首页

> 学术期刊知识库

首页 学术期刊知识库 问题

模糊数学论文5000字

发布时间:

模糊数学论文5000字

一、我国现行财政支出绩效评价存在的问题从广义看,目前我国各级人民代表大会对各级财政预算、决算的审查,各级审计机关和财政监督机构对财政资金的使用进行监督检查等,都或多或少涉及了评价财政资金绩效的内容,但这些行为主要是以监督检查为主要目的,还不能成为真正意义上的财政资金绩效评价。从财政资金管理看,各级财政部门为加强财政资金管理,也采取了一些绩效管理的方法。从我国财政支出绩效评价工作发展的现状看,虽然已有初步基础,但由于此项工作起步较晚,且缺乏系统性研究,仍不能适应我国经济发展与财政改革的客观需要。总的来看,我国财政支出绩效评价工作主要存在以下几方面问题:(一)缺乏统一的法律保障。财政支出绩效评价工作要取得实效,必须得到立法支持,而且要制度化、经常化。而我国公共投资部门虽然也提出要完善项目投资决策程序,对国家重点投资项目要从立项决策、竣工验收直到财政支出绩效评价,实行全过程管理,但迄今尚未出台全国统一的有关财政支出绩效评价工作的法律法规,使我国财政支出绩效评价工作缺乏法律约束和制度保障。(二)没有明确的管理机构。西方许多国家和世界银行等国际组织都设有公共支出绩效评价机构。而我国,缺乏这样一个有权威性的财政支出绩效评价综合管理机构,财政支出绩效评价工作主要分散在各管理部门,各部门又主要从技术性能、项目管理方面进行财政支出绩效评价,指标、方法和组织程序差异大,难以形成统一的、全面的财政支出绩效评价。标准不统一,使财政支出绩效评价结果差异大,缺乏可比性,难以保障财政支出绩效评价结果的客观公正性。这是目前我国财政支出绩效评价工作发展滞后的重要原因。(三)未构建规范的指标体系。目前,各有关部门的财政支出绩效评价主要通过若干固定的财务、技术和工程管理指标进行全过程评价,评价侧重于技术、工程和资金使用的合规性,对财政资金的使用效益评价不足。同时,各部门评价指标设置呈平面化和单一性,缺乏一套建立在严密数据分析基础上的科学、统一、完整的指标体系,不能从不同层面、不同行业、不同支出性质等方面进行综合、立体评价。由于缺乏科学、规范的方法和指标,影响了财政支出绩效评价结果的公正合理性。技术性缺陷是我国财政支出绩效评价工作发展缓慢的直接原因。(四)支出评价内容不完整。体现在:一是侧重于合规性评价,忽视效益评价。从总体上看,目前各有关部门进行的财政支出绩效评价工作带有明显的审计特征,即重点审核项目支出行为是否符合现行财务政策和国家有关规定,往往忽视对项目效率或发展效益方面的评价,或由于评价指标设置不完整,不能进行项目的效益评价;二是评价对象仅局限于项目本身,而忽视项目内外因素的综合分析。财政支出绩效评价工作不仅涉及项目审核、投资与回报的评价,而且包括各种宏观因素的评价,如投资的社会环境,包括政策环境和自然环境对投资行为的影响及投资行为对行业、社会乃至整个经济运行的影响等。目前的财政支出绩效评价工作恰恰不包括这些内容,使财政支出绩效评价工作不能达到为政府宏观决策服务的目的。(五)支出评价结果的约束乏力。由于财政支出绩效评价工作体系不健全,缺乏法律规范,财政支出绩效评价结果只作为各有关部门项目建设档案保存,或作为有关部门加强新上项目管理的借鉴或参考,对财政资金支出项目中的成绩、问题与相关责任、项目执行过程中的各环节责任人并没有任何直接约束,不仅使财政支出绩效评价工作流于形式,而且影响了财政支出绩效评价工作的权威性,制约财政支出绩效评价工作的深入开展。二、构建财政支出绩效评价体系的路径选择(一)坚持系统化原则,整体规划财政支出绩效评价的改革方案。有效的制度不可能是一项单一的制度,必须是一个完整的制度体系。但这个制度体系不是以多少论效率,而是以其客观性、科学性论效率。比如,如何衡量财政支出的成本与效益遇到的一个技术难题是:公共产品或服务具有外部性特征,而且某项支出效益的取得又与很多因素有关。因此,试图直接、准确地评价财政支出效益确实不易。但有一个简单的方法可以解决这一难题,即在定性评价的前提下采用同类相比的方法实施定量评价。如用于学校教学楼建设的教育经费是“造楼”还是“造人”?从定性的角度看一目了然。财政支出绩效评价难度极大,一个重要的原因是绩效评价涉及到某些人或某群人的小利益,但对整个国家有百利而无一害。制度体系的整体规划,应充分认识实施的难度,从理论上论证财政支出的供给范围与规模、预算会计核算模式、政府事业的发展规划、财政支出管理的决策机制、重要项目评价报告的听证制度等多方面因素的影响,在调查研究的基础上提出切实可行的改革方案。(二)采取循序渐进的实现方式,由易到难、由重点到一般逐步展开。英国和瑞典的经验告诉我们,他们的财政支出绩效评价是从公众和议会特别关注的重大问题与具体项目开始,逐渐扩展到全部财政支出;从重点评价支出的经济性、合规性开始,逐步转移到对财政支出的经济性、效率性、有效性的全面评价。经济性指在财政支出管理中建立有效的支出决策机制和支出优先安排机制,克服财政支出活动中严重浪费和分配不均问题;效率性是政府及民众对财政支出在项目决策机制、实施进度、经济效益和社会效益等方面要求的具体体现;有效性是财政支出所取得的最终成果的具体体现,需要结合当前效益与长远效益来衡量。我国财政支出绩效评价的实现方式也应采取渐进式的方法,由易到难、抓住重点、逐步展开。财政支出绩效评价的重点,应由财政支出的经济性、合规性开始,逐步扩展到效率性和有效性。(三)按照动态管理的方法,在财政资金运行各环节建立财政支出绩效评价制度。财政资金总是处于不断循环过程中。在收缴环节,采取集中收缴方式明显要比分散收缴具有更高的效率;在存库环节,开展有效的现金管理可以提高资金效益与加强财政控制;在分配环节,预算目标数量化、分类细化有助于对财政支出进行监督和评价,还可清晰地衡量预算分配环节的成本与效益;在购买环节,实行政府采购制度可以取得分散采购方式下不可能取得的规模效益、经济效益和社会效益;在支付环节,采取电子化集中式的直接支付方法,是提高财政资金绩效的必然要求。因此,财政支出流经的各环节存在一个绩效问题,不能仅就财政资金的最终使用成果为对象来评价财政支出的绩效状况,应建立覆盖财政资金运行各环节的财政支出绩效评价制度。(四)根据科学化原理,建立财政支出绩效评价指标体系与评价机制。财政支出绩效评价指标体系是开展绩效评价工作的中心环节。设计一套科学、合理的指标体系,需要兼顾局部利益与整体利益、当前利益与长远利益、直接利益与间接利益,既通用可比、简单适用,又易于操作。为此,可以按照部门、项目、环节分别建立绩效评价指标。部门评价指标用来衡量部门事业发展取得的业绩,可以和部门负责人政绩考核结合起来;项目评价指标是按照分类的原则对不同财政支出的使用效果进行评价;环节评价指标是衡量财政支出运动过程中存库、分配、购买、投资、支付等各环节的绩效水平。建立科学、合理的绩效评价机制,是充分利用绩效评价指标体系、有效开展绩效评价活动的前提。所以,应建立各部门自我评价、财政综合评价、绩效审计评价为一体的绩效评价机制。部门自我评价是各部门对年初设定目标与实现情况的对比评价,并做出具体分析和说明;财政综合评价是财政部门对重点预算资金的绩效进行重点评价,对所有财政资金的绩效状况做出综合评价,并在预算执行过程中对各部门的预算执行情况进行抽查,以保障各项计划目标及时、顺利地实现,更好地配合下一年度的预算分配工作;绩效审计是审计部门针对一些使用大量财政资金的部门和领域进行的专项审计,并提出相应的处理建议;社会评价是社会民众或媒体针对社会普遍关注、群众反映强烈的事件进行举报、采访或揭露,以改善财政支出绩效的整体状况。(五)逐步建立财政支出绩效评价的信息收集网络和数据库。财政支出绩效评价活动的开展,离不开一定规模与容量的数据库,需要针对各类支出项目的投入、效益与影响,进行必要的横向与纵向比较,保证绩效评价工作的持续、高效开展。