您当前的位置: 首页 > 论文百科 > 正文

大学论文字数

2023-12-08 23:52:33 来源:学术参考网 作者:未知

大同大学论文字数

毕业论文的时候,一定要把自己的特点,性格还有能力全部写上去。但是在写毕业论文的时候,一定要注意格式的问题,千万不能给自己带来不必要的麻烦。并且在写论文的时候千万不能在网上抄袭,因为在交了之后是会查的,如果发现查重率很高的话,那么是会给你打下来的。这也警告我们在写毕业论文的时候一定要认真的去写,并且也要把实际的情况全写出来,也要把自己实习的经历全写上去。

但写的时候,写毕业论文的话,可以先去参考那些网上已经发布的任务了,然后主要是根据自己的思想,有一定的规划,而且一定要跟自己的导师密切的联系。有疑问的话,都可以对他提出来。他会一一针对你的问题回答,并且给你辅导。希望我的回答对你有帮助,欢迎采纳我的回答,谢谢。

这个时候一定要将自己的特点,还有自己的性格能力都写上去,然后在写毕业论文的时候一定要注意格式的问题,然后在写的时候也不可以在网上进行抄写,因为这样会被查重。然后在写的时候也可以把自己发生的事情或者是实际的情况都写进去,或者可以把自己的实习经历也写上去。

1,否2,前身是政教部,有思想政治教育和法学两个专业3,政法学院从来就在主校区,也就是新校区4,除了标准的六人间还有四人间外5,法学系我不是很清楚,只知道比思政专业好一点,人也多一点,至于师资力量和其他方面的不清楚,下附该校招生简章中的介绍供你参考:政法学院现有专任教师72人,其中教授7人,副教授13人,讲师24人。教师中已取得博士学位者4人,在读博士1人;已取得硕士学位者30人,在读硕士12人。现有专业资料室,藏书4500余册,报刊60余种。近年来,共发表学术论文265篇,出版学术专著18部。承担国家级科研课题2项,省级科研课题6项,院级科研课题8项。现有法学、思想政治教育两个本科专业,两个政史、法学专科专业,马克思主义基本原理和思想政治教育学科已被学校确定为重点优势学科,目前正在申报硕士点。现有全日制本科在校生737人,专科生146人,共21个教学班。法学(四年制本科,授予法学学士学位)培养目标:本专业培养掌握扎实法学基本理论和法律基础知识,具有独立分析和解决法律事务的能力、较强的文字和语言表达能力,能够从事立法、行政、检查、审判、仲裁、法律服务等工作的法律工作者以及从事法学教育和研究工作的高级专业人才。主要课程:法理学、宪法学、中国法制史、刑法学、民法学、行政法学、经济法学、商法学、刑事诉讼法学、民事诉讼法学、行政诉讼法学、国际法学、国际经济法学、国际私法学、知识产权法学、法律文书写作、婚姻家庭法学、法律逻辑学、律师与公证实务等。思想政治教育专业(四年制本科,授予文学学士学位)培养目标:本专业培养掌握扎实的人文社会科学基础理论和思想政治教育专业知识,掌握并能应用现代教育理论和技能解决实际问题和进行科学研究,能够在中等以上学校从事政治理论教学和思想政治教育工作的专业人才。主要课程:马克思主义哲学、马克思主义政治经济学、毛泽东思想概论、邓小平理论和“三个代表”重要思想概论、马列原著选读、当代世界经济与政治、中国传统文化概论、社会学、政治学、逻辑学、伦理学、美学、法学概论、公共关系学、行政管理学、思想政治教育原理、中学政治课教材教法、应用文写作等。

大学数学论文2000字

你以为这是奴隶社会啊。

不难看我百度名,搜

是三帆的吗?

