私家车,按交通现状和私家车普及趋势,应改变将私家车当作显耀富贵身份象征的奢侈品观念,私家车仅作为便捷性交通工具,需从提高人均交通资源利用率来考虑车型。近也已有多位院士、专家学者提出须将纯电动汽车发展上升为国家战略,通过政策支持优先助力具基础技术并在我国有优势的纯电动汽车早成产业化。为此本文即以阐述纯电动汽车为主,意欲通过分析电动汽车应有的最佳结构与其新产业链相关行业应采取的最佳生产方式,以及各行业间如何能按最佳运行模式来极大提高电动汽车性价比。作为抛砖引玉,希望能引发汽车及相关产业更深层次的广泛研讨,使我国既能尽快掌握其核心技术赶超世界领先,也能使电动汽车的生产模式尽早以精益的专业化流水线方式运行。即鉴证于诸类产业的发展,要求相关执政部门及行业协会通过有效的协调,引导本属机电一体化的未来电动汽车产业也能象造PC机、手机那样生产,以提高性价比来真正使广大民众所接受,并努力走向世界,将未来电动汽车产业做大做强。
2 电动汽车现有研发、制作模式的弊端
分析比较现所研发的众多电动汽车,结构均沿袭传统的设计模式,即未能从发挥电机驱动的优势来对结构作突破性改进。最大特点是为满足车速、加速及续驶里程等指标,增大了电机功率和蓄电池容量。如一款定价30万元的品牌纯电动轿车,虽采用高性能蓄电池,但由于电机功率和蓄电池容量增加,使车载自重比一般轿车增加了一倍,其中一半为电池重量。按车辆动力学可知,汽车的滚动阻力、坡度阻力、加速阻力均与车载质量成正比。因此车载自重的增加不仅使原本为改善汽车动力性能而增大的电机功率和蓄电池容量都大打折扣,也使其性能变差,大量车载自重增加如同载货汽车,失去了小轿车轻便灵活应有优势。该车为满足大量电池的空间布局,增大了车身尺寸和车内地板高度,外观看似大气而豪华,但车内地板的增高即影响乘坐舒适性,也增加一定风阻。也因大量电池集中安置于车中,增加了电池发热与散热难度,于是也提高了电池管理系统的复杂性,而增加了体积和重量。且如此多的蓄电池也难以采用更换法来确保续驶里程。
按电机拖动理论对电机的选型需特别注重负载特性匹配,由于调速电机有直流、交流、永磁无刷、变磁阻等多种类型[3],各类电机带负载特性不同,其适用性也各有区别。因此按汽车行驶工况的负载特性要求,选择合适的电机类型显得尤其重要。但分析现有电动汽车介绍,发现所选电机几乎应有尽有,存在盲目选择的相应误处。有许多品牌电动汽车竟然还采用了永磁同步电机,同步电机的优点是调速精度极高(转速总与电源频率同步),也由此引起不能过载的缺点,虽永磁同步电机效率可提高10%左右,但极差的过载能力,使得无法发挥诸多良好电机能数分钟内过载额定功率3倍以上的优势,在满足起步、加速、爬短坡等短时过载要求的同时,可较大减小电机功率来降低成本、车载自重和大部分运行期的电能。这对调速精度要求不高的汽车存在顾此失彼。
在此再举一简单实例,对于电动自行车在相同蓄电池容量前提下,若采用优质高性能轮毂电机与劣质低性能电机相比其续驶里程将相差一倍。如在相同续驶里程要求下其蓄电池容量即可减少一半,而对于电动汽车若蓄电池减少一半即能极大地降低成本,也使车载自重相应减少许多,如此又能进一步改善动力性,所以驱动电机的选择对提高电动汽车性价比是何等的重要。
