肯定是有影响的,建议你还是以真实数据为主,你多看下(国际会计前沿)这样的刊物吧,看看别人的数据
这要看指导老师的态度了,如果数据编造特别离谱,而且非常明显。指导老师认真一点就会发现,查出来后就会要求重写或者不能通过。
是。论文原始数据是自己整理的,在实验条件、实验周期、调研局限、数据不理想等条件下数据也是可以自己编的,但是不能太离谱。
会的。论文发表是需要审核的,有一项就是论文内容与实际不符的审核容易不通过,有人会觉得数据上稍微改动一下应该不会发现。要知道论文发表代表的是作者的学术成果,一旦论文数据有问题,那只能说明作者的学术水平有待提高,并且研究不严谨,对作者的声誉是有影响的。数据造假肯定是有人查的,因为不管是什么论文需要发表的都会审核的,审核可不是那么容易通过的。论文发表对于需要评职称的人员来说是很关键的,论文是职称评定的加分项,所以大家要踏踏实实的去撰写去研究,不要愉奸取巧。
这是数据造假!!!!
因为随着时代变化,数据是会发生改变的。发表sci论文要找sci期刊,sci期刊数量不少,大多数是不要求作者提供原始数据的。作者在发表论文前,若已经确定自己无法提供原始数据,在匹配期刊上,就要选择不需要提供原始数据的sci期刊。这样可以避开无法提供原始数据带来的麻烦。sci论文发表,要经过审稿人的审核。若审稿人对论文内容审核论证过程中,可能需要原始数据的支持,往往会向作者提出提供原始数据的要求。不过这种情况还是比较少见的。若作者遇到了这样情况,可以把无法提供原始数据的情况,与审稿人或编辑沟通,若可以不提供原始数据,那最好了。若是必须需要提供原始数据,就没办法了。作者可以在拒稿后,重投其他期刊试试。另外,有人质疑你的文章和数据的时候,可能也要提供原始数据。若无法提供原始数据,可能会导致文章无法发表,或者发表后被撤稿,此时没有其他办法,只能接受。原始数据对sci论文发表很重要,作者在写作时,不能在原始数据上作假,另外发表过程中,能不提供就不提供,容易引起其他麻烦。
审核过程中需要原始数据正常的发表论文是不需要查询任何原始数据的,除非在审核的过程中专家对于数据有质疑,那么这种情况下会要求作者提供原始的数据。但这种情况相对来说发生的概率是比较低的,一般审核专家要么就直接同意发表,要么就直接不同意。
你可以花钱找别人做,但这样编造数据,呵呵,不敢苟同
趋势一:数据的资源化什么是数据的资源化,它指的是大数据成为企业和社会关注的重略资源,并且已经成为大家争夺的焦点。因此,企业必须要提前制定大数据营销战略计划,抢占市场先机。趋势二:与云计算的深度结合大数据离不开云处理,云处理能够为大数据提供弹性可拓展的基础设备,是产生大数据的平台之一。自从2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。另外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。趋势三:数据科学和数据联盟的成立未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
树妈妈生了一些可爱的嫩芽弟弟妹妹许多叶儿宝宝都穿着绿色的礼服去凑热闹,从远处看,像一块无暇的翡翠,给大树妈妈增添了许多生机 忽然,从远处传来了一阵扑鼻的芳香原来是美人蕉妹妹为春天姐姐的到来,穿上了华丽的礼服,以表示欢迎咦,那边怎么那么多花朵,红的、白的、紫的、黄的等,五彩缤纷走近一看,哦,原来花儿们正在比美比艺花儿们有的显示着自己有的在唱歌,声音是那么好听,所有的演员都被吸引住了有的在表演优美的舞蹈《天鹅湖》、《白雪公主》等真是太精彩了
大数据只是一个时代背景,具体内容可以班忙做
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。大数据虽然孕育于信息通信技术的日渐普遍和成熟,但它对社会经济生活产生的影响绝不限于技术层面,更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析做出,而不是像过去凭借经验和直觉做出。借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。通过数据,也可以知道现在社会上面主流的东西是什么,只有抓住主流的社会,才能跟上时代的步伐,顺应历史的潮流,抓住机遇,发展自己的公司和事业。
获得学位意味着被授予者的受教育程度和学术水平达到规定标准的学术称号, 经在高等学校或科学研究部门学习和研究,成绩达到有关规定,由有关部门授予并得到国家社会承认的专业知识学习资历。
树妈妈生了一些可爱的嫩芽弟弟妹妹许多叶儿宝宝都穿着绿色的礼服去凑热闹,从远处看,像一块无暇的翡翠,给大树妈妈增添了许多生机 忽然,从远处传来了一阵扑鼻的芳香原来是美人蕉妹妹为春天姐姐的到来,穿上了华丽的礼服,以表示欢迎咦,那边怎么那么多花朵,红的、白的、紫的、黄的等,五彩缤纷走近一看,哦,原来花儿们正在比美比艺花儿们有的显示着自己有的在唱歌,声音是那么好听,所有的演员都被吸引住了有的在表演优美的舞蹈《天鹅湖》、《白雪公主》等真是太精彩了
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。
你就说,那种一问三不管三不知的导师,唯一能告诉的就是改格式,多看看语句和标点符号。实验室的条件又差,要啥啥没有,还要借其他学校实验室做实验,还不定能排上。谁能说第一次做实验,没有老师的带领,就能做完美?谁敢说,一问老师,老师就说自己看文献期刊人家怎么做的。一次做不好,你还得跟别人学校学生排队,你能做几次?有时候排给你是晚上,你还要通宵。又赶上疫情,别人学校又不能进,特么容易吗,招谁惹谁了,能怎么办,有些东西真不是自己不好好努力,而是只能这样。读研谁不想读出个样子来,一个专业都研究到这个地步了,谁不想好好干,可现实就这样
这要看指导老师的态度了,如果数据编造特别离谱,而且非常明显。指导老师认真一点就会发现,查出来后就会要求重写或者不能通过。
如题,以前发表的文章的论文数据有点错误,现在写毕业论文,毕业论文里面改正过来可以吗? 修正一下,发一个Erratum去原来杂志,有专门这种文章类型的, 毕业论文你就当写书,独立于发表论文的,当然可以改过来dale79(站内联系TA)论文有错误是常出现的事情,看你毕业论文怎么对待,可以避开,也可以纠正,这个要分错误的性质而定,如果是论文理论错误导致数据错误就比较麻烦,如果理论正确,而只是选取的算例错误,则可以避开silentmoon(站内联系TA)Originally posted by purezhang at 2010-07-12 2207: 修正一下,发一个Erratum去原来杂志,有专门这种文章类型的, 论文有错误是常出现的事情,看你毕业论文怎么对待,可以避开,也可以纠正,这个要分错误的性质而定,如果是论文理论错误导致数据错误就比较麻烦,如果理论正确,而只是选取的算例错误,则可以避开 谢谢!是模拟的结果错了,理论应该是对的。当然基于模拟的结果在论述上需要修正。请教一下,我可否附上新的模拟结果?purezhang(站内联系TA)Originally posted by silentmoon at 2010-07-12 2318: 没问题的,有人问起时你绕得过去就行 然后若干年后有人引用你的数据发了文章时, 没问题的,有人问起时你绕得过去就行 然后若干年后有人引用你的数据发了文章时, 你再告诉他,我这里面有东西是算错的 我也认为只要不是理论上问题还是比较好解决,怕的的公开发表的论文有理论硬伤就比较麻烦了
问这种宝问题参考文献当然时引用时参考的实实在在的文献,乱编,你牛死鸭,要不要哥借给你看一下?