数学与生活 自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。 由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。与此同时,数学又能对这些问题给出最完满的解决。在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。 在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。 假设花瓶的纵截面是抛物线 Y=ax^2(a>0) 首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a); 第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。所以可以设该直线方程为 y=tanα*x+b 假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;第三步,就是求此时瓶中水的体积,可以将图像分为两部分,一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tanα*x+b及抛物线y=ax^2(a>0)相交部分。第一部分体积为V1=∫π*(x^2)dy=∫π*y/ady(积分上下限为0和y0); 第二部分体积为V2=∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h);因此根据: V1+V2=V/2=π*h^2/(4a)=∫π*y/ady(积分上下限为0和y0)+∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h)可以解得所求α值。这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。 著名数学家罗素曾说:“数学如果正确看待他,则具有……至高无上的美——正像雕像的美,是一种冷而严肃的美,这种每部石头和我们的天性的微弱的美,这些煤没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种精神上的喜悦,一种精神上的亢奋,一种高于人的意识的,这些是至善至美的标准,能够在诗里得到,也能够在数学里得到”这就表明伟大的人物因为有一双善于发现美的眼睛所以他看到了数学隐藏的魅力。除了创造性和发现,想象也是可以使数学在我们思想中得到升华的。学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。Hankel,Hermann 说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由无益的是数学在生活中独特而不可或缺,失去了数学科技水平将倒退。这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。 数学不是规律的发现者,因为它不是归纳。数学也不是理论的缔造者,因为它不是假说。但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学的认可,则规律不能起作用,理论也不能解释。(来自数学的文化) 数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。在遥远的古代中国是引领世界的,因为那时的勤劳人民已发现了数学算筹、《九章算术》……这都是历史留下来的论据。一个国家的强大离不开数学的精密计算。21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。

数学论文大学1200字

大学数学的论文范文,你可以在论文网上面可以找到的,找到很多个方面的论文都可以找到

迈出 奇异 ,民叫岩 闹洞房

1、学习数学的心得和感想;2、对数学方法和数学思想的体会;3、关于数学与本学科的联系; 4、对数学某知识点的进一步思考;5、对数学历史文化的理解(包括数学家介绍)

天上飞机飞的最快地上坦克开的最慢你敢藐坟场烧报纸豁鬼

大学数学论文800字

您好,看我资料

数字可谓是数学大厦的基石,也是人们最早研究的数学对象。 在几百万年前。我们的祖先还只知道“有”、“无”、“多”、 “少”的概念,而不知道数为何物。随着文明的进步,这些模糊不清 的概念无法满足生产、生活的需要。例如我国古书《周易》上就有“ 上古结绳而治”的载 。即当发生一次重要事件时,就在绳子上打一 个结作为标记。 这种方法虽然简单,但至少表明人们已经有了数的概念。 文字出现以后,人们试图数学以符号的形式记录下来。于是就出现 了各种种样的记录方法。古埃及人用“|”表示一,用“‖”表示二; 古罗马人用“Ⅰ”表示一,用“Ⅱ”表示二 。这种方法虽然有效, 但 是当数字很大时记录起来十分不便。例如我们要表示一百时,难道要写 一百个“|”吗?当然,古罗马人也看到了问题的所在 ,于是他们发明 了罗马数字Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,L,C 分别表示 1,2,3,4,5,6,7,8,9,10,50,100。看来似乎问题得到了解决, 然而要表示一万还是十分困难。这也是罗马数字没有被广泛采用的原因。 罗马数字的失败表明,任何想使每一个数字对应一个符号的记数方法都 是徒劳的。直到公元八世纪印度人发明了一种只含有1,2,3,4,5,6, 7,8,9,九个符号的记数法,并且约定数字位置决定数值大小。例如数 字89中8表示八个十,而9表示九个一。这样一来表示任何数都是轻而一 举的事情了。于是,这一发明很快被商人带入阿拉伯首都巴格达城。并 很快得以流传,并称之为阿拉伯数字。由于这一记数法简洁明了,而被 使用至今。成为世界数学的通用语言。难怪恩格斯称它为“最美妙的发 明”。

