首页

> 学术期刊知识库

首页 学术期刊知识库 问题

表观遗传学论文题目

发布时间:

表观遗传学论文题目

课题研究方案基本内容 教育科研课题的种类多种多样,其研究方法也各不相同,研究方案也有不同的种类,但究其结构,则大同小异。它基本上包含了以下几个方面。 ⑴课题的表述 一项研究课题必须有一个名称表述其所研究的内容。这看起来是个小问题,但实际上很多人写课题名称时,往往写得不准确、不恰当,从而影响了整个课题的形象和质量.一个好的课题名,要符合准确、规范、简洁、醒目的要求。 准确,就是课题名称要把课题研究的问题(研究内容)是什么,研究的物件是什么交待清楚。课题名称的表述是否清晰、是否能涵盖所要研究的内容和方法,在一定意义上说,也是检验与衡量研究者认识程度和水平的标志。课题的名称一定要和研究的内容相一致,不能太大,有一个适宜的切口,能准确地把研究的物件、问题概括出来。规范,就是所用的词语、句型规范、科学,一些似是而非的词不能用,口号方式、结论式的句型不能用。如“培养学生自主学习能力,提高课堂教学效率”,如果作为一篇经验总结论文的题目还不错,但作为课题的名称,则不好,因为课题就是我们要解决的问题,这个问题正在探讨,正准备进行研究,不能有结论性的口气。此外,在确定课题名称时,还应慎用疑问句。因为,疑问句表述的是一个问题,而不是一个论点或假设。课题应以陈述式句型表述。比如,“家庭压力对小学生学习成绩有何影响”就是一个问题,一般不宜用作课题名称。如果要作为课题来研究则应改为“家庭压力对小学生学习成绩影响的研究”或“家庭压力与小学生学习成绩关系的研究”。简洁,就是名称不能太长,能不要的字尽量不要,一般不要超过20个字。醒目,就是课题研究的切口适宜、新颖,使人一看就对课题留下深刻的印象。 ⑵研究的目的和意义 作为课题方案,首先应对课题研究的背景和需要达到的研究目的进行阐述,回答“为什么要进行研究”这样一个问题。在方案中,课题研究的背景通常以“课题的提出”或“课题的背景”的方式来阐述的,主要是介绍所研究课题的目的、意义,也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本课题的研究有什么实际作用,然后,再写课题的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。 ⑶国内外研究现状、水平和发展趋势 针对课题的研究内容,要陈述课题范围内有没有人研究,哪些方面已有人作过研究?取得了哪些成果?这些成果所表达出来的观点是否一致?如有分歧,那么他们的分歧是什么?存在什么不足以及正在向什么方向发展等。这些内容的分析一方面可以论证本课题研究的地位和价值,另一方面也说明课题研究人员对本课题研究是否有较好的把握,是否具有一定的研究基础。因为我们对某一问题进行科学研究,必须对该问题的研究现状有清醒的了解。 ⑷研究的理论依据 我们中小学教师现在进行的课题研究,基本上是应用研究,这就要求我们的研究必须有一些基本的理论依据来保证研究的科学性。比如,我们要进行活动课实验研究,我们就必须以课程理论、学习心理学理论、教育心理学理论为试验的理论依据。我们进行教育模式创新实验研究,就必须以教学理论、教育实验理论为理论依据。 ⑸研究的假设 课题选定后,根据事实和已有资料对研究课题设想出一种或几种可能的答案、结论,这就是“假设”。假设是根据一定的科学知识和新的科学事实对所研究的问题的规律或原因做出的一种推测性论断和假定性解释,是在进行研究之前预先设想的、暂定的。在研究的假设中要涉及到一些研究的变数,研究的变数依其相互关系可分为:自变数、因变数、控制变数。自变数是由研究者主动操纵而变化的变数,是能独立地变化并引起因变数变化的条件、因素或条件的组合。如在学习内容、教学方式、学习方式上研究者采取的变革措施。因变数是由自变数的变化引起被试行为或者有关因素、特征的相应反应的变数,它是研究中需要观测的指标。控制变数是与某特定研究目标无关的非研究变数,也叫无关变数,由于它对研究结果将产生影响,所以需要在研究过程中加以控制。 ⑹研究物件与范围 教育研究总是指向一定的物件。这些物件往往是人、由人组成的群体、组织及他们的行为和特质。由于人及其行为和特质的极其复杂性,所以对之进行研究时必须先对之明确界定,以避免不同人从不同的视角理解而带来的混乱。 ①对研究物件的模糊概念进行界定 有一些研究物件带有模糊性,例如“薄弱学校”、“品德不良学生”。我们可根据某一标准(有权威性的标准最好)来做出划定,例如根据教育行政部门对学校的评估标准,评估分数在多少分以下的就是“薄弱学校”。 ②对研究物件总体的范围进行界定 总体是统计学概念,是指研究物件的全体。研究物件的范围大小,得根据研究目标考虑。其范围有来源范围和特征范围。来源范围有地域、学校、班级;特征范围有性别、年龄、心理特质等。例如对学生心理健康状况的调查,学生的范围是某一地区还是某一学校,在什么类别的学校,在什么年级或年龄段,这些都要进行明确的界定。范围不同,最后得出的研究结果会很不同。 ③对一些关键概念进行界定 在教育科学研究中,由于学派林立、观点各异,所以有许多名词术语往往会出现“仁者见仁,智者见智”的现象。为了避免由于一些关键性名词概念上的歧义,造成科研管理者和研究者在评审、研究过程中产生认识上、观念上的不统一,避免由于这些歧义造成他人对研究成果在理解和接受上的分歧,有必要在制定研究方案时,对研究所涉及的重要概念、名词下一个比较明确的定义。 ⑺研究的内容 研究内容是研究方案的主体,回答的是研究什么问题,问题的哪些方面。它把课题所提出的研究问题进一步细化为若干小问题。研究内容的多少与课题的大小有关,课题越大内容就越多。但许多老师在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把研究的目的、意义当作研究内容,这对整个课题研究十分不利。因此,我们要学会把课题进行分解、细化,一点一点地去做。 ⑻研究的方法 研究方法主要是指教育研究方法,它回答如何研究的问题。教育研究的方法多种多样,主要有文献研究法、调查研究法、实验研究法、比较研究法、行动研究法、经验总结法等。根据各种研究方法的所起的作用不同,大致可以分为两大类。一类是收集研究资料资料的方法,如调查法、观察法、测量法、文献法等。这些方法旨在获得物件的客观资料,而不给予物件任何影响。另一类方法是旨在改变和影响变数的方法,如实验法、行动研究法。这些方法是要通过施加某些干预而获得某些期望的结果。有一些研究可能采用单一的研究方法,有的研究则可能采用多种方法。例如采用实验法或行动研究法,也必然要采用第一类的资料资料收集方法,以了解实验的最终结果如何。 ⑼研究的步骤 课题研究的步骤,也就是课题研究在时间和顺序上的安排。研究的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段要达到什么要求,用多少时间,从什么时间开始,至什么时间结束都要有规定。它使得研究者一开始就心中有数,在实施研究中一环接一环、有条不紊地开展各项工作,从而保证研究能按预定要求如期完成。步骤基本上包括方案准备阶段;方案实施阶段;专家论证评价,总结验收和结题三个阶段。 ⑽研究的预期成果形式 成果形式指最后的研究结果以什么形式出现。教育研究成果可以有研究论文和报告,专著和教材,教具和教学仪器,教学软体(包括音像制品,计算机软体)等。研究周期较长的课题,还应该分别有阶段成果和最终成果。阶段成果可以按学期列出。课题不同,研究成果的内容、形式也不一样,但不管形式是什么,课题研究必须有成果,否则,就是这个课题就没有完成。 ⑾课题组成员及其分工 课题组成员要根据课题研究的需要而确定。课题组成员并不是越多越好。课题组的成员必须都承担课题研究的某一方面任务。不应有光挂名不干事者。课题组各成员承担的任务的性质应与承担者的学识、能力相适合。计划中要把课题组负责人、成员的名单、分工写出。必要时,还应把各人的专业、能力特长,曾有的研究经历和成果列出,以便课题管理者对课题组的研究力量有所了解。 ⑿、经费预算与装置条件要求 经费与装置是开展教育科研的物质条件。要本着少花钱办大事的原则,实事求是地谋划。 课题研究方案基本内容 教育科研课题的种类多种多样,其研究方法也各不相同,研究方案也有不同的种类,但究其结构,则大同小异。它基本上包含了以下几个方面。 ⑴课题的表述 一项研究课题必须有一个名称表述其所研究的内容。这看起来是个小问题,但实际上很多人写课题名称时,往往写得不准确、不恰当,从而影响了整个课题的形象和质量.一个好的课题名,要符合准确、规范、简洁、醒目的要求。 准确,就是课题名称要把课题研究的问题(研究内容)是什么,研究的物件是什么交待清楚。课题名称的表述是否清晰、是否能涵盖所要研究的内容和方法,在一定意义上说,也是检验与衡量研究者认识程度和水平的标志。课题的名称一定要和研究的内容相一致,不能太大,有一个适宜的切口,能准确地把研究的物件、问题概括出来。规范,就是所用的词语、句型规范、科学,一些似是而非的词不能用,口号方式、结论式的句型不能用。如“培养学生自主学习能力,提高课堂教学效率”,如果作为一篇经验总结论文的题目还不错,但作为课题的名称,则不好,因为课题就是我们要解决的问题,这个问题正在探讨,正准备进行研究,不能有结论性的口气。此外,在确定课题名称时,还应慎用疑问句。因为,疑问句表述的是一个问题,而不是一个论点或假设。课题应以陈述式句型表述。比如,“家庭压力对小学生学习成绩有何影响”就是一个问题,一般不宜用作课题名称。如果要作为课题来研究则应改为“家庭压力对小学生学习成绩影响的研究”或“家庭压力与小学生学习成绩关系的研究”。简洁,就是名称不能太长,能不要的字尽量不要,一般不要超过20个字。醒目,就是课题研究的切口适宜、新颖,使人一看就对课题留下深刻的印象。 ⑵研究的目的和意义 作为课题方案,首先应对课题研究的背景和需要达到的研究目的进行阐述,回答“为什么要进行研究”这样一个问题。在方案中,课题研究的背景通常以“课题的提出”或“课题的背景”的方式来阐述的,主要是介绍所研究课题的目的、意义,也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本课题的研究有什么实际作用,然后,再写课题的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。 ⑶国内外研究现状、水平和发展趋势 针对课题的研究内容,要陈述课题范围内有没有人研究,哪些方面已有人作过研究?取得了哪些成果?这些成果所表达出来的观点是否一致?如有分歧,那么他们的分歧是什么?存在什么不足以及正在向什么方向发展等。这些内容的分析一方面可以论证本课题研究的地位和价值,另一方面也说明课题研究人员对本课题研究是否有较好的把握,是否具有一定的研究基础。因为我们对某一问题进行科学研究,必须对该问题的研究现状有清醒的了解。 ⑷研究的理论依据 我们中小学教师现在进行的课题研究,基本上是应用研究,这就要求我们的研究必须有一些基本的理论依据来保证研究的科学性。比如,我们要进行活动课实验研究,我们就必须以课程理论、学习心理学理论、教育心理学理论为试验的理论依据。我们进行教育模式创新实验研究,就必须以教学理论、教育实验理论为理论依据。 ⑸研究的假设 课题选定后,根据事实和已有资料对研究课题设想出一种或几种可能的答案、结论,这就是“假设”。假设是根据一定的科学知识和新的科学事实对所研究的问题的规律或原因做出的一种推测性论断和假定性解释,是在进行研究之前预先设想的、暂定的。在研究的假设中要涉及到一些研究的变数,研究的变数依其相互关系可分为:自变数、因变数、控制变数。自变数是由研究者主动操纵而变化的变数,是能独立地变化并引起因变数变化的条件、因素或条件的组合。如在学习内容、教学方式、学习方式上研究者采取的变革措施。因变数是由自变数的变化引起被试行为或者有关因素、特征的相应反应的变数,它是研究中需要观测的指标。控制变数是与某特定研究目标无关的非研究变数,也叫无关变数,由于它对研究结果将产生影响,所以需要在研究过程中加以控制。 ⑹研究物件与范围 教育研究总是指向一定的物件。这些物件往往是人、由人组成的群体、组织及他们的行为和特质。由于人及其行为和特质的极其复杂性,所以对之进行研究时必须先对之明确界定,以避免不同人从不同的视角理解而带来的混乱。