分不同行业、类型的财政支出项目,将有关的信息或资料作为初始数据源,并在此基础上逐步扩大评价信息的收集范围,推动数据采集进入标准化工作阶段。充分利用现代化的信息技术,建立有效的绩效评价信息收集网络,确保数据信息采集的有效开展。克服制度障碍,在不危害国家安全的前提下实现信息公开、共享;大力推进政府与企业信息化进程,建设完备的财政管理信息系统,提高信息采集的效率性与安全性;发动社会力量,开展数据处理软件的设计与开发,以提高数据处理的效率。三、推进我国财政支出绩效评价改革的对策针对我国财政支出绩效评价工作存在的问题,结合国外发展经验,建立我国财政支出绩效评价体系,应从以下几个方面着手实施。(一)划分评价层次。根据开展财政支出绩效评价工作的主体和客体的不同,可将财政支出绩效评价工作分四类:财政支出项目绩效评价、单位财政支出绩效评价、部门财政支出绩效评价、财政支出综合绩效评价。财政支出项目绩效评价的主体通常是财政部门、项目实施单位及其主管部门,评价对象是财政支出项目的效益。由于财政支出项目是部门(单位)财政支出的重要方面之一,而且项目支出内容十分广泛、项目间差异大、项目效益不确定性大。因此,对财政支出项目开展绩效评价,对合理安排财政经费、提高财政资金效益具有十分重要的作用。单位财政支出绩效评价的主体通常是财政部门和主管部门,评价对象是主管部门所属二级和基层预算单位的财政支出效益。单位财政支出绩效评价是部门财政支出绩效评价的基础,单位作为财政部门预算管理的基层单位,其支出效益直接反映为财政支出的总体效益。因此是财政部门预算管理的重要内容之一。部门财政支出绩效评价的主体通常是各级人民代表大会、政府和财政部门,评价对象是各政府部门(使用财政经费的一级预算单位)的财政支出效益。部门财政支出绩效评价是财政支出综合绩效评价的基础,是财政部门预算管理的重要内容之一。财政支出综合绩效评价的主体通常是各级人民代表大会、政府监督机构、财政政策研究机构等,评价对象是财政支出的整体效益,是部门财政支出效益的综合反映。综合绩效评价对象具有整体性,其范围可以是整个国家的财政支出,也可以是某一区域内的财政支出。(二)建立评价制度。财政支出绩效评价是一项涉及范围广、内容复杂的系统工程,无论是评价工作的组织实施,还是评价结果的具体应用都必须遵循一定的制度规范。首先,建立我国财政支出绩效评价体系的基础是要制定《财政支出绩效评价办法》、《财政支出绩效评价方法选择及工作程序》、《财政支出绩效评价指标设置及标准选择》、《财政支出绩效评价结果应用》等一系列统一的制度规范,明确全国财政支出绩效评价工作规则、工作程序、组织方式及结果应用,并对相关行为主体的权利和义务进行界定。其次,要在财政资金运行各环节建立财政支出绩效评价制度。财政资金总是处于不断运动中,在收缴环节,采取集中收缴方式明显要比分期收缴具有更高的效率;在库存环节,开展有效的现金管理可以提高资金效益与加强财政控制;在分配环节,预算目标数量化、分类细化有助于对财政支出进行监督和评价,还可清晰地衡量预算分配环节的成本与效益;在购买环节,实行政府采购制度可以取得分期采购方式下不可能取得的规模效益;在支付环节,采取电子化的集中式直接支付方法,是提高财政资金绩效的有效途径。因此,财政支出各环节上都存在绩效问题,应在财政资金运行各环节都建立财政支出绩效评价制度。最后,做好财政部门、预算单位、审计和财政监督机构、社会中介机构在财政支出绩效评价工作中职责和业务分工的划分等制度建设,从多方面强化和推进对财政支出绩效的评价。(三)完善评价体系。根据我国的实际情况,财政支出绩效评价指标体系的建立必须遵循短期效益与长期效益相结合、定量与定性相结合、统一与专门指标相结合的原则。我国财政支出绩效评价指标体系设置的目标就是形成一套完整的财政支出绩效评价的指标库,这种指标库的形成不仅需要理论上的研究,更依赖于在实践中逐步完善和健全。根据财政支出绩效评价的层次,在财政支出分类的基础上,应分别建立财政支出项目绩效评价、单位财政支出绩效评价、部门财政支出绩效评价、财政支出综合绩效评价指标库。从指标的适用性角度考虑,各类指标均可划分为通用指标、专用指标、补充指标和评议指标四种类型。并根据指标性质不同,将各类财政支出绩效评价指标划分为定量指标和定性指标。(四)制定评价标准。财政支出绩效评价标准指以一定量的有效样本为基础,测算出的标准样本数据,用来衡量和评价财政支出的绩效水平。财政支出绩效评价标准按照可计量性分为定量标准和定性标准。定量标准和定性标准又可根据标准的取值基础不同,分为行业标准、计划标准、经验标准和历史标准;按照时效性可分为当期标准和历史标准;按照标准形成的方法可分为测算标准和经验标准;按照区域可分为国际标准和国内标准。此外,还可分为政府标准、社会公众标准及民间机构标准等。财政支出绩效评价标准是准确衡量绩效的尺度,标准的正确选择对财政支出绩效评价结果具有较大影响,评价标准的制定既是财政支出绩效评价体系建立的主要环节,也是财政支出绩效评价具体工作所面临的一个重要工作步骤。通过对财政支出绩效评价的标准进行总体规划设计,研究指标与标准的对应关系,研究不同评价对象的标准选择,选取恰当的评价标准值。。评价标准值应以财政支出性质、类别为基础,按照不同地区、行业、项目规模,采用历史经验、政策标准、数理统计分析、专家评估、公众印象等方法取得。通过各种渠道广泛收集整理各种分类标准数据后,可在条件成熟时研究建立绩效评价标准数据库。标准会随着经济发展和客观环境的变化不断变化。因此,如何建立和维护更新标准库也是一项非常重要的工作。为提高有关评价标准的权威性,财政部门及有关部门可效仿企业绩效评价,定期发布有关评价标准。(五)创新评价方法。良好的财政支出绩效评价方法是财政支出绩效评价体系的重要组成部分,对财政支出绩效评价结果的准确性具有决定性影响。目前理论界提出了成本效益分析法、最低成本法、综合指数法、因素分析法、生产函数法、模糊数学法、方案比较法、历史动态比较法、目标评价法、公众评判法等多种方法。其中,比较法、因素分析法、公众评价法和成本效益分析法已被《中央部门预算支出绩效考评管理办法(试行)》所采纳,应用到实践中。在市场经济条件下的公共财政体制框架中,社会效益评价是财政支出绩效评价的重点内容,而现有评价方法中,能简便、精准地评价财政支出社会效益,满足财政支出绩效评价工作实际需要的方法还有待于进一步研究。今后,在财政支出绩效评价方法研究上,要着眼于增加政府工作与财政资金管理的科学性与公开性,提高政府理财的民主性和社会参与性,深入研究公众评判法等适用于社会效益评价的基本方法,按照民主、科学、简便、精准的原则创新绩效评价方法。(六)规范评价流程。财政支出效益评价应由国家统一规定评价应遵循的原则,确定评价的重点,明确评价采取的方法,规范评价的基本流程。坚持定性和定量评价、事前与事后评价、定期和经常性评价、当前与长远评价、自我与外部评价相结合,形成评价工作制度。可以设计评价工作的基本程序为:制定工作计划,确定评价对象,下发评价通知书;组织专业小组,聘请专家,成立评价工作组;制定评价方案,选定评价指标,确定评价方法和评价标准;下达评价通知;督促部门自评,收集、核实数据并实施评价;形成评价报告,做好评价总结;经本级财政部门审核后,予以备案。(七)设立评价机构。财政支出绩效评价机构是财政支出绩效评价体系的工作主体,为改变目前我国财政支出绩效评价工作零碎涣散、缺乏独立性和权威性的状况,使财政支出绩效评价工作制度化、规范化和法制化,真正形成对计划、决策、管理的监督和制约,应在财政部门建立专门的财政支出绩效评价机构,对全国财政支出绩效评价工作实施统一管理。同时,在各政府部门设立专门的绩效评价机构,按照全国统一的财政支出绩效评价体系的有关要求组织做好本部门、所属单位以及财政支出项目的具体评价工作。鉴于财政支出绩效评价对财政支出管理的监督作用,必须赋予工作机构及相关人员以必要的职权,如在信息查询、资料获取、独立取证以及行政处罚建议等方面给予一些特定的权力。