综上实例所述,电动汽车须按电机拖动理论来分析比较各类电机的负载特性,结合汽车多变行驶工况的各种特点,找出最适合的电机类型和最佳的驱动结构形式,以充分发挥用电机驱动和电子控制应有的各项优势。由于采用最佳电机驱动结构[3]即可减小电机功率和蓄电池容量,从而也使减轻车载自重与改善动力性起到良性循环,以此就能提高其性价比。而最佳电机驱动结构与其控制等部件的制作,均需以专业化生产来提高性价比。虽然电动汽车还处于研发试制阶段,但所暴露的最大弊端是由于存在相应的行业壁垒,使得各类电机、电控等一系列配套协作厂家还难以能尽快全面介入,以形成现代化生产所需的社会分工和协作,组成专业化和多样化相结合的整机厂和专业化的零部件厂。其制作模式基本是由汽车厂以单挑一,大厂大而全、小厂小而全的落后方式在生产。使得整个经济处于投入多、产出少、消耗高、效益低的粗放型发展工业生产体系,这种传统生产管理模式的弊端早有论述,在此无需赘述。
尽管对电动汽车开发需联合协作早有共识,已有16家龙头央企组成的“国家队”、T10联盟的“行业队”和多个“地方队”等各种协作联盟,但其效果不佳的根本原因还是存在相应的行业壁垒,较少有跨行业间并选择合适的相应企业进行联合协作,或未能展开实质性的项目协作研发。并且目前主要还集中于电池的制作,而象磷酸铁锂等电池是美国人的专利,国内通过引进来完善其制作工艺。对电池固然重要,且我们也应设法为拥有下一代电池的核心技术而努力。但对整辆电动汽车来说电机是“心脏”;电控是“大脑”;电池是能量之源;均为核心技术的关键。前述优选电机可提高电池双倍功效的实例也说明了加强改进电机研发的重要性。通过分析可说明电动汽车的最佳驱动结构应为轮毂电机,特别是曾提出的兼有电动、发电回馈和电磁制动多功能轮毂电机[1],它均属小型特种电机。而国资委将投资千亿元集16家央企组成的联盟中,仅有一家电机生产企业为中国东方电气集团,且又是生产巨型、大型电机的。
电动汽车未能及时推广的主要原因是性价比。现所研发的电动汽车由于受传统汽车设计思路束缚,结构基本在传统汽车基础上改装而成。如纯电动汽车把原有发动机换成蓄电池和驱动电机及控制器,其余结构几乎没变。这从设计制造来讲是最简单方便,也是众多汽车厂家快速研发所谓新能源汽车的捷径,分析其原因与目的也就不言而喻。由于现所研发的电动汽车因没从结构上作突破性改进,使性价比也难有突破性提高以满足民众要求。为此国家近期推出私人购买新能源汽车实施财政补贴的相关措施。这虽说明国家对节能环保的重视,但没能从技术根本上解决问题,所以即为被动,也只能为短期。作为国家政策调控更应从鼓励基础的实质性研究和跨行业协调上下功夫,尽管电动汽车研发热已持续多年,但还存在较多低档次重复性研发,许多研究成果难以得到有效的合理共享,许多有用的基础性研究和发明专利难以得到实质性应用,国内已有的研究成果还会从国外引进,甚至重复引进。诸如此类的弊端问题需从国家体制与政策上找其根本原因。为什么中国企业的仿制能力特别强,而创新开发就较弱?为何有许多技术创新的创业者会无奈地感慨:“中国企业的创新产品只有先在国外打响,回过头来才能引入国内市场。”长年封闭固守所形成的“一个中国人是条龙,三个中国人是条虫”而阻碍科研发展的非协作精神须根除。未来更多含多项技术于一体包括电动汽车在内的产品开发均需要跨行业的紧密协作。
3 未来电动汽车最佳结构的探索
作为新兴机电一体化电动汽车的结构设计,须遵循汽车理论、电机拖动理论及其控制理论为基础。对于电机拖动理论的重要性在前述分析现有电动汽车的实例中已表明,关键是找出最适合汽车多变行驶工况特点的电机类型和最佳驱动结构形式。按汽车理论——车辆动力学分析:采用四轮驱动可全面利用车轮对地面附着力和提高汽车通过性;采用四轮转向可极大地减小低速转弯半径,提高高速转向稳定性和响应性;采用轮毂电机驱动经电子差速将去掉机械差速及左右半轴等机构即可全面降低车身高度,并使所需最大质量体积的蓄电池作为配重物经适当分散(如安置于前后座位下)布局来尽可能降低车辆质心高度,以提高车辆侧翻阈值即侧向操纵稳定性。根据控制理论分析,改善整车性能需提高汽车对驱动、制动和转向三大执行机构的快速响应性,利用当今迅猛发展的微电子等技术,通过检测反馈控制可极大地提高汽车操控、稳定及安全性能。