在生物学中,表观遗传学这个名词指的是基因表达中的多种变化。这种变化在细胞分裂的过程中,有时甚至是在隔代遗传中保持稳定,但是不涉及到基本DNA的改变。这个概念意味着即使环境因素会导致生物的基因表达出不同,但是基因本身不会发生改变。表观遗传学在真核生物中的变化主要被举例为细胞分化过程中干细胞分化成与胚胎有关的多种细胞这一过程。这个过程通过一些可能包含某些基因的沉默,移除某些基因上沉默的标志并且永久的失活于其他基因的机制变得稳定。 表观遗传学, 这一迅速发展的学科在分子水平揭示了 复杂的临床现象, 为解开生命奥秘及征服疾病带来希望。 在过去的几年里, 人们对表观遗传疾病的机理有了 新的认识, 这些疾病与染色质重塑、 基因组印记、X 染色体失活以及非编码RNA 调控这4个表观遗传过程相关。 对这些疾病的探讨为表观遗传机制的 研究提供了很好的模型, 进而有助于生物医学的研究。

中山大学生命科学学院有研究遗传学的教授和专家,不过有没有专门研究表观这一分支方向的教授是不清楚的,因为在研究生招生方向的时候,最细也就细分到遗传学,而不会再往里深入到表观遗传学

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化),基因组印记,母体效应、基因沉默,核仁显性,休眠转座子启用和RNA编辑等。 经典遗传学学认为基因是一个最小的单位,不能分割,既是结构单位,又是功能单位。认为基因决定了遗传形状。 简言之,表观遗传学看到了除了基因以外的其他因素如环境等,而经典遗传学认为基因决定了形状

表观遗传学是指可遗传的由非DNA序列改变引起的基因表达的变化。引起表观遗传的主要机制有DNA甲基化、组蛋白修饰、非编码RNA等。这几个方面就是表观遗传学研究的主要内容,也是目前的研究热点。

表观遗传学研究的是在非基因表达水平对生物性状调节的可遗传因素,如蛋白修饰对性状的影响等。反向遗传学从基因出发,研究基因缺失或过表达后的生物性状,从而反推基因功能。正向遗传学是从生物所表现出的性状出发来克隆控制改该性状的基因。

中文名称: 表观遗传学 英文名称: epigeics 学科分类: 遗传学 注 释: 研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记(genomic impriting)和DNA编辑(RNA editing)等。 表观遗传学是与遗传学(geic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子启用和RNA编辑(RNA editing)等。表观遗传学是与遗传学(geic)相对应的概念。遗传学是指基于基因序列改变所 致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学 则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变 化等;表观基因组学(epigenomics) 则是在基因组水平上对表观遗传学改变的研究。

表观遗传学(epigeics),又称“拟遗传学”、“表遗传学”、“外遗传学”以及“后遗传学”是一门生物学学科,研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的、可遗传的改变。这些改变包括DNA的修饰(如甲基化修饰)、组蛋白的各种修饰等。 表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等。与经典遗传学以研究基因序列影响生物学功能为核心相比,表观遗传学主要研究这些“表观遗传现象”的建立和维持的机制。其主要研究内容包括大致两方面内容。一类为基因选择性转录表达的调控,有DNA甲基化,基因印记,组蛋白共价修饰,染色质重塑。另一类为基因转录后的调控,包含基因组中非编码的RNA,微小RNA,反义RNA,内含子及核糖开关等。

杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥,便是由于生活周期短和体形小而常被用作遗传学研究的材料。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料。 生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。 系统科学理论(systems theory)、组学生物技术、计算生物学与合成生物学是系统遗传学的研究方法。

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗

遗传与人类健康''可以从以前人的身体素质和现在人对比'''重点写现在人突出的身体问题如肥胖'力量'身体的耐力等等'''基因突变可以写这些年应为环境的变化气候的反常使得人出现畸形'''

表观遗传学的研究进展论文

表观遗传学的概念基于遗传学而来,不是单纯的体外在环境导致的甲基化和乙酰基化改变,也不是简单转录因子和miRNA等等基因调控,它的指的是由非DNA变异而改变表型的‘可遗传的’现象。现在众多所谓的表观遗传学研究实际上都没有跳出经典遗传学的定义。 经典数量遗传学早已经把表型变异归因到遗传和环境单独效应和互作: V= G + E + GxE V: phenotypic variance, 表型变量,G: Genetic variance, 遗传变量,E: environmental variance,环境变量 这里的GxE,即遗传与环境互作,就是众多体外环境影响甲基化水平等等等等等的研究,早就是经典遗传学的一部分,并非表观遗传学。 把环境因素抛开,遗传变量又可以再次归因到几个部分: G = A + D + epistasis A: additive genetic variance, 加性遗传效应,D: Dominance, '显性遗传效应'?忘记了怎么翻译,'epistasis: gene-gene interaction,上位效应,或者基因互作 这里的epistasis, 基因互作, 就包含了所谓的转录因子和miRNA,lincRNA,非编码RNA调控等等等等基因间的调控,也并非表观遗传学。 不过这些跳出孟德尔遗传模式的非表观遗传现象,例如D+epistasis再加上伴性遗传,又可以称作非孟德尔遗传。而且非孟德尔遗传模式也非常有研究价值,诸如时下流行的各种转录组水平上的调控因子,就不再赘述。 真正意义上的表观遗传学要跳出以上经典遗传学的框架才算是有大的突破。 从整个生物群体上来讲,表观遗传对个体的影响比起遗传来讲,并非主要的,但是仍然可以对某些生物的某个性状产生超过遗传因素的影响。其中对可传代的表观遗传(Transgenerational epigenetic inheritance)模式研究还有不少突破,review可以看这篇: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. 经典的小鼠传代表观遗传实验:子代遗传父亲恐惧记忆,Nature Neuroscience: Fearful memories haunt mouse descendants : Nature News & Comment 因为本人是做大型动物的,大型动物类别中的经典表观遗传学例子:美臀羊, 超极显性, polar overdominance. Polar Overdominance at the Ovine callipyge Locus 带有此变异的羊会形成一个丰满的屁股,而此变异只会在从父本遗传过来的变异杂合子中才会体现这个表型,并且在子代出生一年之后表型才会开始表达,而且只表达在屁股肌群上,身体前半部分肌群,包括肩部胸部,没有任何变化。形成机理通过在DLK1-DIO3 locus 区间父源和母源不同的印迹基因和非编码RNA以及基因间的共同作用,外加与环境互作。这个例子的研究论文非常多,最近的进展可以看这里:New insights into polar overdominance in callipyge sheep. 总体来说,如果想在表观遗传学领域有大的发现,找准性状来研究十分重要,或者说,运气很重要。。。。因为大多数正常或者疾病性状都是经典的遗传和环境互作而来的,真正意义上的纯表观遗传或者说主要由表观遗传主导的性状,还是很少。