大学数学论文600字

在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

生活中的数学 其实我们生活中处处都有数学,比如说奇妙的圆圆是生活中最常见的图形,人们几乎无处不在应用圆。在车上,在路上,在家里,甚至在空中,你总是能见到圆的踪迹。圆有一个很大的好处,就是它们没有棱角。汽车为什么可以使汽车运行得快速,而又使坐在车里的人感到不颠簸?就是因为汽车的轮子是圆的。你在玩保龄球的时候,为什么保龄球是球体而不是正方体或长方体的?就是因为球体与地面的摩擦力最小,速度慢下来的时间最长,且速度并不容易改变。正因为没有棱角,人们才把圆形和球体称之为最美观的平面图形和最美观的立体图形。圆是公认的最经济的图形。大家都知道,周长相同时,圆的面积比其他任何形状都要大。依据这个道理,人们设计出了圆形的窨井盖,因为圆形的窨井盖在与地面垂直放在窨井上时,不会像正方形或长方形窨井盖那样掉进窨井里,而是稳稳地卡在上面。这么可爱的图形,怎么能不受到人们的青睐呢?除了圆,还有一些和圆相关的,诸如圆柱体和球体之类的立体图形也有着举足轻重的作用呢!在材料面积相同的情况下,圆柱体的容积是最大的,同样,它的支撑力也是最大的。树干,竹子,水桶等东西,无不应用了圆柱体。 还有小数点,数学,在我们生活中无处不在。高斯求积、植树问题……这一个个奇妙的数学定律令我们惊奇。下面让我们去寻找奇妙的数字之旅吧! 小数点不论在体重、价格上无处不有。无处不在它向右移动代表扩大,向左移动代表缩小,这个神奇的小数点揭开了我们今天的数字之旅。 在我们测量和计算中有时得不到整数,小数点就在这里登场了。小数点拥有巨大的“权利”它右边是小数部分,左边是整数部分。它在数字界拥有很大的威望,因为:它的移动就改变了数字的大小。它有两种方法改变数字的大小:1、数字调换位置,2、移动小数点。 在生活中,小数点变化多端一转身变成了单名数,一转身变成了复名数,小数点不仅移动小数点来改变数字的大小,还用乘除法改变数字的大小,乘表示向右移动,移动一位扩大10倍;除表示向左移动,移动一位缩小10倍。 小数点真神奇,在生活中还有很多神奇的定律,让我们一起探寻吧!我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象 思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。 为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能 ,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。 从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要 ,又是他们学习抽象数学知识的需要。 那么在小学数学教学中,如何培养学生的形象思维能力呢? 一、充分感知,丰富表象,为培养形象思维积累材料 儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累 。 动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让 学生动手分小棒:(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作 ,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。 直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中 ,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料, 才能在脑中留下鲜明的映象。 例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、 砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放 、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。 电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时 ,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。 教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。 二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。 如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长, 直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形 、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: 1 S[,梯形]=—(a+b)h 2 1 当a=0时,变成三角形,面积公式为:S=——ah 2 当a=b时,变成平行四边形,面积公式为:S=ah 三、数形结合,培养形象思维能力 数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。 例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志 。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍……这些不仅对理解数量关系有利,而且对学生形象 思维能力的发展和审美能力的提高起着重要的作用。 再说应用题教学,由于应用题是事理、文理、算理三者的结合,所以应用题的原型比较复杂抽象,学生摄 入大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽 复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时, 可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元) 所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。

做任务

生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要30元,多了3毛钱,所以套装比散装更贵。我来到饮料货台,一瓶250ml的凉茶75元,但是货柜上整箱16瓶装的却标价4元,如果按75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用4元。310ml王老吉罐装饮料一瓶4元,整箱12瓶装的标价42元,如果以4元的单价买12瓶则只需8元,比整箱购买便宜了2元;而同样的该品种,24瓶装一箱标价7元,如按4元的零售价买24瓶才6元,比整箱购买整整少了1元。旁边的啤酒每罐单价9元,24瓶应收6元,但是超市收款8元。整整多出2元,都可以多买2罐啤酒了。同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。怎么样,数学是不是很重要? 所以,我要提醒你一定要学好数学哦!

相关文章
学术参考网 · 手机版
https://m.lw881.com
首页
发表服务