毕业论文还是职称论文咯~

你是写原理 还是写应用 写原理可以比较不同方法的结果比较 应用的话可以写某一方面 也可以写与其它方法的联用

模糊聚类是采用模糊数学方法,依据客观事物间的特征、亲疏程度和相似性,通过建立模糊相似关系对客观事物进行分类的一门多元技术。其算法主要有传递闭包法、动态直接聚类法和最大树法等,其中动态直接聚类法计算量最少。在实际应用中必须经过数据预处理、特别是归一化等处理步骤,选取合适的模糊关系建立模糊相似矩阵,然后进行聚类和模式识别。糊聚类分析在学生素质评定中的应用学生素质的评定工作,对学校的发展具有重要的作用。本文就学生素质从德、智、体、能、劳5个方面作出评价。首先,对得到的数据进行规格化;接着,构造模糊相似矩阵;最后,利用编网法对学生素质的评定进行聚类分析,该方法简单易懂且计算量小达到了预期的效果。模糊数学在畜禽血液蛋白多态性聚类分析中的应用我国动植叨蛋白多态性的研究进展迅速,国内外有关这方面的报道越来越多.但这一研究已有近百年的历史,真正发展是近=十年的事.我国起步较晚,近年的研究和应用较快,现已推向地,县级阶段,可见这一研究和应用的普及在我国为时不远1.西南民族学院2.西昌农业专科学校3.面昌市畜牧局了..本研究表明我国畜牧兽医工作进入了分子水平阶段.由于蛋白多态性的研究和方法简便,节时省钱,基层单位均可应用.但此法的关键问题是聚类分析.聚类分析的方法很多,如遗传距离聚类分析中的最短遗传距离聚类分析,类平均法聚类分析再如遗传相似系数分析中我们见有矩阵法,但在畜禽蛋白多态性聚类分析上,均无统一的具体分析方法.为此,我们根据模糊数学集合论的原理,对遗传相似系数进行聚类分析,现介绍出来,供同行们应用时参考.模糊数学是研究和处理一些模糊现象的数学.但不是把数学变成模糊的东酉,而是在许多控制过程中,用模糊的手段达到精确的目的.在畜禽蛋白多态性研究中,遗传相似系数也是聚类分析中常用的分析指标.模糊数学聚类分析在鲤鱼杂交种后代性状研究中的应用杂交鲤与亲本相似,用数学语言来说是存在模糊性问题。采用模糊数学聚类分析法,首先建立模糊相似矩阵,得到鲤鱼生长性状聚类分类图谱,最后得到三杂交鲤、荷元鲤等F1代与母本相似比父本大的结论。这在鱼类杂交选育理论与生产上有一定意义