表观遗传学的概念基于遗传学而来,不是单纯的体外在环境导致的甲基化和乙酰基化改变,也不是简单转录因子和miRNA等等基因调控,它的指的是由非DNA变异而改变表型的‘可遗传的’现象。现在众多所谓的表观遗传学研究实际上都没有跳出经典遗传学的定义。经典数量遗传学早已经把表型变异归因到遗传和环境单独效应和互作:V= G + E + GxEV: phenotypic variance, 表型变量,G: Genetic variance, 遗传变量,E: environmental variance,环境变量这里的GxE,即遗传与环境互作,就是众多体外环境影响甲基化水平等等等等等的研究,早就是经典遗传学的一部分,并非表观遗传学。把环境因素抛开,遗传变量又可以再次归因到几个部分:G = A + D + epistasisA: additive genetic variance, 加性遗传效应,D: Dominance, '显性遗传效应'?忘记了怎么翻译,'epistasis: gene-gene interaction,上位效应,或者基因互作这里的epistasis, 基因互作, 就包含了所谓的转录因子和miRNA,lincRNA,非编码RNA调控等等等等基因间的调控,也并非表观遗传学。不过这些跳出孟德尔遗传模式的非表观遗传现象,例如D+epistasis再加上伴性遗传,又可以称作非孟德尔遗传。而且非孟德尔遗传模式也非常有研究价值,诸如时下流行的各种转录组水平上的调控因子,就不再赘述。真正意义上的表观遗传学要跳出以上经典遗传学的框架才算是有大的突破。从整个生物群体上来讲,表观遗传对个体的影响比起遗传来讲,并非主要的,但是仍然可以对某些生物的某个性状产生超过遗传因素的影响。其中对可传代的表观遗传(Transgenerational epigenetic inheritance)模式研究还有不少突破,review可以看这篇: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution.经典的小鼠传代表观遗传实验:子代遗传父亲恐惧记忆,Nature Neuroscience:Fearful memories haunt mouse descendants : Nature News & Comment因为本人是做大型动物的,大型动物类别中的经典表观遗传学例子:美臀羊, 超极显性, polar overdominance. Polar Overdominance at the Ovine callipyge Locus带有此变异的羊会形成一个丰满的屁股,而此变异只会在从父本遗传过来的变异杂合子中才会体现这个表型,并且在子代出生一年之后表型才会开始表达,而且只表达在屁股肌群上,身体前半部分肌群,包括肩部胸部,没有任何变化。形成机理通过在DLK1-DIO3 locus 区间父源和母源不同的印迹基因和非编码RNA以及基因间的共同作用,外加与环境互作。这个例子的研究论文非常多,最近的进展可以看这里:New insights into polar overdominance in callipyge sheep.总体来说,如果想在表观遗传学领域有大的发现,找准性状来研究十分重要,或者说,运气很重要。。。。因为大多数正常或者疾病性状都是经典的遗传和环境互作而来的,真正意义上的纯表观遗传或者说主要由表观遗传主导的性状,还是很少。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学(Epigenetics)的概念各位已经谈了很多了,@Lucif X回答尤为全面,事实上尽管表观遗传的概念很宽泛,做Small RNA,DNA Modification, Post-translational Modification的科学家都愿意把自己的研究方向划归到表观遗传学的范畴,但毫无疑问,表观遗传学最吸引人的还是获得性遗传(拉马克遗传),外在的表现就是Transgenerational Inheritance.恰好今年7月份Cell上发表了一篇文章,非常经典的结合了生物实验和深度测序分析,用秀丽线虫( C. elegans)做模式生物,研究了由环境变化引(饥饿)起的Transgenerational Inheritance的机理。<img src="" data-rawwidth="408" data-rawheight="408" class="content_image" width="408">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过这张示意图可以看出,在P0代将实验用线虫分成两组,一组为持续饱足喂养的线虫,另一组为在幼虫阶段就给予饥饿刺激的线虫,而他们的后代又都是进行同等的饱足喂养。结果是给予饥饿喂养的线虫的第三代表现出了较另一组明显长寿的表型。那么为什么会有这样的实验结果呢?<img src="" data-rawwidth="921" data-rawheight="798" class="origin_image zh-lightbox-thumb" width="921" data-original="">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过对P0代和F3代进行转录组测序分析,研究者发现,饥饿会诱导一部分small RNA的表达,而这些small RNA的靶基因一般是营养代谢相关基因,而这类small RNA又可以进行隔代遗传(作者猜测这类小RNA的变化同样在生殖细胞里发生),进而到F3代仍然可以类似被P0代受饥饿刺激的线虫一样调控营养代谢相关基因。故事到这里大家肯定可以想到在哺乳动物里边都有节食可以延长寿命的报道,不知道相同的机制是不是在小鼠或者灵长类动物中也存在,总之这个研究给我们对Transgenerational Inheritance提供了一个新的理解方式。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学研究的核心是试图解答:中心法则中从基因组向转录组传递遗传信息的调控方法。现代遗传学的基础是认为基因的可控性表达实现了细胞的分化与增殖,进而成就了生物体的生长与发育。而众所周知,基因组基因全部书写在的23组染色体上,且一个生物个体体内所有细胞的基因组基因几乎完全相同,那么问题来了:相同的基因组如何造就不同的细胞类型?在分子生物学水平上,基因的表达受到一类称为转录因子(transcription factor)的蛋白的调控。每一种类型的转录因子在每一种细胞中都有它特异的一群调控对象基因;转录因子与基因组DNA的结合会激活/抑制这一群基因的转录表达。而影响这结合与否的一类化学现象,就是甲基化(methylation)和乙酰化(acetylation)。甲基化和乙酰化会发生在几个不同的区域:(1)转录因子自己身上;(2)协助包裹染色体(染色质)的组蛋白上;(3)基因序列中用于让转录因子结合的区域,称为启动子(promoter)。这些地点发生的甲基化或乙酰化修饰,会很大程度地影响每种基因的表达。而正是这些修饰地点的特异性,决定了不同细胞类型存在着相对不同的转录组,进而表现出相对不同的细胞功能。当然,既然是化学修饰,那么修饰的过程自然也会受到外界因素的影响。一些因素会激活/抑制细胞内特定的信号通路,从而可逆/不可逆地改变某些基因的甲基化和乙酰化修饰水平。其中一些变化如果写入到生殖细胞中,就有可能遗传给下一代。这些“外界因素”不但跟吃喝拉撒有关系,精神创伤、心理压力等也会存在影响。当然这些研究还处于比较暧昧的状态。以上是一点表观遗传学的基本科普。好多年不看教科书了,有错的地方欢迎指正。

在“国家杰出青年科学基金”和国家自然科学基金重点项目支持下,来自东北师范大学植物分子表观遗传学实验室的研究人员对高等植物“杂交与进化”研究领域开展了重要的系统研究,在远缘渐渗杂交 (introgressive hybridization)对受体基因组稳定性影响方面取得了重要进展,这些研究成果已经在Molecular Biology and Evolution,Genetics,Plant Molecular Biology,Theoretical and Applied Genetics和 Genome 等权威杂志发表论文近10篇,并且受到包括美国科学院院士和英国皇家学会会员在内的国际权威的认可和好评。植物的远缘杂交是指种以上分类单位的生物类型之间的杂交,包括同属植物的种间杂交和不同属植物的属间杂交,是高等植物基因组进化和新物种形成的主要动力之一。高等植物杂交与进化的关系一直是进化生物学上有争议的热点问题之一。一种观点认为,由于种间杂种在适合度(fitness)上的普遍劣势,杂交阻碍了进化;另一种观点则认为,杂交可以综合亲本种的适应性或创造出新的适应性,丰富基因库、拓宽生境,进而促进基因组进化和新种形成。可成活远缘杂种有3种主要命运:形成多倍体,二倍体重组或与亲本种之一回交(又称渐渗杂交)。近年来基因组学的巨大进展,解释了高等植物多倍体普遍性的原因,在二倍体重组途径导致新种形成的研究领域,也取得突破性进展,但关于第3种途径,即渐渗杂交 (introgressive hybridization) 在进化上的意义,实验性研究不多。近些年来东北师范大学植物分子表观遗传学实验室在刘宝教授等的研究人员的共同努力下,2000年从DNA分子水平确证了外缘菰DNA的存在,并且在国际上首次发现植物异源多倍体物种形成可以定向诱发DNA序列删除及表观遗传变异现象,首次合成“水稻+菰”属间可育体细胞杂种及有性杂交渐渗系的分子证明,发现外源DNA导入可诱发反转录转座子激活和DNA甲基化变异。这些研究结果为“远缘渐渗杂交促进基因组进化”的观点提供了分子水平上的实验性证据,并对利用远缘杂交进行作物遗传改良提出了新启示。