汽车驱动、制动、转向三大执行机构即是制约整辆汽车性能的主要环节,其快速响应性也是决定操控汽车安全稳定行驶的重要因素。针对传统汽车的发动机驱动、由液压等方式制动和转向助力因摩擦阻尼使动态响应均较慢,从而制约了整车性能难以有效提高。为此综合多项技术深入分析研究,利用电机的电与磁转换是按光速进行的动态响应过程,提出能全面提高电动汽车驱动、制动、转向三大执行机构快速响应性和性价比的四项发明专利:兼有电动、发电回馈和电磁制动多功能磁阻式轮毂电机[1];具有启动绕组的单相开关磁阻式多功能轮毂电机[2];基于直线电机控制的汽车转向系统[4];四轮毂电机驱动四轮转向电子差速控制系统[5]。
通过对发动机与电动机的调速动力特性分析比较[3],说明电动汽车用电机驱动相对发动机有数千倍的调速比、数百倍的快速响应性、相当的短时过载能力以及节能等诸多优势。但要使电机各项优势能充分发挥,还须对电动汽车结构作突破性变革与优化。同样上述四项发明技术在电动汽车要有效发挥,并充分利用高速发展的微机控制、传感测量和电机驱动等技术优势,全面提高整车性能,也需通过统筹考虑电动汽车的结构布局。为此综合汽车、电机、控制三大理论的分析,提出了电动汽车的最佳结构应由含多功能轮毂电机的车轮、高储能装置、高性能转向系统和数字化整车控制系统四大基础部件[6]加车身、底盘与内饰等组成。它将极大简化机械机构、降低成本和车载自重、节能减噪、提高动态响应及控制性能,以提高电动汽车性价比来使尽快普及商品化。附图所示为四大基础部件在纯电动汽车上的结构布局示意图。四大部件即具电动汽车的基本特色,也是其核心,而其他部件与传统汽车类同,所以在此仅对四大基础部件分别简述如下。
1)含多功能轮毂电机的车轮。即为采用四台含兼有电动、发电回馈和电磁制动多功能轮毂电机及其驱动控制模块的车轮,它利用前述两项专利结合轮毂电机的诸多优势,将为电动汽车确立最佳电机驱动结构[3]。微机多CPU总线控制已是现代汽车较多采用的控制方式。对于四轮毂电机控制运用CPU总线技术,将驱动控制模块集成在车轮内,可极大简化电动汽车内部线路布局,即提高可靠性,也便于故障诊断和维修。实施该机电一体模块化控制结构将有利于提高性价比。而多功能轮毂电机采用了变磁阻电机,它具有结构简单、坚固可靠、电机与控制器综合成本低、调速性能好、效率高等优点,与目前普遍应用的交流变频或永磁无刷等电机相比,特别具有高起动转矩、可控起动电流和较高短时过载能力,更适于汽车重载起步,频繁起停、升降速的多变工况和蓄电池需避免大电流输出等各种特殊要求。为一种新兴机电一体化能量转换装置,其应用需在大功率开关管和高速数字信号处理器DSP快速发展基础上独显优势。通过结构改进又提高了电磁制动效能,而发电回馈-电磁制动相结合反复进行的制动过程,类似于防抱死制动系统或驱动防滑转控制的制动过程,从而可提高车辆行驶的安全性和操控性。轮毂电机的“零传动”方式直接驱动车轮,使汽车结构发生了脱胎换骨的变革。
机械传动链的缩短,即极大提高对车轮控制的快速响应性,也降低大量机械部件成本和车载自重,提高整车驱动效率,有利于节能减噪,还腾出许多空间便于汽车总体布局。由于只有驱动轮才能实现制动能量回收,省去机械传动损耗对车轮动能回收又更直接,采用四台兼有发电回馈功能的轮毂电机,在汽车滑行、降速和下坡行驶中可成倍提高动能回收率。鉴于轮毂电机功率受结构体积限制,采用四台轮毂电机替代常规单台电机以实现小马拉大车,而四轮驱动即为高档轿车的4WD方式又可充分利用车轮对地面附着力,极大改善车辆的越野通过性、防滑制动、快速转向等来增强操控车辆行驶的稳定性。