模糊数学论文1000字

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。记得采纳啊

模式识别§2-1模式识别及识别的直接方法在日常生活中生活中,经常需要进行各种判断、预测。如图象文字识别、故障(疾病)的诊断、矿藏情况的判断等,其特点就是在已知各种标准类型前提下,判断识别对象属于哪个类型的问题。这样的问题就是模式识别。一、模糊模式识别的一般步骤 模式识别的问题,在模糊数学形成之前就已经存在,传统的作法主要用统计方法或语言的方法进行识别。但在多数情况下,标准类型常可用模糊集表示,用模糊数学的方法进行识别是更为合理可行的,以模糊数学为基础的模式识别方法称为模糊模式识别。 模式识别主要包括三个步骤: 第一步:提取特征,首先需要从识别对象中提取与识别有关的特征,并度量这些特征,设 分别为每个特征的度量值,于是每个识别对象 就对应一个向量 ,这一步是识别的关键,特征提取不合理,会影响识别效果。 第二步:建立标准类型的隶属函数,标准类型通常是论域 的模糊集, 是识别对象的第 个特征。 第三步:建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。常用的判决准则有最大隶属度原则(直接法)和择近原则(间接法)两种。 二、最大的隶属度原则 若标准类型是一些表示模糊概念的模糊集,待识别对象是论域中的某一元素(个体)时,往往由于识别对象不绝对地属于某类标准类型,因而隶属度不为1,这类问题人们常常是采用称为“最大隶属度原则”的方法加以识别,这种方法(以及下面的“阈值原则”)是处理个体识别问题的,称为直接法。 最大隶属度原则:设 是 个标准类型, ,若 则认为 相对隶属于 所代表的类型。例1 通货膨胀识别问题通货膨胀状态可分成五个类型:通货稳定;轻度通货膨胀;中度通货膨胀;重度通货膨胀;恶性通货膨胀.以上五个类型依次用 (非负实数域,下同)上的模糊集 表示,其隶属函数分别为:其中对 ,表示物价上涨 。问 时,分别相对隶属于哪种类型?解 , , , , 由最大隶属原则, 应相对隶属于 ,即当物价上涨 时,应视为轻度通货膨胀; ,应相对隶属于 ,即当物价上涨 时,应视为恶性通货膨胀。三、阈值原则 在使用最大隶属度原则进行识别中,还会出现以下两种情况,其一是有时待识别对象 关于模糊集 中每一个隶属程度都相对较低,这时说明模糊集合 对元素 不能识别;其二是有时待识别对象 关于模糊集 中若干个的隶属程度都相对较高,这时还可以缩小 的识别范围,关于这两种情况有如下阈值原则。阈值原则: 是 个标准类型, 为一阈值(置信水平)令 若 则不能识别,应查找原因另作分析。若d且有 , … 则判决 相对地属于 例2 三角形识别问题我们把三角形分成等腰三角形 ,直角三角形 , 正三角形 ,非典型三角形 ,这四个标准类型,取定论域 这里 是三角形三个内角的度数,通过分析建立这四类三角形的隶属函数为:现给定, , 对上述四个标准类型的隶属度为: 由于 关于 , 的隶属程度都相对高,故采用阈值原则,取 ,因 , ,按阈值原则, 相对属于 ∩ ,即 可识别为等腰直角三角形。例3 癌细胞识别在癌细胞识别问题中细胞分成四个标准类型,即:癌细胞 ,重度核异质细胞 ,轻度核异质细胞 ,正常细胞 选取表征细胞状况的七个特征: 根据病理知识,反映细胞是否癌变的主要指标有以下六个,它们都是 上的模糊集: 上述 是适当选取的常数细胞识别中的几个标准类型分别定义为: 上述定义中的模糊集 的隶属函数为 。另两个模糊集 、 的隶属函数类似定义。给定待识别细胞 ,设 的核面积等七个特征值为 据此可算出 、 、 、 ,最后按最大隶属度原则识别。例4 冬季降雪量预报内蒙古丰镇地区流行三条谚语:(1)夏热冬雪大,(2)秋霜晚冬雪大,(3)秋分刮西北风冬雪大,现在根据三条谚语来预报丰镇地区冬季降雪量。为描述“夏热” 、秋霜晚 、秋分刮西北风 等概念,在气象现象中提取以下特征: :当年6~7月平均气温 :当年秋季初霜日期 :当年秋分日的风向与正西方向的夹角。于是模糊集 (夏热), (秋霜晚)、 (秋分刮西北风)的隶属函数可分别定义为: 其中 是丰镇地区若干年6、7月份气温的平均值, 为方差,实际预报时取 = = 其中 是若干年秋季初霜日的平均值, 是经验参数,实际预报时取 =17(即9月17日), =10(即9月10日)。取论域 ,“冬雪大”可以表示为论域 上的模糊集 ,其隶属函数为: ∧ ∨ 采用阈值原则,取阈值 ,测定当年气候因子 。计算 ,若 则预报当年冬季“多雪”,否则预报“少雪”。用这一方法对丰镇1959~1970年间隔12年作了预报,除1965年以外均报对,历史拟合率为11/12。§2-2 贴近度与模式识别的间接方法 一、贴近度 表示两个模糊集接近程度的数量指标,称为贴近度,其严格的数学定义如下: 定义1 设映射 : 满足下列条件:(1) , (2) , (3) 若 满足 有 则称映射 为 上的贴近度,称 为 与 的贴近度。贴近度的具体形式较多,以下介绍几种常见的贴近度公式 (1) Hamming 贴近度 或 (2)Euclid贴近度 或 (3)格贴近度定义7 映射 ⊙ ,(或= ⊙ )称为格贴近度,称 为 与 格贴近度。其中, (称为 与 的内积) ⊙ (称为 与 的外积)若 ,则 ⊙ 值得注意的是,这里的格贴近度是通过定义来规定的,事实上,格贴近度不满足定义1中(1),即 ,但是,当 时,格贴近度满足定义1的(1)-(3)。另外格贴近度的计算很方便,且用于表示相同类型模糊度的贴近度比较有效,所以在实际应用中也常选用格贴近度来反映模糊集接近程度。还有许多贴近度,这里不在一一介绍。贴近度主要用于模糊识别等具体问题,以上介绍的贴近度表示式各有优劣,具体应用时,应根据问题的实际情况,选用合适的贴近度。 二、模式识别的间接方法——择近原则在模式识别问题中,各标准类型(模式)一般是某个论域 上的模糊集,用模式识别的直接方法(最大隶属度原则、阈值原则)解决问题时,其识别对象是论域 中的元素。另有一类识别问题,其识别对象也是 上的模糊集,这类问题可以用下面的择近原则来识别判决。择近原则:已知 个标准类型 、 、…、 , 为待识别的对象, 上的贴近度,若 则认为 与 最贴近,判定 属于 一类。例5 岩石类型识别岩石按抗压强度可以分成五个标准类型:很差( )、差( )、较好( )、好( )、很好( )。它们都是 上的模糊集,其隶属函数如下(图2-1)0 200 400 600 900 1100 1800 2000图 2-1今有某种岩体,经实测得出其抗压强度为 上的模糊集 ,隶属函数为(图2-3)。 图 2-3 试问岩体 应属于哪一类。计算 与 的格贴近度,得: 按择近原则, 应属于 类,即 属于“较好”类( 类)的岩石。例6 小麦亲本识别在小麦杂交育种过程中,亲本选择是关键。