表观遗传学研究进展论文免费

日本东京大学Umeharu Ohto和日本京都大学Norimichi Nomura团队共同合作近期取得重要工作进展。他们研究发现胆汁酸转运蛋白NTCP的结构对乙型肝炎病毒进入至关重要。该项研究成果2022年5月17日在线发表于《自然》杂志上。 在这里,研究人员报告了人类、牛和大鼠NTCPs在apo状态下的低温电子显微镜(cryo-EM)结构,它揭示了跨膜隧道的存在和底物的可能运输途径。 此外,人类NTCP在LHBs的肉豆蔻酰化preS1结构域存在下的低温电镜结构以及突变和运输试验分析表明了一种结合模式,即preS1和底物竞争NTCP中细胞外通道的开口。重要的是,preS1域相互作用分析能够对人类NTCP中自然发生的HBV不敏感突变进行机理解释。综上所述,他们的研究结果为HBV识别和哺乳动物NTCPs对钠依赖性胆汁酸易位的机制的理解提供了结构框架。 据介绍,慢性乙型肝炎病毒 (HBV) 感染在全球影响超过亿人,是肝硬化和肝细胞癌的主要原因,估计每年导致82万人死亡。HBV感染的建立需要病毒包膜糖蛋白L(LHBs)与宿主进入受体钠-牛磺胆酸共转运多肽(NTCP)之间的分子相互作用,NTCP是一种从血液到肝细胞的钠依赖性胆汁酸转运蛋白。然而,目前对于病毒-转运蛋白相互作用分子基础尚不清楚。 Source: 美国加州大学Arash Komeili研究小组在研究中取得进展。他们发现不同基因簇诱导细菌铁小体细胞器的形成。2022年5月18日出版的《自然》发表了这项成果。 在本研究中,研究人员发现一个与铁结合的隔室,在此命名为“铁小体”,是之前在厌氧细菌磁性脱硫弧菌中发现的。使用蛋白质组学方法,研究人员鉴定了三种铁小体相关(Fez)蛋白,它们在D. magneticus中参与形成铁小体。Fez蛋白由特定的操纵子编码,包括FezB,FezB是在系统发育和代谢不同的细菌和古细菌中发现的P1B-6-ATP酶。研究人员揭示了另外两种细菌物种,Rhodopseudomonas palustris和Shewanella putrefaciens,通过其六基因fez操纵子产生铁小体。 此外,研究发现fez操纵子还可以在外来宿主中形成铁小体。使用S. putrefaciens作为模型,研究表明铁小体可能在厌氧适应铁饥饿中发挥作用。总体而言,该工作发现铁小体可能是一类新的铁储存细胞器,并为研究它们在多种微生物中的形成和结构奠定了基础。 据了解,细胞内铁稳态对于机体至关重要,通过严格调节铁的输入、流出、储存和代谢来维持铁稳态。最常见的铁储存模式使用蛋白质隔室,例如铁蛋白和相关蛋白质。尽管发现了脂质结合的铁隔室,但它们的形成和功能基础仍然未知。 Source: 美国德克萨斯大学西南医学中心Peter M Douglas研究组发现小G蛋白香叶酰化可监测细胞内脂质稳态。2022年5月18日出版的《自然》杂志发表了这项成果。 他们描述了一种在秀丽隐杆线虫中进行细胞内脂质监测的机制,该机制涉及核激素受体 NHR-49 的转录失活,其通过与小 G 蛋白 结合的香叶基香叶酯结合到内吞囊泡进行胞质隔离。由脂质消耗引起的有缺陷的从头类异戊二烯合成限制了 香叶基香叶酰化,这促进了 NHR-49 的核易位和 转录的激活,以增强转运蛋白在质膜上的驻留。因此,他们鉴定了一种细胞可感知的关键脂质,及与其相连 G 蛋白和核受体,它们的动态相互作用使细胞能够感知由于脂质消耗引起的代谢需求,并通过增加营养吸收和脂质代谢来做出反应。 据悉,脂质稳态失衡会对健康产生有害影响。然而,细胞如何感知由于脂质消耗导致的代谢需求并通过增加营养吸收做出反应仍不清楚。 Source: 英国牛津大学Sebastian M. Shimeld研究组探明Hmx基因保留确定了脊椎动物颅神经节的起源。2022年5月18日出版的《自然》杂志发表了该项成果。 他们表明同源盒转录因子 Hmx 是脊椎动物感觉神经节发育的组成成分,并且在小肠绦虫中,Hmx 是驱动双极尾神经元分化程序所必要且充分的,这些细胞以前被认为是神经嵴的同源物。使用绦虫和七鳃鳗转基因,他们证明了茎-脊椎动物谱系中,一个独特的、串联重复的增强子对调节的 Hmx 表达。他们还在绦虫中展示了明显强大的脊椎动物 Hmx 增强子功能,表明上游调控网络的深度保留跨越了脊椎动物的进化起源。这些实验证明了绦虫和脊椎动物 Hmx 之间的调节和功能保护,并指出双极尾神经元是颅感觉神经节的同源物。 研究人员表示,脊椎动物的进化起源包括与掠夺性生活方式的获得相关的感官处理方面的创新。脊椎动物通过由颅感觉神经节服务的感觉系统感知外部刺激,其神经元主要来自颅基板;然而,由于活体谱系之间的解剖学差异以及细胞类型和结构之间的同源性分配困难,阻碍了对基板和颅感觉神经节进化起源的理解。 Source: 美国斯坦福大学Anthony E. Oro团队近期取得重要工作进展。他们研究发现Gibbin中胚层调节模式上皮细胞的发育。该项研究成果2022年5月18日在线发表于《自然》杂志上。 在这里,研究人员鉴定了由Xia-Gibbs AT-hook DNA-binding-motif-containing 1(AHDC1)疾病基因编码的蛋白质Gibbin,它是早期上皮形态发生的关键调节因子。他们发现增强子或启动子结合的Gibbin与数十种序列特异性锌指转录因子和甲基-CpG 结合蛋白相互作用,以调节中胚层基因的表达。Gibbin的缺失导致GATA3依赖性中胚层基因的DNA甲基化增加,导致发育中的真皮和表皮细胞类型之间的信号通路的缺失。 值得注意的是,Gibbin突变的人类胚胎干细胞衍生的皮肤类器官缺乏真皮成熟,导致表达p63的基底细胞具有缺陷的角质形成细胞分层。体内嵌合CRISPR小鼠突变体揭示了一系列Gibbin依赖性发育模式缺陷,这些缺陷影响了反映患者表型的颅面结构、腹壁闭合和表皮分层。他们的结果表明,在Xia–Gibbs和相关综合征中看到的模式表型源于基因特异性 DNA甲基化决定而导致的异常中胚层成熟。 据介绍,在人类发育过程中正确的外胚层模式需要先前确定的转录因子,如GATA3和p63,以及来自区域中胚层的位置信号。然而,外胚层和中胚层因子对稳定基因表达和谱系定型的机制仍不清楚。 Source: 美国纪念斯隆-凯特琳癌症中心Vinod P. Balachandran等研究人员合作发现,新抗原质量可预测胰腺癌幸存者的免疫编辑。相关论文于2022年5月19日在线发表在《自然》杂志上。 研究人员表示,癌症免疫编辑是癌症的一个标志,它预示着淋巴细胞会杀死更多的免疫原性癌细胞,使免疫原性较低的克隆体在群体中占主导地位。虽然在小鼠身上得到证实,但免疫编辑是否在人类癌症中自然发生仍不清楚。 为了解决这个问题,研究人员调查了70个人类胰腺癌在10年内是如何演变的。研究人员发现,尽管有更多的时间积累突变,但罕见的胰腺癌长期幸存者在原发肿瘤中具有更强的T细胞活性,其复发肿瘤的遗传异质性较低,免疫原性突变(新抗原)较少。为了量化免疫编辑是否是这些观察结果的基础,研究人员通过两个特征来推断了新抗原是否具有免疫原性(高质量),这基于新抗原与已知抗原相似性的"非自体性",以及基于新抗原与野生型肽相比不同地结合到MHC或激活T细胞所需的抗原性距离的"自体性"。利用这些特征,研究人员估计癌症克隆的适应性是T细胞识别高质量新抗原的总成本被致癌突变的收益所抵消。 通过这个模型,研究人员预测了肿瘤的克隆进化,并发现胰腺癌的长期幸存者会发展出具有较少高质量新抗原的复发性肿瘤。因此,研究人员展示了人类免疫系统自然编辑新抗原的证据。此外,研究人员提出了一个模型来预测免疫压力是如何诱导癌细胞群随时间演变的。更广泛地说,这些研究结果表明,免疫系统从根本上监督宿主的基因变化来抑制癌症。 Source: 美国斯坦福大学Mark J. Schnitzer、Sadegh Ebrahimi等研究人员合作揭示感觉皮质编码和区域间通信的新兴可靠性。2022年5月19日,国际知名学术期刊《自然》在线发表了这一成果。 研究人员对小鼠执行视觉辨别任务的8个新皮层区域的神经元活动同时进行了5天的成像,产生了超过21000个神经元的纵向记录。分析显示,整个新皮层的事件序列从静止状态开始,到感知的早期阶段,并通过任务反应的形成。在静止状态下,新皮层有一种功能连接模式,通过共享活动共变的区域组来识别。在感觉刺激开始后约200毫秒内,这种连接重新排列,不同区域共享共变和任务相关信息。 在这个短暂的状态中(大约持续300毫秒),区域间的感觉数据传输和感觉编码的冗余都达到了顶峰,反映了任务相关神经元之间相关波动的短暂增加。刺激开始后约秒,视觉表征达到一个更稳定的形式,其结构对单个细胞反应中突出的、逐日的变化是强大的。在刺激出现约1秒后,一个全局波动模式传达了小鼠对每个受检区域即将作出的反应,并与携带感觉数据的模式正交。 总的来说,新皮层通过在感知开始时感觉编码冗余的短暂提升、对细胞变异性稳健的神经群体编码以及广泛的区域间波动模式来支持感觉性能,这些模式以不干扰的渠道传递感觉数据和任务反应。 据了解,可靠的感觉辨别必须来自高保真的神经表征和脑区之间的交流。然而,新皮层感觉处理如何克服神经元感觉反应的巨大变异性仍未确定。 Source: 近日,美国斯坦福大学Jesse M. Engreitz及其团队的最新研究揭示人类增强子和启动子序列的相容性规则。相关论文于2022年5月20日在线发表在《自然》杂志上。 研究人员设计了一种名为ExP STARR-seq(增强子x启动子自转录活性调节区测序)的高通量报告试验,并应用它来研究人类K562细胞中1000个增强子和1000个启动子序列的组合相容性。研究人员确定了增强子-启动子兼容性的简单规则:大多数增强子以类似的数量激活所有启动子,内在的增强子和启动子的活动以倍数结合来决定RNA输出(R2=)。 此外,有两类增强子和启动子显示出微妙的偏好效应。管家基因的启动子含有GABPA和YY1等因子的内置激活模体,这降低了启动子对远端增强子的反应性。表达不一的基因的启动子缺乏这些模体,对增强子表现出更强的反应性。总之,这种对增强子-启动子兼容性的系统评估表明,在人类基因组中,有一个由增强子和启动子类型调整的乘法模型来控制基因转录。 据了解,人类基因组中的基因调控是由远端增强子控制的,它能激活附近特定的启动子。这种特异性的一个模型是,启动子可能对某些增强子有序列编码的偏好,例如由相互作用的转录因子组或辅助因子介导。这种"生化兼容性"模型已被个别人类启动子的观察和果蝇的全基因组测量所支持。然而,人类增强子和启动子内在兼容的程度还没有得到系统的测量,它们的活动如何结合起来控制RNA的表达仍不清楚。 Source: 美国华盛顿大学医学院David J. Pagliarini和美国摩根里奇研究所Joshua J. Coon共同合作,近期取得重要工作进展。他们通过深度多组学分析来确定线粒体蛋白的功能。该项研究成果2022年5月25日在线发表于《自然》杂志上。 在这里,为了建立更完整的人类线粒体蛋白功能纲要,研究人员使用基于质谱的多组学分析方法分析了200多个CRISPR介导的HAP1敲除细胞系。这项工作产生了大约 830 万个不同的生物分子测量值,提供了对线粒体扰动的细胞反应的深入调查,并为蛋白质功能的机制研究奠定了基础。在这些数据的指导下,他们发现PIGY 游开放阅读框(PYURF)是一种S-腺苷甲硫氨酸依赖性甲基转移酶伴侣,它支持复合物I组装和辅酶Q生物合成,并且在以前未解决的多系统线粒体疾病中被破坏。 研究人员进一步将推定的锌转运蛋白SLC30A9与线粒体核糖体和OxPhos完整性联系起来,并将RAB5IF确定为第二个含有导致脑面胸腔发育不良的致病变异的基因。他们的数据可以通过交互式在线资源进行探索,表明许多其他孤儿线粒体蛋白的生物学作用仍然缺乏强大的功能表征,并定义了线粒体功能障碍的丰富细胞特征,可以支持线粒体疾病的基因诊断。 据了解,线粒体是真核生物新陈代谢和生物能学的中心。近几十年来的开创性努力已经确定了这些细胞器的核心蛋白成分,并将它们的功能障碍与150多种不同的疾病联系起来。尽管如此,数以百计的线粒体蛋白仍缺乏明确的功能,约40%的线粒体疾病的潜在遗传基础仍未得到解决。 Source: 美国加州大学洛杉矶分校Alcino J. Silva和Miou Zhou研究组合作揭示,C-C 趋化因子受体 5 (CCR5)可关闭记忆链接的时间窗口。相关论文发表在2022年5月25日出版的《自然》杂志上。 他们展示了CCR5(一种免疫受体,众所周知是 HIV 感染的共同受体)的表达延迟(12-24 小时)增加在环境记忆形成后决定时间窗口的持续时间,以便将该记忆与后续记忆关联或链接。小鼠背侧 CA1 神经元中 CCR5 的这种延迟表达导致神经元兴奋性降低,进而负调节神经元记忆分配,从而减少背侧 CA1 记忆集合之间的重叠。降低这种重叠会影响一个记忆触发另一个记忆的召回能力,因此关闭记忆链接的时间窗口。 他们的研究结果还表明,与年龄相关的 CCR5 及其配体 CCL5 的神经元表达增加会导致老年小鼠的记忆连接受损,这可以通过 Ccr5 敲除和美国食品和药物管理局(FDA)批准的药物逆转。抑制这种受体具有临床意义。总而言之,这里报道的研究结果提供了对塑造记忆链接时间窗口的分子和细胞机制的见解。 据介绍,现实世界的记忆是在特定的环境下形成的,通常不是孤立地获得或回忆的。时间是记忆组织中的一个关键变量,因为时间接近的事件更有可能有意义地关联,而间隔较长的事件则不是。大脑如何区分时间上不同的事件尚不清楚。 Source: 德国海德堡大学Rohini Kuner研究组发现错误连接和终末器官靶向异常可引起神经性疼痛。2022年5月25日出版的《自然》杂志在线发表了这项成果。 研究人员在神经损伤后超过10个月的时间里,以纵向和非侵入性地方式对基因标记的纤维群进行成像,这些纤维群在皮肤周围感知有害刺激(伤害感受器)和轻柔触摸(低阈值传入),同时跟踪这些小鼠与疼痛相关的行为。完全去神经支配的皮肤区域最初失去感觉,逐渐恢复正常敏感性,并在受伤几个月后出现明显的异常性疼痛和对轻触的厌恶。这种神经再支配引起的神经性疼痛与伤害感受器有关,这些伤害感受器延伸到去神经支配的区域,精确地再现神经支配的初始模式,由血管引导,在皮肤中显示出不规则的终端连接,并降低了模拟低阈值传入的激活阈值。 相比之下,低阈值传入神经(通常在损伤后完整神经区域中介导触觉以及异常性疼痛)没有重新建立神经支配,导致仅具有伤害感受器的迈斯纳小体等触觉末端器官受异常神经支配。敲除与伤害感受器有关的基因完全消除了神经再支配异常性疼痛。因此,该研究结果揭示了一种慢性神经性疼痛的发生机制,这种疼痛是由结构可塑性、异常末端连接和神经再支配过程中伤害感受器受损造成的,并为在临床观察到的对病人产生沉重负担的矛盾感觉提供了机制框架。 据了解,神经损伤会导致慢性疼痛和对轻柔触摸的过度敏感(异常性疼痛)以及受伤和未受伤神经聚集区域的感觉丧失。改善这些混合和矛盾症状的机制尚不清楚。 Source: 星形胶质细胞在不同疾病中的反应性转录调控不同,这一成果由美国加州大学Michael V. Sofroniew、Joshua E. Burda研究组经过不懈努力而取得。2022年5月25日出版的《自然》杂志发表了这项成果。 研究人员通过将生物学和信息学分析(包括RNA测序、蛋白质检测、转座酶可及染色质测定与高通量测序(ATAC-seq)和条件基因缺失)相结合的方法来预测转录调节因子,这些调节因子调控了超过12,000个与小鼠和人不同中枢神经系统疾病中星形胶质细胞反应有关的差异表达基因(DEGs)。与星形胶质细胞反应相关的DEG在疾病中表现出明显的异质性。转录调节因子也具有疾病特异性差异,但研究人员发现了一个在这两个物种多种疾病中常见的由61个转录调节因子组成的核心组。实验表明,DEG多样性是由不同转录调节因子与特定细胞内环境之间相互作用决定的。 值得注意的是,相同反应性转录调节因子可以调节不同疾病中显著不同的DEG队列。转录调节因子对DNA结合基序的可及性变化在不同疾病之间存在明显差异;对DEG变化至关重要的调控可能需要多个反应性转录调节因子。通过调节反应性,转录调节因子可以显著改变疾病结果,并可以将其作为治疗靶点。该研究提供了与疾病相关反应性星形胶质细胞DEG及可搜索的预测转录调节因子资源。该研究结果表明,与星形胶质细胞反应性相关的转录变化是高度异质的,并且可通过特定于细胞内环境的转录调节因子组合产生大量潜在的DEG。 据悉,星形胶质细胞对中枢神经系统疾病和损伤作出反应,反应性变化会影响疾病进展。这些变化包括DEGs,然而对DEGs背景多样性和调控知之甚少。 Source: 近日,以色列魏茨曼科学研究所Karina Yaniv、Rudra N. Das等研究人员合作发现,淋巴管转分化可产生专门的血管。相关论文于2022年5月25日在线发表在《自然》杂志上。 研究人员利用斑马鱼臀鳍的循环成像和系谱追踪,从早期发育到成年,发现了一种通过淋巴管内皮细胞(LECs)的转分化形成专门血管的机制。此外,研究人员证明了从淋巴与血液内皮细胞(EC)衍生出的臀鳍血管在成年生物体中的功能差异,揭示了细胞本体和功能之间的联系。研究人员进一步利用单细胞RNA测序分析来描述了转分化过程中涉及的不同细胞群和过渡状态。 最后,结果表明,与正常发育相似,在臀鳍再生过程中,血管从淋巴管中重新衍生出来,表明成年鱼的LEC保留了生成血液EC的效力和可塑性。总的来说,这项研究强调了通过LEC转分化形成血管的先天机制,并为EC的细胞个体发生和功能之间的联系提供了体内证据。 据了解,细胞的谱系和发育轨迹是决定细胞身份的关键因素。在血管系统中,血液和淋巴管的EC通过分化和特化来满足每个器官的独特生理需求。虽然淋巴管被证明来自多种细胞来源,但LEC不知道会产生其他细胞类型。 Source: 德国马克斯·普朗克免疫生物学和表观遗传学研究所Thomas Boehm、Dominic Grün等研究人员合作揭示两种双潜能胸腺上皮细胞祖先类型的发育动态。相关论文于2022年5月25日在线发表于国际学术期刊《自然》。 研究人员结合单细胞RNA测序(scRNA-seq)和一个新的基于CRISPR-Cas9的细胞条形码系统,在小鼠中确定胸腺上皮细胞随时间变化的质和量。这种双重方法使研究人员能够确定两个主要的祖先群体:一个早期双潜能祖先类型偏向皮质上皮,一个产后双潜能祖先群体偏向髓质上皮。研究人员进一步证明,连续提供Fgf7的自分泌导致胸腺微环境的持续扩张,而不会耗尽上皮祖细胞池,这表明有一种策略可以调节胸腺造血活动的程度。 据介绍,胸腺中的T细胞发育对细胞免疫至关重要,并取决于器官型的胸腺上皮微环境。与其他器官相比,胸腺的大小和细胞组成是异常动态的,例如在发育的早期阶段快速生长和高T细胞输出,随后随着年龄的增长,胸腺上皮细胞的功能逐渐丧失,初始T细胞的产量减少。scRNA-seq发现了年轻和年老的成年小鼠胸腺上皮细胞的意外异质性;然而,推定的产前和产后上皮祖细胞的身份和发育动态仍未得到解决。 Source: 美国西奈山伊坎医学院Filip K. Swirski、Wolfram C. Poller等研究人员合作发现,大脑运动和恐惧回路在急性应激期间调节白细胞。2022年5月30日,《自然》杂志在线发表了这项成果。 研究人员发现,在小鼠急性应激期间,不同的大脑区域塑造了白细胞的分布和整个身体的功能。利用光遗传学和化学遗传学,研究人员证明运动回路通过骨骼肌来源的吸引中性粒细胞的趋化因子诱导中性粒细胞从骨髓快速动员到周围组织。相反,室旁下丘脑通过直接的、细胞内的糖皮质激素信号控制单核细胞和淋巴细胞从二级淋巴器官和血液向骨髓排出。这些压力诱导的、反方向的、全群体的白细胞转移与疾病易感性的改变有关。 一方面,急性应激通过重塑中性粒细胞并引导它们被招募到损伤部位来改变先天免疫力。另一方面,促肾上腺素释放激素(CRH)神经元介导的白细胞转移可防止获得自身免疫,但会损害对SARS-CoV-2和流感感染的免疫力。总的来说,这些数据显示,在心理压力期间,不同的大脑区域会不同地、迅速地调整白细胞景观,从而校准免疫系统对身体威胁的反应能力。 据了解,神经系统和免疫系统有着错综复杂的联系。尽管人们知道心理压力可以调节免疫功能,但将大脑中的压力网络与外周白细胞联系起来的机制途径仍然不为人知。 Source:

表观遗传学的概念基于遗传学而来,不是单纯的体外在环境导致的甲基化和乙酰基化改变,也不是简单转录因子和miRNA等等基因调控,它的指的是由非DNA变异而改变表型的‘可遗传的’现象。现在众多所谓的表观遗传学研究实际上都没有跳出经典遗传学的定义。经典数量遗传学早已经把表型变异归因到遗传和环境单独效应和互作:V= G + E + GxEV: phenotypic variance, 表型变量,G: Genetic variance, 遗传变量,E: environmental variance,环境变量这里的GxE,即遗传与环境互作,就是众多体外环境影响甲基化水平等等等等等的研究,早就是经典遗传学的一部分,并非表观遗传学。把环境因素抛开,遗传变量又可以再次归因到几个部分:G = A + D + epistasisA: additive genetic variance, 加性遗传效应,D: Dominance, '显性遗传效应'?忘记了怎么翻译,'epistasis: gene-gene interaction,上位效应,或者基因互作这里的epistasis, 基因互作, 就包含了所谓的转录因子和miRNA,lincRNA,非编码RNA调控等等等等基因间的调控,也并非表观遗传学。不过这些跳出孟德尔遗传模式的非表观遗传现象,例如D+epistasis再加上伴性遗传,又可以称作非孟德尔遗传。而且非孟德尔遗传模式也非常有研究价值,诸如时下流行的各种转录组水平上的调控因子,就不再赘述。真正意义上的表观遗传学要跳出以上经典遗传学的框架才算是有大的突破。从整个生物群体上来讲,表观遗传对个体的影响比起遗传来讲,并非主要的,但是仍然可以对某些生物的某个性状产生超过遗传因素的影响。其中对可传代的表观遗传(Transgenerational epigenetic inheritance)模式研究还有不少突破,review可以看这篇: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution.经典的小鼠传代表观遗传实验:子代遗传父亲恐惧记忆,Nature Neuroscience:Fearful memories haunt mouse descendants : Nature News & Comment因为本人是做大型动物的,大型动物类别中的经典表观遗传学例子:美臀羊, 超极显性, polar overdominance. Polar Overdominance at the Ovine callipyge Locus带有此变异的羊会形成一个丰满的屁股,而此变异只会在从父本遗传过来的变异杂合子中才会体现这个表型,并且在子代出生一年之后表型才会开始表达,而且只表达在屁股肌群上,身体前半部分肌群,包括肩部胸部,没有任何变化。形成机理通过在DLK1-DIO3 locus 区间父源和母源不同的印迹基因和非编码RNA以及基因间的共同作用,外加与环境互作。这个例子的研究论文非常多,最近的进展可以看这里:New insights into polar overdominance in callipyge sheep.总体来说,如果想在表观遗传学领域有大的发现,找准性状来研究十分重要,或者说,运气很重要。。。。因为大多数正常或者疾病性状都是经典的遗传和环境互作而来的,真正意义上的纯表观遗传或者说主要由表观遗传主导的性状,还是很少。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学(Epigenetics)的概念各位已经谈了很多了,@Lucif X回答尤为全面,事实上尽管表观遗传的概念很宽泛,做Small RNA,DNA Modification, Post-translational Modification的科学家都愿意把自己的研究方向划归到表观遗传学的范畴,但毫无疑问,表观遗传学最吸引人的还是获得性遗传(拉马克遗传),外在的表现就是Transgenerational Inheritance.恰好今年7月份Cell上发表了一篇文章,非常经典的结合了生物实验和深度测序分析,用秀丽线虫( C. elegans)做模式生物,研究了由环境变化引(饥饿)起的Transgenerational Inheritance的机理。<img src="" data-rawwidth="408" data-rawheight="408" class="content_image" width="408">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过这张示意图可以看出,在P0代将实验用线虫分成两组,一组为持续饱足喂养的线虫,另一组为在幼虫阶段就给予饥饿刺激的线虫,而他们的后代又都是进行同等的饱足喂养。结果是给予饥饿喂养的线虫的第三代表现出了较另一组明显长寿的表型。那么为什么会有这样的实验结果呢?<img src="" data-rawwidth="921" data-rawheight="798" class="origin_image zh-lightbox-thumb" width="921" data-original="">来源:来源:Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans: Cell通过对P0代和F3代进行转录组测序分析,研究者发现,饥饿会诱导一部分small RNA的表达,而这些small RNA的靶基因一般是营养代谢相关基因,而这类small RNA又可以进行隔代遗传(作者猜测这类小RNA的变化同样在生殖细胞里发生),进而到F3代仍然可以类似被P0代受饥饿刺激的线虫一样调控营养代谢相关基因。故事到这里大家肯定可以想到在哺乳动物里边都有节食可以延长寿命的报道,不知道相同的机制是不是在小鼠或者灵长类动物中也存在,总之这个研究给我们对Transgenerational Inheritance提供了一个新的理解方式。作者:知乎用户链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。表观遗传学研究的核心是试图解答:中心法则中从基因组向转录组传递遗传信息的调控方法。现代遗传学的基础是认为基因的可控性表达实现了细胞的分化与增殖,进而成就了生物体的生长与发育。而众所周知,基因组基因全部书写在的23组染色体上,且一个生物个体体内所有细胞的基因组基因几乎完全相同,那么问题来了:相同的基因组如何造就不同的细胞类型?在分子生物学水平上,基因的表达受到一类称为转录因子(transcription factor)的蛋白的调控。每一种类型的转录因子在每一种细胞中都有它特异的一群调控对象基因;转录因子与基因组DNA的结合会激活/抑制这一群基因的转录表达。而影响这结合与否的一类化学现象,就是甲基化(methylation)和乙酰化(acetylation)。甲基化和乙酰化会发生在几个不同的区域:(1)转录因子自己身上;(2)协助包裹染色体(染色质)的组蛋白上;(3)基因序列中用于让转录因子结合的区域,称为启动子(promoter)。这些地点发生的甲基化或乙酰化修饰,会很大程度地影响每种基因的表达。而正是这些修饰地点的特异性,决定了不同细胞类型存在着相对不同的转录组,进而表现出相对不同的细胞功能。当然,既然是化学修饰,那么修饰的过程自然也会受到外界因素的影响。一些因素会激活/抑制细胞内特定的信号通路,从而可逆/不可逆地改变某些基因的甲基化和乙酰化修饰水平。其中一些变化如果写入到生殖细胞中,就有可能遗传给下一代。这些“外界因素”不但跟吃喝拉撒有关系,精神创伤、心理压力等也会存在影响。当然这些研究还处于比较暧昧的状态。以上是一点表观遗传学的基本科普。好多年不看教科书了,有错的地方欢迎指正。