2)高储能装置。高储能装置包括燃料电池和各类高性能蓄电池等。氢燃料电池因氢原料问题,现阶段还难以推广应用。对于蓄电池虽可采用目前成熟、价格低的铅酸蓄电池。但按技术发展应尽可能采用对我国有得天独厚资源优势的锂电池,如磷酸铁锂电池、聚合物锂离子蓄电池等。或采用高比功率、低比能量的超级电容与高比能量、低比功率铝空气电池相结合,以及其他的多种组合形式,通过扬长避短、优势互补,来综合提高加速、爬坡以及续驶里程等性能。近据报道,一种即可用作充电电池,也可用作燃料电池的锂-空气电池在技术上已获得突破性进展。该电池作充电电池用时,比能量可高于现有锂离子电池十几~数十倍。如作为燃料电池用,采用更换正极的水性电解液和负极的金属锂,其能量密度和更换时间均有望优于传统的加油方式。因此,该锂-空气电池若进入实际应用,传统汽车和处于过渡期的混合动力电动汽车就有可能被淘汰,而各类纯电动汽车和燃料电池汽车将被很快普及应用。据预估该锂-空气电池还需10年有望能进入商用,当然国家也需投巨资来加快锂-空气电池研究以促使尽早进入实际应用。而对于汽车、电机、电子等相关企业更应为各类电动汽车都需应用的电机驱动最佳方式,未来各类电动汽车最佳结构组成的四大基础部件做好技术储备,掌握该四大核心部件的关键技术即可迎接新的更大挑战。
3)高性能转向系统。即指能极大改善转向性能由直线步进电机控制的四轮驱动四轮转向电子差速转向系统。它是在四轮毂电机驱动基础上,结合另两项相关专利技术而组成。其成熟应用将为未来各类汽车的转向技术发展打下极好基础。分析汽车转向系统各功能要求与其相应机构运行原理的关系,由于转向机构最终带动转向节臂的横拉杆均为左右直线运动,所采用直线步进电机直接带动左右横拉杆,使控制更直接,动态响应更快,且省去了大量机械或液压部件,即使结构更简捷,也能节能减噪。利用直线步进电机控制特点,即可方便地充分满足转向力随车速变化的各控制要求,又提高了转向精度和实施高性能汽车四轮转向系统的性价比。通过对电子差速转向原理分析和数学推导,提出四轮毂电机驱动四轮转向的全新电子差速计算理论及实施的结构原理。由于它主要在软件上增加相关的算法控制,所需的传感器等部件均可兼用,硬件成本增加很少。其实施即可极大地减小低速转弯半径、提高高速转向稳定性和响应快速性。
4)数字化整车控制系统。即采用数字化液晶显示、多CPU微机总线控制方式,可分为基本型和高性能型。基本型仅满足电动汽车基本控制要求,使其尽快进入实际应用。高性能型需采用多传感器进行四轮驱动四轮转向与电子稳定系统ESP相结合的控制方式,对此,利用多功能轮毂电机四轮驱动结合直线电机控制四轮转向可极大地提高汽车驱动、制动、转向三大执行机构快速响应性,避免现有高档轿车采用传统的执行机构,动态响应较慢使性能难以有效发挥。而采用能进行数控插补实现多轴伺服联动,控制机床精确行走各种曲线、曲面轨迹的微机控制,用来控制多功能轮毂电机实现四轮驱动四轮转向,按所测信号及时准确调整前、后、左、右各车轮的驱动力、制动力、转向角将会更易实施。并利用四轮驱动提高了地面附着力(俗称抓地能力),这可全面提高汽车行驶的稳定性、操控性、安全性以及转向性能,还将极大提高整车性价比。
4 未来电动汽车新产业链的变化和对其要求