现有五种类型的小麦亲本,它们是: :早熟型, :矮杆型, :大粒型, :高肥丰产型, :中肥丰产型。判断小麦亲本类型的主要依据是以下五种性状特征: :抽穗期, :株高, :有效穗数, :主穗粒数, :百粒重。第 种类型亲本的第 个特征,是模糊集 ,这些模糊集除 (早熟型的抽穗期)与 (矮杆型的株高)外,其余都是中间型的正态分布模糊集。为简单计,将正态分布函数展开,取前两项作它的近似值,则有 于是 的隶属函数可表示为: 而 , 的隶属函数取为偏小值型: 为确定隶属函数中的参数值,在熟知的标准类型中,每类型选出 个新本为样本,分别计算各样本的第 个特征的均值 及方差 ,取 以上参数值见表(2-1)表 2-1亲本参数性状 早熟 矮杆 大粒 高肥丰产 中肥丰产抽穗期 - 株高 - 有效穗数 主穗粒数 百粒重 现有一待识对象 ,它的第 个特征 是中间型正态分布模糊集,隶属函数可近似表示为: 。式中参数值见表(2-2)表 2-2特性参数 抽穗期 株高 有效穗数 主穗粒数 百粒重 4 70 计算识别对象 的第 个特征与第 种标准类型对应特征 的格贴近度 并定义第 种标准类型 与识别对象 的贴近度为: 计算结果列于表(2-3)表 2-3 早熟( )矮杆( )大粒( )高肥( )中肥( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 表(2-3)的最后一行为 与各标准类型的贴近度。由于 与 的贴近度最高(),故判定识别对象 为 代表的类型,即 为中肥丰产类型的亲本。例7 遥感土地复盖类型分类遥感是根据不同的地物对电磁波谱有不同的响应这一原理,来识别土地复盖的类型。空间遥感的一个象元相当于地面公倾地物的综合。遥感图象识别分类中,要涉及不少模糊概念,例如,“以红松为主的针叶林”就是一个没有明确界线的模糊概念。这是遥感本身的特性决定的。因此用模糊数学的方法对遥感图象进行识别分类应该是行之有效的方法。美国爱达荷大学 教授指出,国际上当以水体、沙地、森林、城镇、作物、干草作为分类单位(即标准类型)时,空间遥感的分类精度可达甚至更高。但当分类单位深入到更小的土地复盖单元时,精度就不理想了。现在将分类单位细分阶段为以下五种标准类型: :公路, :村庄农田, :红松为主的针叶林, :阔、针混交林, :白桦林。对于多波段遥感技术,假设采用 个波段,则每一地物对应一个 维数据向量 。1975年1月22日美国发射LandSat-2,提供了MSS-4,5,6,7这四个波段的数据,故有 。取论域 其中 分别为象元对应于MSS-4,5,6,7各波段的光谱强度。于是五种标准类型 可表为 上的模糊集。由于各波段光谱强度是正态分布模糊集,故第 个标准类型的( +3)波段光谱强度的隶属函数为: 定义第 种标准类型 为: 因而 其中 为若干个第 种类型第( +3)个波段光谱强度的均值, 为方差,东北凉水林场的这些参数值见表(2-4)表 2-4标准类型 MSS-4 MSS-5 MSS-6 17 45 设 为识别对象,定义 与 的贴近度为: (1)其中 = ⊙ (2)表 2-5类型N识别对象 max 判别 结果 效果 正确 正确 正确 正确 正确按 及 ⊙ (3-26)(这里 与 是 的均值与方差)。现有东北凉水林场空间遥感象元(待识别对象)五个,按(1)与(2)计算它们与五个标准类型的贴近度,计算结果在表(2-5)按择近原则进行识别判决,准确率100%。例8 雷达识别现有 个雷达类,每个雷达类可用发射频率、脉冲重复频率、脉冲宽度等特征来刻画,假设共有 个特征,第 类雷达的第 个特征可以取 个值。由于保密的需要及信号环境的日益复杂,这些特征及其取值都带有一定的模糊性。设第 类 雷达的 个特征为 类雷达的第 个特征 取值为 ,其隶属函数为中间型柯西分布,即 设 为待识别对象,它的 个特征为 的第 个特征 的隶属函数也取中间型柯西分布: 采用格贴近度,令 则 为识别对象 的第 个特征与 类雷达第 个特征贴近程度的度量。一般情况可令 ( 是各 的加权平均值,权系数 表示 个特征的重要性程度) 可作为识别对象 与第 类雷达总贴近的度量。根据 的大小可判定 属于何类雷达,但是,由于权系数 的确定有一定的模糊性, 及 的隶属函数的确定带有一定的主观性,从而导致贴近度 有一定的模糊性。因此对 及 进行模糊化处理,设 这里 , 都是 模糊数(见第五章),取 。令 的隶属函数为 则 为识别对象 与第 类雷达的贴近程度的模糊测度。为得到 所属雷达类别的确切判决,类似于阈值法则,给定水平值 ,令 若 且 唯一,则判定 为 类雷达;若 且 ,则判定 为 类雷达。用上述方法(将权系数及贴近度模糊化),经上千次仿真试验,比传统的贴近度及线性加弘平均法,误判率有所下降。第三章 模糊规划§3-1 模糊极值一、有界函数的模糊极值设 ( 为实数集) 是有界函数,求函数 的普通极值问题是求 使 满足上式的 为 在 上的最大值点, 为最大值,最大值点不一定唯一. 设 的一切最大值点的集合为 称 为 的优越集.当 时,函数在 处取到最大值 , 使 达到最优.当 时, 虽不是最大值,但对不同的 , 与最大值的差异有所不同,也就是说,对于不属于 的 ,它们的“优越性”程度有所不同,为了反映 中各点不同的优越程度,将优越集 模糊化,并利用它将极值模糊化.定义1设 是有界函数,定义 的隶属函数为 ( ) 称 为 的无条件模糊优越集称 的 的无条件模糊极大值.这里 ,它的求属函数按扩张原理为 (约定 )注 (1)当 为 的极大点,即 时 ,当 为 的极小点,即 时 , 充分必要条件是 (2)当 时, 当 时, 当 时, 因此, 反映了在模糊意义下, 对 的模糊数大值的求属程度.例1 设 , ,定义 , , , ,则 , 并且 于是 又 故 的无条件模糊极小集 定义为 的无条件极大集,显然有 且有, ,所有极小集 是极大集 的余集.二、模糊约束下有界函数的模糊极值设: 是有界函数, ,考虑 在 约束下的最大值问题,这是一个模糊规划问题,求解这个问题意味着既要最大限度地满足约束,又要最大限度地达到理想目标,为此定义如下:定义2 设目标函数 是有界函数, 是模糊约束,令 这里的 是定义1中 的无条件模糊优越集,称 为 在 约束下的条件模糊优越集,称 为 在 约束下的条件模糊极大值.它们的求属函数分别为:求解目标函数 在模糊约束 下的条件极大值有如下三个步骤: (1)求无条件模糊优越集 (2)求条件模糊优越集 (3)求条件最佳决策,即选择 ,使 就是所求的条件极大点, 就是在模糊约束 下的条件极大值.例2采区巷道布置是矿井开拓中的重要内容,其目的就是建立完善的矿井生产系统,实现采区合理集中生产,改善技术经济指标.因此,合理地选择最优巷道布置方案,对于矿井生产具有十分重要的意义.根据煤矿开采的特点和采区在矿井生产的作用,在选择最优巷道布置方案时,要求达到下列标准:(1)生产集中程度高; (2)采煤机械化程度高;(3)采区生产系统十分完善; (4)安全生产可靠性好;(5)煤炭损失率低; (6)巷道掘进费用尽可能低.