表观遗传学,包括组蛋白共价修饰(covalent histone modification)、DNA甲基化修饰(DNA methylation)、RNA甲基化修饰(RNA methylation)、基因组印记(genomic imprinting)、基因沉默(gene silencing)、RNA编辑(RNA editing)及非编码RNA(noncoding RNA)等,是 指在核苷酸序列不发生改变的情况下,生物表型或基因表达发生了稳定的可遗传变化 。 RNA甲基化 作为表观遗传学研究的重要内容之一,是指发生在RNA分子上不同位置的甲基化修饰现象, 6-甲基腺嘌呤(N6-methyladenosine,m6A) 和 5-甲基胞嘧啶(C5-methylcytidine,m5C) 是真核生物中最常见的两种RNA转录后修饰。RNA甲基化在调控基因表达、剪接、RNA编辑、RNA稳定性、控制mRNA寿命和降解等方面可能扮演重要角色。 相对于DNA甲基化,RNA甲基化更加复杂、种类繁多、普遍存在于各种高级生物中。已知绝大部分真核生物中,mRNA在5’ Cap处存在甲基化修饰,作用包括维持mRNA稳定性、 mRNA前体剪切、多腺苷酸化、 mRNA运输与翻译起始等。而3’ polyA发生的修饰有助于出核转运、翻译起始以及与polyA结合蛋白⼀起维持mRNA的结构稳定。但是这些修饰只发生mRNA的头部和尾部,关于RNA的内部修饰(internal modification)在许多种类的RNA中都有发⽣。无论是mRNA还是lncRNA,都大量存在m6A修饰。m6A能够加速mRNA前体的加工时间,加快mRNA在细胞中的转运速度和出核速度。主要学习研究较多的m6A。RNA的m6A甲基化⼀共有大三类酶参与: Writers、 Erasers和Readers ,需要相关研究的可以学习相关文献。 检测m6A的方法非常多,如包括MeRIPseq、 miCLIP-seq、 SCARLET、 LC-MS/MS等。2012年之后,两篇发表于Nature和Cell上的论⽂可以说是第⼀次从转录水平上,大范围高通量地鉴定了人和小鼠m6A的甲基化水平(Dominissini 2012和Meyer 2012)。这两篇独立发表的论文采用的 核心方法就是 将m6A抗体与带有m6A的mRNA片段相结合 后进行高通量测序 。通过对下机数据的分析,来鉴定mRNA上m6A程度较高的区域,分辨率约为100nt。这种方法我们称之为MeRIP-seq( me thylated R NA i mmuno p recipitation sequencing)或m6A-seq。 MeRIP-seq建库步骤 : 1. 提取total RNAs,并用Oligo-dT磁珠对total RNAs带有polyA的mRNA进行富集(通常要求Total RNA 300ug,人鼠可以做微量2ug 但结果可能会出现map率低dup率高 建库步骤与常量也有区别); 2. 用磁珠进行富集,得到带有polyA的mRNA。之后加入片段化试剂,将完整的mRNA进行片段化。或者使用超声波仪直接进行片段化; 3. 将片段化后的RNA分成两份。⼀份加入带有m6A抗体的免疫磁珠,对含有m6A甲基化的mRNA片段进⾏富集。另⼀份作为control,直接构建类似常规的转录组测序文库(这一步就是IP步骤,片段化程度、抗体抓取效率都会影响到后期实验结果;这里的control通常称为Input);4. 对m6A抗体免疫磁珠进行富集,带有m6A的mRNA片段进行回收后,按照转录组的建库流程构建常规的测序文库; 5. 分别将构建好的2个测序文库,即m6A-seq library和RNA-seq library分别进行高通量测序。测序平台保持一致,推荐Hiseq X ten或Novaseq; 6. 对下机数据进行生物信息学分析,对发生m6A甲基化程度较高的区域进行peak calling。由于不能做到单个碱基的分辨率,所以只能对大致的区域进行分析。从下图中我们可以发现,与右侧常规的转录组测序结果相比,在基因上有两处区域存在非常明显的高甲基化峰; 7.接下来会进行一些常规分析,如peak区域基因注释,差异peak分析。 以上就是关于m6A-seq的标准步骤,现在是不是对m6A-seq有了一个非常直观的认识呢? 再次强调下,这种测序方法只能鉴定高甲基化的区域,并不能做到单碱基的分辨率。 思路1 老数据挖掘 第一步:先从原有的转录组数据中,挖掘到差异表达的甲基化酶; 第二步:对挖掘到的甲基化酶如METTL3或FTO等进⾏qPCR验证,并进行m6A-seq分析哪些基因甲基化水平发生改变; 第三步:在细胞(动物模型可选)中对这些酶进行敲低和过表达,进行常规的qPCR和WB检测相关酶表达情况,并用LC-MS/MS法检测RNA整体m6A水平; 第四步:继续对这些敲低和过表达的细胞进行转录组测序/小RNA测序或表达谱芯片/小RNA芯片,分析哪些基因出现差异表达变化和可变剪切变化; 第五步:找到甲基化酶调控的靶基因,进行敲低和过表达,看甲基化酶缺陷的细胞或动物模型表型能否补救; 第六步:在确定上一步靶基因确实受到甲基化酶调控后,对靶基因上的motif进行点突变后进行验证; 第七步:鉴定新型的甲基化酶(可选)。 思路2 研究甲基化修饰差异基因 第一步:直接进行m6A-seq和转录组测序,找到时间顺序或差异表达的基因并用qPCR、 WB等⽅法验证,此外找到m6A有差异的基因; 第二步:对甲基化酶进行敲低和过表达,检测RNA整体的m6A水平,之后可进行转录组或小RNA测序等方法检验甲基化酶敲低和过表达对mRNA或miRNA整体的影响,并着重研究第⼀步中感兴趣的m6A有差异的靶基因; 第三步:对靶基因进行敲低或过表达,是否能够对甲基化酶异常表达后的表型进⾏恢复; 第四步:对靶基因上motif进行点突变后进⼀步确认直接受到甲基化酶调控; 第五步:鉴定新型的甲基化酶(可选)。 当然根据不同的研究目的还有许多其他的研究思路,可根据自身实验设计进行延申和拓展。m6A相关SCI论文根据不同实验手段IF2~20不等,实验手段:m6A-seq、转录组测序/表达谱芯片、 LC-MS/MS 或 m6A 比色法、小RNA 测序/小RNA芯片、qPCR、 WB、敲降/过表达、靶基因验证、动物实验、临床实验/药物实验等。 学习资源来源网络,侵删。 参考学习: 1、 高通量RNA甲基化测序数据处理与分析研究进展 2、 RNA修饰检测技术 Roundtree, Ian A et al. “Dynamic RNA Modifications in Gene Expression Regulation.” Cell vol. 169,7 (2017): 1187-1200. doi: Helm, M, & Y. Motorin. "Detecting RNA modifications in the epitranscriptome: predict and validate.” Nature Reviews Genetics (2017):275.