从传统汽车向电动汽车的转变,如同普通机床向数控机床的演变,其结构的机械与电气所占复杂系数比例将发生根本变化。回顾1642年法国科学家帕斯卡发明第一台机械计算机,历经了几百年的缓慢发展,而由电子计算机取代后,经数十年快速发展,已成为当今人类不可或缺,应用于各个领域。随着电子、电机等技术的迅猛发展,未来电动汽车也需充分利用极高快速响应性的电子、电机等元器件来取代大量响应滞后、庞大而笨重的机械、液压装置,使结构发生脱胎换骨的革命性变化。而且电气产品价格逐年下降的趋势也恰与机械相反,这从电脑、手机等性价比的快速提高足以证明。所以采用能充分发挥电子、电机各种技术优势的四大基础部件即是未来电动汽车最佳结构,也更便于利用标准化、成组技术优化工艺以实施专业化流水线生产,并提高整个供应链的精益优化程度,通过精益管理模式来极大提高性价比。掌握该四大核心部件的关键技术是赶超世界领先,提升未来汽车业竞争力的基本前提,以此摆脱我国汽车业长期受国外技术束缚。我国在传统汽车业错失了很多机会,我国90%的汽车市场曾被外国公司占领。而电动汽车是我国汽车业赶超世界先进的绝好机遇,我国应借助新技术发展和企业成本优势,改变过去用市场潜力换技术,将中国市场世界车转换成世界市场中国车。从而利用汽车龙头产业来带动整个国民经济腾飞,以此振兴中华。但机遇稍纵即逝,对此我们绝不能再错失这极好良机。
如目前我国电动自行车就已成为全球的最大出口国,其原因值得借鉴。近据深圳第25届世界电动车大会暨展览会报道,此次涌现出较多低速微型电动车,如同电动自行车的发展在没享受到国家优惠政策,甚至在相关政策节节限制下,该低速电动车的顽强生命力让世人吃惊,充分证明了市场需求。被以为是实现赶超世界“弯道超车”的独特有效途径。目前欧美国家已为低速电动车立法,在欧洲也有国家为低速车型专门划分了行驶车道。值得可庆的是:即将出台《新能源汽车产业发展规划》的意见征询稿,其中也已提到:“要建立和完善小型低速纯电动汽车标准法规体系”。针对该类所谓非道路车辆,从反对到鼓励的过程,也说明国家已切实体验到:纯电动微轿车即有适合我国家庭小型化的市场优势,又可打开纯电动汽车能量不富裕的瓶颈口。对纯电动汽车车速和续驶里程两项指标,按现有技术,它与电机功率和蓄电池容量确是一对矛盾。两项指标提高必增加车载自重和成本,且车载自重增加也使动力性大打折扣,即会引起相应的恶性循环。而所提出的由四大基础部件组成电动汽车最佳结构的优点之一是简化结构而减轻车重,相对动力性起到相应的良性循环。所以该两项指标的提升也应遵循技术与市场经济须互为促进的规律。回顾当初发动机技术还不成熟时,其车速也均较低。反过来目前要人们再来接受较低车速确有难度,但在城市区域现可行驶的实际车速也只能是60km/h。即按实际可能行驶路况,对车速和续驶里程相对电机功率和蓄电池容量的匹配应有最佳选择,且恰如其分的匹配对节能起到更直接的效果。
随着新能源汽车及相关技术的发展,其产业的结构链也将发生重大变化。如由四大基础部件构成的电动汽车。
所需新增的上游产业有电池、电机、电子(集成芯片)、传感测量、电气控制等科研企业,要求紧随其需要与之配合,就能得到相应同步发展;而钢铁、部分机械(包括发动机、齿轮箱、万向节等机械传动件以及为发动机配套的各类辅助装置)等产业将会受到冲击或需作相应调整。对下游产业更要求充电或换电的配套设施、配有刷卡自助充电设施的停车场、相应的售后服务和交通管理等均需紧随其后而得到相应发展;而传统汽车维修服务、石油及其加油站等产业将会受到冲击或需相应调整。对于上下游产业链中将受影响的部门,可能会因其利益而进行阻挠,而有眼光的决策者就能及时调整来适应市场变化。作为与多个行业关联度极大的机电一体化新兴产物,为确保其有效顺利推广应用,电动汽车从研发生产到销售使用每个环节都需要新产业链的上下游企业密切配合。因此新型汽车产业链的上下游企业也需尽快得到合理的重新组合。