上述问题,实际上就是一个模糊约束下的条件极值问题,我们可以把(1)~(5)作为模糊约束,而把(6)作为目标函数.设某矿井的采区巷道布置有六种方案可供选择,即 ={ (方案Ⅰ), (方案Ⅱ), (方案Ⅲ), (方案Ⅳ), (方案Ⅴ), (方案Ⅵ)}.经过对六种方案进行审议,评价后,将其结果列于表1方案评价项目 :生产集中程度高较低 高 较高 很高 较高 较高 :采煤机械化程度高高 较高 较高 高 很高 高 :采区生产系统完善一级 较低 较低 很高 高 较高 :安全生产可靠度高较低 一般 较低 高 一般 高 :煤炭损失率低高 较高 一般 一般 一般 很低 : 巷道掘进费用(万元) 将表1中的语言真值(评价结果)转化为各模糊约束集 , 的隶属度转化的对应关系如下:对 , , , 而言,对应关系为:很 低 较 低 一 般 较 高 高 很 高 对 而言,对应关系为很 低 较 低 一 般 较 高 高 很 高 将表1中的巷道掘进费用目标函数 用公式 计算出,因此得表2 其值语言与隶属函数转换表2方案 0 1 计算模糊判决集 为 (按列求最小) 由 根据最大求属度原则,方案四最优例3 在某种食品中投放某种调味剂,每公斤食品中的含量设为 克,对顾客爱好作调查统计,得爱好函数为 对于使爱好函数值越大的 值,所制产品越畅销,因而收益越大,但是由于成本核算等等原因,对 值需要进行限制,这种限制集合的边界是模糊的,即 的约束条件为一模糊集 ,其隶属函数为 试确定合理的剂量 ,使得在接受约束的条件下,获得最优收益.解 这是一个规划问题,分三步进行.(1) 求无条件模糊优越集 ,由于 ,令 ,得 .又当 时, , 时, ,因而 , .因此 (2) 求条件模糊优越集 其中 满足方程 (3) 选择 ,使 ,即 对目标 的可能度为,而要实现这种可能性,应选择调味剂的最佳剂量为克.需要说明的是,在本例中如果将约束条件确切化,以 的核[0,1]为约束,这是一个普通规划问题,所得结论是选择最佳剂量为1克.从约束条件看,已是100%遵守,但所能达到的最高目标相对整个目标函数来说是很低的,由 ,说明相对整个目标来说,其优越程度仅达.如果把条件放松为模糊约束条件 ,且适当降低 的水平,却可以获得较好的目标值.如例中的结果,当 时,从接受约束条件来看虽仅达,但目标函数的优越程度也升到了,从而提高了整体优化水平.由于在实际问题中,约束条件往往不是绝对的,有一定的伸缩性,模糊规划的思想就是利用这点灵活性,兼顾目标函数与约束条件综合地选择最优方案.例4 植物的种植密度与产量有密切的关系.已知某种杉树的种植密度 与产量 的关系如下: 这里 表示每公顷土地上种植的棵数, 表示每公顷土地产出木材的体积.现有一片杉树森林,其密度不均匀,估计 “大约是三千”.试估计该森林每公顷木材最高产量.解 设 表示“大约是三千”这一模糊, 的隶属函数为 估计木材产量的问题,就是求在 的约束下函数 的模糊条件极大值.为此先求有界函数 的无条件模糊优越集.因 , ,所以 在约束条件 下的条件模糊优越集为: 条件模糊极值为 ,其隶属函数为: 为求条件最佳决策 ,即满足条件 的 注意到 的隶属函数曲线是单调降的,而 是正态分布模糊集, 在约束 下的模糊最佳决策(即模糊条件极大点),是方程 的两个根当中的较小者,解之得 .由 可知, 时,接受约束的程度为,同时,相对于整体目标函数,优越程度也是.由 可知,该森林每公顷木材最高产量估计为 .§3-2 模糊线性规划一、普通线性规划普通线性规划的一般形式为 目标函数 约束条件 矩阵表达形式 其中线性规划问题的标准形式 (3-1) 二、模糊线性规划在实际问题中,有时线性规划的约束条件带有模糊性,这就是解谓的模糊线性规划,其模型为这是“ ”表示一种弹性约束,可读作“近似小于等于”.“近似小于等于”是一个模糊概念,可以用一个模糊集来表示它. 表示第 个约束的左边表达式,模糊集 表示“ ”这一事实,当 时,完全接受约束,应有 ;适当选择一个伸缩系数 ,约定当 时,不认为 ,这时应有 ;当 时, 应从1下降到0,表示约束程度降低.为了简单可行, 规定如下:设 ,对每一个约束 ,相应地有 中一个模糊渠 与之对应,它的隶属函数为其中 是适当选择的常数,叫做伸缩指标, ,这样一来,我们将弹性约束转化成模糊约束,再令 就将全部约束条件转化成一个模糊约束.当 时, 退化为普通约束集 ,模糊约束条件中“ ”退化为“ ”模糊线性规划的模型简记为 (3-2)约束的弹性必然导致目标的弹性,为将目标函数模糊化,先求解普通线性规划问题: 满足 (3-3)以及 满足 (3-4)其中 称为(3-2)的伸缩指标向量.设 是(3-32)的最优值, 是(3-4)的最优值. 所满足的约束条件为 ,对应的模糊约束 .若适当降低模糊约束的隶属度 ,可以相应提高目标函数值 , 所满足的约束条件已放到最宽 ,对应的模糊约束 也接近于0.于是目标函数的弹性可表示为 .为此构造模糊目标集 .其隶属函数为其中 由模糊目标的上述隶属函数可知,当 时, ,要提高目标函数值使之大于 .就必须降低 .为了兼顾目标与约束,可采用模糊决策为 ,最佳决策为 , 满足 若令 , 则有 于是求最佳决策 的问题,就转化为求普通线性规划问题:即 (3-5) 求解上述普通规划问题,可得最佳决策 目标函数值 . 例5:求解模糊线性规划问题 (3-6) 解 (一)解普通线性规划(二)解普通线性规划 (三) 解普通线性规划 解 这个线性规划采用大 法 原线性规划改写为 ∴ 从而(3-4)的最优值 例6某企业根据市场信息及自身生产能力,准备开发甲、乙两种系列产品.甲种系列产品最多大约能生产400套,乙种系列产品最多大约能生产250套.据测算,甲种产品每套成本3万元,每套获纯利润7万元;乙种系列产品每套成本2万元,每套获纯利润3万元.生产甲、乙两种系列产品的资金总投入大约不能超过1500万元.在上述条件下,如何安排两种系列产品的生产,才能使企业获利最大?解 设甲种系列产品生产 套,乙种系列产品生产 套,则目标: 约束: (3-7)设约束条件(1)、(2)、(3)的伸缩系数分别取为 (元), (套), (套).为将目标函数模糊化,解经典线性规划问题使 (4)用单纯形法求解,得 , , 再解经典线性规划问题 (5)解得 , , 于是 将 、 、 、 、 代入(3-5),将原问题经为经典线性规划问题: 使 上述线性规划问题最优解为 , , .因此安排甲种系列产品403套、乙种系列产品159套(取整数)时,能获得最大利润,最大利润为: 万元对比经典线性规划问题(4),利润提高万元,这是因为甲种系列产品403套比400套多3套;乙种系列产品生产159套比150套多9套,这是在伸缩指标允许范围内.总费用 元虽然比1500超出27元,这也是伸缩指标允许的.以上讨论说明,在适当放松约束时可以提高利润.