关于遗传学的论文题目

我zju的孩子伤不起啊···哥···你看到这个题目还high了一下···我以为我的搞定了···

1、棉花资源收集、保存、评价与利用现状及未来2、玉米种质资源对六种重要病虫害的抗性鉴定与评价3、繁殖群体量及隔离对蚕豆种质遗传完整性的影响4、基于地高辛标记对小麦进行Southern杂交分析主要影响因素的优化和验证5、小麦品种资源耐盐性鉴定6、76份特用甘薯种质资源的鉴定评价7、冀鲁豫花生育成品种的遗传多样性分析8、茶梅品种资源的收集保存、鉴定评价及种质创新9、不同温度条件下高粱温敏雄性不育系冀130A育性变化规律及花粉败育研究10、云南红花种质资源主要农艺性状的遗传多样性分析11、肉质色不同萝卜遗传多样性的SSR分子标记分析12、河北省冬小麦丰产抗旱性表型鉴定指标分析13、不同生态区罂粟种质的遗传多样性ISSR分析14、基于染色体片段导入系发掘抗玉米丝黑穗病主效QTL15、盐芥谷胱甘肽过氧化物酶基因(ThGPX6)的克隆及表达分析

基因本质的确定为分子遗传学发展拉开了序幕。1955年,美国分子生物学家本泽(Benzer)对大肠杆菌T4噬菌体作了深入研究,揭示了基因内部的精细结构,提出了基因的顺反子(Cistron)概念。 本泽把通过顺反实验而发现的遗传的功能单位称为顺反子,1个顺反子决定一条多肽链,顺反子即是基因。1个顺反子内存在着很多突变位点——突变子,突变子就是改变后可以产生突变型表型的最小单位。1个顺反子内部存在着很多重组子。重组子就是不能由重组分开的基本单位。理论上每一核苷酸对的改变,就可导致一个突变的产生,每两个核苷酸对之间都可发生交换。这样看来,一个基因有多少核苷酸对就有多少突变子,就有多少重组子,突变子就等于重组子。这个学说打破了过去关于基因是突变、重组、决定遗传性状的“三位一体”概念及基因是最小的不可分割的遗传单位的观点,从而认为基因为DNA分子上一段核苷酸顺序,负责着遗传信息传递,一个基因内部仍可划分若干个起作用的小单位,即可区分成顺反子、突变子和重组子。一个作用子通常决定一种多肽链合成,一个基因包含一个或几个作用子。突变子指基因内突变的最小单位,而重组子为最小的重组合单位,只包含一对核苷酸。所有这些均是基因概念的伟大突破。 关于基因的本质确定后,人们又把研究视线转移到基因传递遗传信息的过程上。在20世纪50年代初人们已懂得基因与蛋白质间似乎存在着相应的联系,但基因中信息怎样传递到蛋白质上这一基因功能的关键课题在20世纪60年代至20世纪70年代才得以解决。从1961年开始,尼伦伯格(. Nirenberg)和科拉纳等人逐步搞清了基因以核苷酸三联体为一组编码氨基酸,并在1967年破译了全部64个遗传密码,这样把核酸密码和蛋白质合成联系起来。然后,沃森和克里克等人提出的“中心法则”更加明确地揭示了生命活动的基本过程。1970年特明以在劳斯肉瘤病毒内发现逆转录酶这一成就进一步发展和完善了“中心法则”,至此,遗传信息传递的过程已较清晰地展示在人们的眼前。过去人们对基因的功能理解是单一的即作为蛋白质合成的模板。 1961年法国雅各布和莫诺的研究成果,又大大扩大了人们关于基因功能的视野。他们在研究大肠杆菌乳糖代谢的调节机制中发现了有些基因不起合成蛋白质模板作用,只起调节或操纵作用,提出了操纵子学说。从此根据基因功能把基因分为结构基因、调节基因和操纵基因。结构基因和调控基因:根据操纵子学说,并不是所有的基因都能为肽链进行编码。于是便把能为多肽链编码的基因称为结构基因,包括编码结构蛋白和酶蛋白的基因,也包括编码阻遏蛋白或激活蛋白的调节基因。有些基因只能转录而不能翻译,如tRNA基因和rRNA基因。还有些DNA区段,其本身并不进行转录,但对其邻近的结构基因的转录起控制作用,被称为启动基因和操纵基因。启动基因、操纵基因与其控制下的一系列结构基因组成一个功能单位叫做操纵子(operon)。就其功能而言,调节基因、操纵基因和启动基因都属于调控基因。这些基因的发现,大大拓宽了人们对基因功能及相互关系的认识。断裂基因:20世纪70年代中期,法国生物化学家查姆帮(Chamobon)和波盖特(berget)在研究鸡卵清蛋白基因的表达中发现,细胞内的结构基因并非全部由编码序列组成,而是在编码序列中间插入无编码作用的碱基序列,这类基因被称为间隔或断裂基因。这一发现于1977年被英国的查弗里斯和荷兰的弗兰威尔在研究兔β-球蛋白结构时所证实。1978年,生化学家吉尔伯特(Walter Gilbert)提出基因是一个转录单位的设想,他认为基因是一个DNA序列的嵌合体,同时包含两个区段:一个区段将被表达并存在于成熟的mRNA中,称为“外显子”;一个区段由虽然也同时被表达,但将在成熟mRNA中被删除,称为“内含子”。近年来的研究发现,原核生物的基因序列一般是连续的,在一个基因的内部几乎不含“内含子”,而真核生物中绝大多数基因都是由不连续DNA序列组成的断裂基因。断裂基因的表达过程是:整个基因先由DNA转录成一条信息RNA前体(precursor mRNA),其中的内含序列会被一种称为“剪接体”的RNA/蛋白质复合物所切除,两端再相互连接成一条连续的核酸顺序,以形成成熟的mRNA。DNA分子断裂基因的存在为基因功能的展现赋予了更大的潜力。重叠基因:长期以来,人们一直认为在同一段DNA序列内是不可能存在重叠的读码结构的。但是,1977年,维纳(Weiner)在研究Q0病毒的基因结构时,首先发现了基因的重叠现象。1978年,费尔(Feir)和桑戈尔(Sangor)在研究分析φX174噬菌体的核苷酸序列时,也发现由5375个核苷酸组成的单链DNA所包含的10个基因中有几个基因具有不同程度的重叠,但是这些重叠的基因具有不同的读码框架。以后在噬菌体G4、MS2和SV40中都发现了重叠基因。基因的重叠性使有限的DNA序列包含了更多的遗传信息,是生物对它的遗传物质经济而合理的利用。假基因:1977年,G·Jacp在对非洲爪赡5SrRNA基因簇的研究后提出了假基因的概念,这是一种核苷酸序列同其相应的正常功能基因基本相同,但却不能合成出功能蛋白质的失活基因。假基因的发现是真核生物应用重组DNA技术和序列分析的结果。现已在大多数真核生物中发现了假基因,如Hb的假基因、干扰素、组蛋白、α球蛋白和β球蛋白、肌动蛋白及人的rRNA和tRNA基因均含有假基因。由于假基因不工作或无效工作,故有人认为假基因,相当人的痕迹器官,或作为后补基因。移动基因:1950年,美国遗传学家麦克林托卡在玉米染色体组中首先发现移动基因。她发现玉米染色体上有一种称为Ds的控制基因会改变位置,同时引起染色体断裂,使其离开或插入部位邻近的基因失活或恢复恬性,从而导致玉米籽粒性状改变。这一研究当时并没有引起重视。20世纪60年代未,英国生物化学家夏皮罗和前西德生物化学家西特尔分别在细菌中发现一类称为插入顺序的可移动位置的遗传因子,20世纪70年代早期又发现细菌质粒的某些抗药性可移动的基因,到20世纪80年代已发现这类基因至少有20种。20世纪90年代之前,科学家终于用实验证明了麦克林托卡的观点,移动基因不仅能在个体的染色体组内移动,并能在个体间甚至种间移动。现已了解到真核细胞中普遍存在移动基因。基因移动性的发现不仅打破了遗传的DNA恒定论,而且对于认识肿瘤基因的形成和表达,以及生物演化中信息量的扩大等研究工作也将提供新的启示和线索。