对产业链的上游企业不仅是日后正常的配套提供,更须在研发、试制及改进的初期予以紧密配合。为此首先需选择合适的科研企业建立完善的协作机制,就四大基础部件研发特别需要电机、电子(集成芯片)、微机控制和传感测量等多家密切配合,各家也要求汽车厂家及时提供并经共同研讨,确定合理可行的具体技术方案、结构原理、控制要求以及各相关规格参数等。为全面提高电动汽车性价比,各大部件还需由专业厂以流水线方式加工、装配来生产,再由整车厂经流水线将各部件与底盘、车身、内饰等装配而成。为此需通过联合协作研发建立完备而永固的友好合作关系,为确保新产业链各相关企业从联合攻关研制到长期协作均能高效有序进行,还须制定切实可行、合理有效的长期合作协议,做到分工有序、各展己长、同心协力、资源共享、有赏转让、共享成果,并避免重复研究、重复引进。通过联协攻关即可极大地加快研制步伐,使各项工作有计划地同步展开、有序衔接、连续进行。也可充分利用各协作单位现有科技力量和设备,以相对较小投入来获得极高的效益。通过联合协作研发在加快电动汽车普及商品化的同时,即使各相关产业长期共享电动汽车产业链的大蛋糕,也能尽快掌握电动汽车最佳结构的核心技术。
对于产业链的下游企业要求及时做好售后服务及充换电配套设施等对其推广应用至关重要。对此,除了利用现有传统汽车维修站进行相应的技术配套改进外,更需为解决纯电动汽车最棘手的续驶里程问题,通过分析研究制定出一套合理有效的综合性解决措施。根据蓄电池可用快、中、慢三种充电以及整体更换电池的方法。快速充电影响其寿命不宜频繁采用,中、慢速充电不适在现有加油站实施,而最适宜在加油站普及推广的应是快速换电法。为此对我国销量最大的私家车采用电动汽车提出了综合性解决方案:①采用上述四大基础部件以优化其结构和尽可能采用轻型优质材料等措施来极大减轻车载自重。②结合交通问题和我国家庭小型化特点提出节源环保型三人座电动微轿车作为普及型私家车,来进一步减小载荷引起的滚动阻力和随车宽减小的迎风阻力。③通过优选电机类型和结构来充分发挥电机驱动应有优势,利用电机较高的短时过载能力来满足上坡和加速两种较大短时阻力。④按市区实际可行驶车速合理确定指标等方面来减小电机功率以减轻车重,也使车载自重与动力性起到良性循环。⑤利用电机快速响应性等优势通过四轮驱动与四轮转向及降低汽车质心高度来确保(因车辆尺寸和重量减小)汽车具有更好的操控性、安全性和稳定性。⑥采用少装蓄电池即能轻载快跑还便于快速更换。通过综合运用上述技术措施,使电动微轿车采用三块约体积为400×300×70mm(如同厚坐垫)、重量为18公斤的锂电池,由专用器具更换2分钟就可完成,在现有加油站只需少量投资设施就可配套服务,还能对所换下的电池及时维护以延长寿命,和尽可能采用谷时充电。即确保续驶里程,还可极大降低汽车售价和运行费用。同时在住宅、单位及有关公共场所的停车场配以谷时自控和刷卡自助两种充电设施,对此可采用与房产商、住宅物管委及单位进行联营销售,通过买房送车等优惠方式来扩大销路的同时,在其所在地车库设置上述充电设施,及售后维护服务站,以全面解决对新能源汽车购车者的后顾之忧。为扩大其应用可增设电动微轿车自助租用服务,凭具有数年无相关违章驾驶记录的驾照和身份证,预交相应保证金办理其自动租用信用卡,利用低廉的车价和比加油还快的蓄电池更换法就更便于实施,用户最终按所驶里程数缴纳租金,租用点主要设置在火车站、飞机场等地,该车须配有GPS导航系统,使外地游客也能方便地自驾游,为各种远途出行的换乘带来极大方便,即推广了电动汽车应用,也有利于资源共享和发展相应的服务产业。
5 专业化精益生产对各大部件的基础研究及标准化要求