数学家庭中的一对孪生兄弟 ――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形 1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。 2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形 1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。 2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形 2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!

模糊数学论文题目

利用除法来比较分数的大小 今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

***统计方法的应用

1、倒向随机微分方程数值方法与非线性期望在金融中的应用:g-定价机制及风险度量2、分形市场中两类衍生证券定价问题的研究3、在机制转换金融市场中投资者的最优消费和投资行为分析4、商业银行金融风险程度的模糊综合评价5、金融保险中的若干模型与分析6、金融印鉴真伪识别新方法研究7、基于区间分析的金融市场风险管理VaR计算方法研究8、分形理论及其在金融市场分析中的应用9、离散时间随机区间值收益市场下的定价分析10、金融学理论及其未来发展趋势--转向整合11、微分方程数值解法及在数学建模中的应用12、金融模糊模型与方法13、模糊数学在储蓄机构设置中的应用14、金融市场中的时间变换方法及其应用15、从数学走进生活的创新教育16、为何经济学无法预测金融危机17、金融资产的离散过程动态风险度量研究18、论金融衍生工具及在我国商业银行信贷风险管理中的应用19、基于VAR模型的江苏省金融发展与经济增长关系研究20、货币危机预警模型研究21、在银行和金融业数据分析中应用数学规划模型22、随机过程理论在期权定价中的应用23、金融保险中的几类风险模型24、数学金融学中的期权定价问题25、金融资产收益相关性及持续性研究26、同伦分析方法在非线性力学和数学生物学中的应用27、存货质押融资的供应链金融服务研究28、金融机构资产负债管理模型及在泉州银行的应用29、社保基金投资资本市场:理论探讨、金融创新与投资运营30、量子方案的金融资产投资最优组合选择31、房价调控的数学模型分析32、基于小波分析的金融数据频域分析33、非线性数学期望下的随机微分方程及其应用34、竞争性电力市场中的金融工程理论与实证研究35、小波理论及其在经济金融数据处理中的应用36、四种金融投资风险介绍37、扩展的欧式期权定价模型研究38、基于可疑金融交易识别的离群模式挖掘研究39、华尔街的数学革命40、辽宁城乡金融发展差异对城乡经济增长影响的实证研究41、衍生金融工具风险监控问题探析42、金融危机之信用失衡43、基于西部金融中心建设目标的成都金融人才需求预测研究44、基于小波变换的金融时间序列奇异点识别模型与研究45、我国区域金融中心发展路径与模式研究46、我国农村金融供给不足问题的探讨47、金融发展对江西经济增长的影响48、基于金融自由度的香港人民币离岸市场反洗钱研究49、商业银行信贷市场的非对称信息博弈及基于Agent的SWARM仿真50、金融危机背景下企业并购投资决策体系研究

模糊数学课程论文

随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。

一、高等数学在地方高等职业教育中遇到的问题及解决办法

(一)数学师资力量短缺,教师学历偏低

地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高

目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

(三)高等数学课程设置不合理,教学与实际应用脱节

由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。

二、总结

高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。

一、网络教育高等数学的现状分析

1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。

2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。

二、网络教育高等数学的教学初探

教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:

1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。

2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。目录简介名称来源数学的意义数学史数学研究的各领域数学的分类数学的五大分支数学分支数学分类数学的发展史国外数学名家阿基米德高斯牛顿莱布尼茨中国古代数学发展史中国古代数学的萌芽中国古代数学体系的形成中国古代数学的发展中国古代数学的繁荣中西方数学的融合中国古代著名数学家及其主要贡献刘徽(生于公元250年左右)祖冲之(公元429年—公元500年)中国古代其他著名数学家及其主要贡献以华人数学家命名的研究成果数学名言数学中有关的名词现代数学衍生品简介 名称来源数学的意义 数学史数学研究的各领域数学的分类 数学的五大分支 数学分支 数学分类数学的发展史国外数学名家 阿基米德 高斯 牛顿 莱布尼茨中国古代数学发展史 中国古代数学的萌芽 中国古代数学体系的形成 中国古代数学的发展 中国古代数学的繁荣 中西方数学的融合中国古代著名数学家及其主要贡献 刘徽(生于公元250年左右) 祖冲之(公元429年—公元500年) 中国古代其他著名数学家及其主要贡献以华人数学家命名的研究成果数学名言数学中有关的名词现代数学衍生品展开 编辑本段简介名称来源 数学【shù xué】(■;希腊语:μαθηματικ?)西方源自于古这一词在希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。编辑本段数学的意义 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 编辑本段数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。编辑本段数学的分类 离散数学 模糊数学数学的五大分支 1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学数学分支 1.算术 2.初等代数 3.高等代数 4. 数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学数学分类 符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。编辑本段数学的发展史 世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”编辑本段国外数学名家阿基米德 阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。高斯 数学天才——高斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。牛顿 牛顿是英国物理学家和数学家。 在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。一天在树下闲坐,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有贡献。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 浩瀚的真理海洋,却还完全是个谜。”莱布尼茨 戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。编辑本段中国古代数学发展史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

数学建模小论文5000字

在我空间里面有,你去看下吧,就是历年的论文。希望你看得懂

历年优秀论文要不?