医学遗传学(medical genetics)是遗传学与临床医学相互渗透、紧密结合的一门综合性学科。医学遗传学以人体的疾病和异常性状为对象,研究疾病与遗传的关系及疾病的遗传方式、病因、发病机理、遗传预测、诊断、治疗和预防措施。 研究临床各种遗传病的诊断、产前诊断、预防、遗传咨询和治疗的学科称为临床遗传学(clinical genetics)。 医学遗传学不仅与生物学、生物化学、微生物及免疫学、病理学、药理学、组织胚胎学、卫生学等基础医学密切有关,而且已经渗入各临床学科之中。

复杂遗传病的遗传学研究论文选题

医学遗传学论文

遗传学是研究生物体遗传和变异的科学,遗传学是生物学的重要分支和核心学科,并且是生命科学最具活力的领域之一。以下是我整理的医学遗传学论文,欢迎阅读。

1 医学遗传学课程特点

医学遗传学是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。它以生物、生化、病理、生理等学科的理论为基础,研究人类疾病的发生发展与遗传因素的关系,提供诊治、预防遗传病的科学依据及手段,从而改善人类健康素质。具有内容繁杂、实践性强、多学科交叉等特点。医学遗传学课程设置的内容存在递进关系、相辅相成,因此设置综合考试来考查学生对所学知识的综合运用能力是非常有必要的。

2 改革医学遗传学考试方式的必要性

传统教育理念与现代教育理念的一个重要区别是采取应试教育,还是素质教育。传统考试重识记轻能力, 往往局限于教材, 多以记忆性、上课重点为主。存在问题一是考试方式单一。二是“一考定终生”的弊端,不能客观反映每一位学生真实的学习的质量、效果和能力,带有某种投机性和偶然性,导致部分学生平时松,考前“临时抱佛脚”取得合格的分数,掩盖了教学中存在的问题,不利于教学质量的改进和提高。有些学生考试作弊,损害了考试的公平性,还对学习风气造成不良影响。另外学生考前心理负担过重,尤其是考前1 周, 学生不眠不休, 影响身心健康, 不利于创新型人才的培养。

医学遗传学已从单纯的理论型学科向理论与实践相结合的综合性学科发展,为培养复合型人才,必须探索一种更加系统、科学的考试方式,用于强化考试在教学过程中所起的评定、诊断作用,强化考试的检测功能和反馈功能,强化考试对师生的激励作用,从而培养学生的综合能力,激发学生的学习热情,避免重结果轻能力的倾向。

3 医学遗传学课程考试制度改革的主要思路

改革考试形式 在考核方法的选择上,采用灵活多样的考试方式,构成“形成性评价与终结性评价相结合”的考核与评价体系,即理论与实践相结合,技能与态度相结合,笔试、口试与操作相结合,开卷与闭卷相结合。因此将整个考试结构设置为:笔试(60%)、口试(15%)、操作(20%)、写作(5%)4个部分。

笔试包括章节性考试和期终考试的笔试成绩。教师可根据需要在某个章节学习结束后进行一次笔试测验,组成一个形成性考核的笔试成绩,这个成绩再与期终考试成绩结合起来,作为本部分成绩。

口试包括课堂提问、课堂表现、课堂纪律和课堂病例讨论的成绩。课堂提问反映学生自主学习的情况,能够检验课前预习、课堂学习、课后复习3 个方面的学习效果,易实施,操作性强,突出学习的过程,培养学生良好的.学习习惯,避免不良风气。课堂表现、课堂纪律反映学生的学习态度。课堂病例讨论, 主要讨论典型病例, 目的是让学生了解病例讨论的过程、步骤及如何运用所学知识分析问题、解决问题,以自由编组,随机抽题,口头回答的方式进行考核,有助于培养和提高学生的合作能力、参与能力、自主学习能力、自我管理能力和创新能力。

操作包括实训操作和实验报告的成绩。在整个实验课学习过程中,提供给每个学生实训操作机会,教师作为督导,从认真态度、严谨作风、职业素质、团队意识等方面进行考核,再根据完成实验报告的质量,评定每次实验成绩,取平均值作为此部分的成绩。

写作主要是指撰写小综述、小论文、翻译文献的成绩。初步培养学生的科研论文写作能力,从学生的自主态度、参与程度、完成质量、论文答辩水平等方面评定成绩。

转变教育思想观念 高等教育的目的是传授知识和培养学生的能力,由注重考核书本知识向注重学生知识、能力、素质综合考核转变;由笔试闭卷考试为主向灵活多样的考试方法转变;由重视一次性终结考试向注重全程性考核转变;传统教学以“传授知识为主”向现代教学以“培养能力为主”的转变,建立与之相适应的内容广泛、形式多样的考试考核制度。

鼓励学生参与思想政治教育讲解 教师结合学科特点和内容有意识、有目的、自觉地渗透爱国主义教育、职业道德教育、辩证唯物主义教育等思想政治教育。让学生在接受理论知识和提高技能的同时,养成良好高尚的道德风范。同时鼓励学生查找与本学科相关思想政治教育资料,在课堂上向大家讲解所受人生观、价值观的启迪。

注重考试内容的选择,提高学生综合素质 在考核内容的选择上,以“知识点上遵循教学大纲,但应用上不拘泥于教学大纲”为原则,在试题设计上,由注重知识向注重能力转变,增加应用题和能力题,考核应能充分反映学生掌握基本理论、基本技能的情况以及分析问题、解决问题和创新的能力,尽可能多一些综合性思考题、分析题、应用题,甚至没有标准答案的考试内容。考试内容应突出基础性、创新性和实践性。

调动教师积极性,促进教研活动 教师是考试模式改革的实施者,对考试改革的认识程度、对考试改革的积极性在考试改革过程中起着至关重要的作用。因此教师要不断更新教学内容、教学理念、教学方法、教学手段,付出更多的时间和精力开展教研活动,调动自身积极性。

总之,考试不仅是实施素质教育的内在要求, 也是推进素质教育实施的动力。构建多种形式的考试体系, 有利于对学生明确课程目标、巩固所学知识、检验学习效果、培养综合能力等方面具有积极作用, 有利于督促教师根据教学目标选择教学方法、调整教学内容, 强化学生的学习动机。

参 考 文 献

[1] 彭峰. 我国高校考试制度改革的若干思考.时代教育,2008,6:106107.

[2] 王海涛.改革高校考试模式,培养创新型人才.辽宁教育行政学院学报,2008,(11):162 163.

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础? 遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

医学遗传学(medical genetics)是遗传学与临床医学相互渗透、紧密结合的一门综合性学科。医学遗传学以人体的疾病和异常性状为对象,研究疾病与遗传的关系及疾病的遗传方式、病因、发病机理、遗传预测、诊断、治疗和预防措施。 研究临床各种遗传病的诊断、产前诊断、预防、遗传咨询和治疗的学科称为临床遗传学(clinical genetics)。 医学遗传学不仅与生物学、生物化学、微生物及免疫学、病理学、药理学、组织胚胎学、卫生学等基础医学密切有关,而且已经渗入各临床学科之中。

遗传学的论文一篇,给点素材你怎么理解,分析探讨具体谈清晰的

相关百科

热门百科

首页
发表服务