随着科技进步和人类生活品质不断改善,消费者价值观念变化很快,消费需求也朝着多样化、多品种发展。从而引起产品寿命周期相应缩短,为适应市场需求变化,必将使多品种、中小批量、个性化生产成为制造业生产方式的主流。如何使最终产品即能以多样化、多品种来满足市场需求,又能使各零部件实现标准化、专业化的大批量流水高效生产,以极大地提高产品的性价比。为此,就要求其产业链的每一环节具有高度的专业化分工,各零部件均以专业化精益生产方式加工制作,随着数字化应用技术发展,汽车生产管理也应朝着模块化、集约化和标准化模式发展,由此带来的生产模式变革使汽车的生产结构趋向于如同组装PC机、手机,即按用户多样化需求合理选配各大部件进行相对较简单的拼装调试。这也将有利于企业分散风险,提高效益,促进企业顺利成长,如此相关行业间的联合协作、产业链的专业化与合理配套显得极其重要。
针对未来电动汽车即要满足用户多样化需求,又要达到专业化精益生产条件的这种最佳运行模式。为此前述由四大基础部件组成的电动汽车最佳结构就能符合该模式的运行,即电动汽车可按要求选配具有多种规格或功能要求的四大基础部件,再选择不同的车身、底盘与各种内饰就能组合成千变万化的车型,而多规格的各大部件又可按系列化产品流水加工生产。但要达到完善该专业化精益生产方式,目前还需要进一步加强对各大部件的基础性研究及其标准化的制定。改变以往我国汽车新产品仅由所谓“全能”的主机厂开发研制,汽车零部件企业存在重生产、轻开发弊端,使我国传统汽车及其零部件的关键技术几乎全被外资企业所垄断。而对于目前几乎还处于同一起跑线的电动汽车,欲抓住时机赶超领先,汽车业就更须联合电机、电子、电控等相关产业协作研发,以形成集群效应,电动汽车及其零部件产业须“潜心修炼”其核心技术和基础研究,并以适度超前发展。现结合所述四大基础部件中两个具体实例对专业化协作等相关问题进行说明。
以含多功能轮毂电机的车轮为例,它相当于传统汽车的引擎或数控机床的伺服系统,就数控机床加工效益和精度主要取决于数控伺服机构。根据各类汽车的动力要求电机功率需有多种规格,而电机又可按直流、交流、永磁无刷、变磁阻等多种原理运行,但究竟哪种方式最适合多变行驶工况的汽车要求,除了利用理论分析进行推测研究,最终更要求以实践来证实。更具体切实地讲,电机的定、转子各相关尺寸等的配合;电机绕组的线径、匝数以及驱动控制方式等对电机运行的实际功效均起着重要作用。所以对各大基础部件组成的零部件在制定标准化前,更需要大量行之有效的基础性研究以及对零部件的具体试制,通过实际运行测试来比较鉴定,以实践来最终确定电机类型、最佳结构及所需的几种规格。扎实地做好诸类基础性工作才能真正掌握其核心技术。有了诸类核心技术的积累,电动汽车的推广才能有效实施。
所以真正务实的各级执政部门、行业协会、科研企业更应抓好其基础性研究和标准化制定,由电机、电子、电控、传感测量等相关产业配合汽车业共同开发协作,将有限的科研经费用在刀刃上。仅由汽车业独立研发的电动汽车不仅难以满足广大民众要求,也花费大量经费而仍未能真正掌握其核心技术,并延误其赶超时机。
又如数字化整车控制系统即类同于数控机床的数控系统,须由电气控制专业化部门研发制作。同一类数控系统可用于控制车、铣、镗、磨、钻等各种机床,机床厂仅作为数控系统与机床配套使用的二级用户,无需深入掌握系统内部技术,只需按用户手册,根据所控制机床的功能、控制轴数等选定相应插件板等配件,并按机床加工工艺及具体控制步骤流程编写满足机床特定要求的宏指令程序。与其类似,电动汽车数字化整车控制系统也可采用嵌入式IPC工业控制计算机。由一块通用主板来满足电动汽车常规所需的各项控制要求,而其他各种不同的特定功能可通过增加相应插件板或编制相应宏程序软件来实现。而对于研制数字化整车控制系统的电控专业化部门只需要掌握电动汽车各项功能的大致要求,具体参数设定等均由整车厂家在联机调试与实际路况试运行中针对具体车型来确定。如此电控专业厂即可充分利用本行业熟知的电子元器件及制作工艺等,优选各种集成芯片、传感测量等元器件,以标准模块化设计制造为众多整车厂配套,从而即可按大批量流水作业,也能确保系统可靠性和达到高性价比要求。对此可以想象现有汽车厂家以单挑一方式研发,不仅成本居高不下,特别是系统可靠性也值得质疑,而存在有关车辆安全运行的可靠性又如何能投入实际应用。
6 结束语
综上所述,未来节能环保的机电一体化电动汽车需要机械、电池、电机、电控、电子、传感测量等众多行业的紧密配合协作,突破行业间封闭固守的产业化瓶颈,充分利用各行业的高新技术才能共同培育出新兴的领先产业,以形成电动汽车新产业链的最佳运行模式,共赢所孕育着的巨大商机。由于未来电动汽车是具有产业链长、市场规模大、持续期长、带动能力强,并有引领未来先导性的战略性新兴产业。为此,各相关执政部门及行业协会在这重大技术变革的关键时机,更应充分做好各行业间的有效协调,抓住全球产业革命的历史机遇,使电动汽车产业转型升级成我国拥有诸多核心技术的新一轮产业革命催生的新兴产业,尽早抢占科技制高点以应对日趋激烈的全球竞争,以此提高国家的综合实力。
参考文献:
[1]王贵明、王金懿.兼有电动、发电回馈和电磁制动功能的可调速旋转电机:中国,ZL200810062784.5[P]
[2]王贵明、王金懿.具有启动绕组的单相开关磁阻式多功能电机:中国,200910152934.6[P]
[3]王贵明、王金懿编著.电动汽车及其性能优化[M].北京:机械工业出版社,2010.5
[4]王贵明、王金懿.基于直线电动机控制转向力的汽车转向系统:中国,200910152932.7[P]
[5]王贵明、王金懿.电动汽车用四轮毂电机驱动实现四轮转向的电子差速转向控制系统:中国,200910152933.1[P]
[6]王贵明、王金懿.基于四大基础部件的电动汽车结构:中国,201010251890.5[P]
References:
[1]Guiming Wang, Jinyi Wang. The Adjustable Electric Rotating Motor With the Functions of Electromotion, Power Generating Feedback and Electromagnetic Brake[P]. Chinese Patent. ZL200810062784.5
[2]Guiming Wang, Jinyi Wang. The Multi-function single-phase switched variable reluctance motor with start winding[P]. Chinese Patent. 200910152934.6
[3]Guiming Wang, Jinyi Wang editor. Electric Vehicle and Performance Optimization[M]. Beijing: China Machine Press.2010.5
[4]Guiming Wang, Jinyi Wang. Automotive Steering System based on Linear Motor control steering force[P]. Chinese Patent. 200910152932.7