我参加过两次建模比赛,也拿过奖,我有很多资料,包括自己写的论文,需要的话我发给你

随着我国基础 教育 课程改革的不断深入,数学建模越来越受到重视,在小学数学中的地位也逐渐显著。下面是我带来的关于小学数学建模小论文的内容,欢迎阅读参考!小学数学建模小论文篇1 浅谈小学数学教学中的数学建模 什么是数学建模呢?下面我从两个方面谈谈小学数学教学中的数学建模。 一、从建模的角度解读教材 小学数学教材中的大部分内容已经按照数学建模的思想编排,即“创设问题情境——对问题进行分析——建立数学模型——模型应用、拓展”的模式,只是大部分数学教师还没有意识到这一点。数学教师首先要从数学建模的角度解读教材,充分挖掘教材中蕴含的建模思想,运用建模思想创造性的解释运用教材。 例如人教版三年级上册,第一章“测量”的第一节“毫米的认识”这一内容,书中是这样编排的: 1、通过插图创设问题情境:(1)、让学生估计数学书的长、宽、厚大约是多少厘米,再让学生测量“数学书的长、宽、厚的长度”。(2)、学生汇报测量的结果:“我量出的宽不到15厘米,还差------”,“我量出的宽比14厘米多,多------”,“数学书的厚不到1厘米是------”这里让学生量的数学书的宽和高都不是整厘米,学生不会表述。(3)、小精灵提出数学问题:“当测量的长度不是整厘米时,怎么办?” 2、将实际问题数学化,建立数学模型: 当测量的长度不到1厘米时怎么办呢?这时学生就会产生“有比1厘米更短的长度单位吗?”的念头,然后教师启发学生:“数学家们把1厘米平均分成10格,每1小格的长度叫1毫米,请同学们看自己的直尺,数一数1厘米的长度里有几小格?1厘米里有几毫米呢?”。在这里教师一定要帮助学生建立“毫米”这个数学模型的概念。 3、解释、应用与拓展: (1)、请同学们看实物1分钱硬币,它的厚是1毫米。(2)、让学生再次测量数学书的宽、厚各是多少?(学生测量后汇报:宽是14厘米8毫米,厚是6毫米)。(3)、请同学们说一说生活中的哪些物品一般用“毫米”作单位? 二、让学生亲身经历数学模型的产生、形成与应用过程 小学阶段的数学建模重在让学生体验建模的过程。从学生亲身经历的现实问题情境出发,将实际问题数学化,使学生经历数学模型建立的过程,再运用建立的数学模型解决实际问题。例如人教版六年级上册“圆的周长”一课教师可以这样设计。 1、让学生亲身经历问题产生的过程: 出示主题图:一个学生绕着圆形花坛骑自行车。教师提出问题“骑一圈大约有多少米?”。自行车绕着圆形花坛骑一圈的轨迹是一个圆,它的长度就是这个圆的周长(如果忽略自行车行走时与花坛的距离)。学生产生疑问:怎样才能知道一个圆的周长呢?什么是圆的周长? 2、让学生亲身经历猜测、分析、验证的过程: (1)、师:请同学回忆什么是周长?正方形、长方形的周长怎么求?与什么有关系? (2)、师:什么是圆的周长?同桌互相指一指自己桌面上的圆形物体的周长。 (3)、师:猜想圆的周长与什么有关?(生1:我认为圆的周长与半径有关,自行车的半径越大车轮就越大。生2:我认为圆的周长与直径有关,圆形花坛的直径越大圆形花坛的周长就越长。) (4)、学生动手验证自己的猜想 a、请同学拿出课前准备的学具(两个大小不同的圆,一个直径5厘米,另一个直径10厘米),同桌合作分别量出两圆的周长,验证生1与生2的猜测是否正确。 b、学生汇报交流自己测量的结果,并谈谈自己的看法。(生1:我用细绳绕直径是10厘米的圆一周,然后量出细绳的长大约是厘米。生2:我在作业本上画了一条直线,让直径是5厘米的圆沿直线滚动一周,量出一周的直线长大约是厘米。生3:我认为刚才我们的猜想是正确的,直径是10厘米,周长大约是厘米;直径是5厘米,周长大约是厘米。直径越大周长越长,直径越小周长越短,所以圆的周长与直径、半径有关。) 3、让学生亲身经历数学模型(圆周率π)的产生过程 刚才同学们已验证了圆的周长与直径有关,那么它们到底有怎样的关系呢? (1)、师:正方形的周长是边长的4倍,猜猜圆的周长与直径有倍数关系吗?如果有,你认为是几倍?仔细观察下图后回答。 (2)、师:同学们的猜想有道理吗,让我们利用前面测量过的圆的直径与周长的数据来算一算圆的周长是直径的几倍,学生计算后汇报交流。(生1:第一个圆的周长与直径的比值是:÷10=,第二个是:÷5=。生2:我发现周长与直径的比值都是3倍多一些,难道它也和正方形的一样,比值是个固定值吗?)师:你的猜想太对了,发现了一个数学秘密。一个圆的周长与它的直径的比值是一个固定值,数学家们把它叫做圆周率,用字母π表示。 (3)、介绍中国古代数学著作《周髀算经》与数学家祖冲之1500年前就计算出圆周率应在和之间的 故事 。然后课件呈现:π是一个无限不循环小数,再呈现小数点后面4百位的分布情况。 师:π的小数部分有很多位数。为了计算方便,一般把它保留两位小数,取近似值。刚才同学们用自己测量的周长与直径算出的比值分别是和,虽然存在误差,但是老师认为你们已经很不错了,不仅发现了圆的周长与直径有关,而且还发现他们的比值是一个固定值。 4、让学生归纳、 总结 、应用圆的周长计算公式 师:既然圆的周长与它的直径的比值是一个固定值π,那么圆的周长怎样求?(生:圆的周长=直径×π)。请同学们利用公式计算“骑一圈大约有多少米?”【量得圆形花坛的直径是20米,学生计算×20=(米)。】 反思 :建构主义认为,知识是不能简单地进行传授的,而必须通过学生自身以主动、积极的建构方式获得。这里从贴近学生的生活背景出发,提出“绕着圆形花坛骑一圈大约有多少米?”的问题,到“怎样求圆的周长”,再到学生不断地猜想验证“圆的周长与直径有关”,“圆的周长与它的直径的比值是一个固定值”,最后得到“圆的周长计算公式”这个数学模型,学生亲身经历了猜测、分析、验证、交流、归纳、总结的过程,实际上这就是一个建立数学模型的过程。在这个建模过程中培养了学生的初步建模能力,自觉地运用数学 方法 去发现、分析、解决生活中的问题的能力,培养了学生的数学应用意识。 小学数学建模小论文篇2 浅谈小学数学的数学建模教学策略 摘 要:小学数学的“数学建模”是教学方式中新的改革亮点。近年来许多学校都陆续展开小学数学的“数学建模”活动。希望通过积极的实践为小学数学教育总结出一条全新的教育模式。 关键词:小学数学;数学建模;教学策略探究 数学教育是引导学生形成具有缜密逻辑性的思想方式。建立和解析数学模型能够有效提高学生的数学学习热情,降低数学学习的难度,使学生运用数学知识更加轻松自然。然而,在小学的数学教育内容中,就已经包含许多初级的数学模型。所以,在研究“数学建模”的过程中,教育界的学者们认为,小学的“数学建模”需要注意三个方面:小学“数学建模”的意义与目标;小学“数学建模”的定位;小学“数学建模”的教学演绎。 一、小学“数学建模”的意义与目标 1、小学“数学建模”的意义 小学的“数学建模”活动早已经有学校展开研究。从目前研究资料来分析,小学数学建模是指:学生在教师设计的生活情景之中,通过一定的数学活动建立能够解读的数学模型并以此为学习数学的基本载体,进行学习相关的数学知识。 小学数学建模在建模目的、活动方式、背景知识三方面,与传统数学模型存在较大差异。(1)建模目的方面:小学的数学建模目的是让学生了解数学知识,通过数学模型掌握新吸收的数学知识和争强对数学知识的正确应用,使学生在潜移默化中形成数学思考能力。(2)活动方式方面:小学的数学建模是为了培养学生的学习数学兴趣和更好掌握数学知识的教学方式,所以在教学活动方式上需要教师精心设计活动内容,由教师引导逐渐参与和体会数学世界的丰富和与现实生活的紧密联系。(3)知识背景方面:小学的数学建模,是在小学生毫无数学基础的情况下进行构建数学模型,所以在小学的数学建模中,需要简单的数学知识,以此为学生的数学知识结构打下良好基础。 通过上述三个方面的分析,小学“数学建模”的意义,在于通过数学教育方式的改进,引导小学生发现数学与生活的紧密联系,提高小学生对数学知识的兴趣,培养小学生数学思维能力和学习能力,为日后的数学学习打下结实基础。 2、小学“数学建模”的目标导向 小学的数学建模,其目标导向是培养小学生的建模意识。通过培养建模意识来提升数学思维能力,积累数学知识,提升数学素养。建模意识的培养需要通过挖掘教学内容中蕴涵的建模元素,采用教师引导、学生寻找、以生活内容加强记忆的方式,使学生掌握数学建模的过程和通过数学模型解决生活问题的能力,在不断反复的学习和锻炼中组建使学生提升数学建模的意识。 二、小学“数学建模”的定位 数学建模,是建立数学模型并且通过使用数学模型,解决生活中存在的数学问题,整体过程的简称。 如果通过大学或高中的教学视角审视数学建模,无疑会对学生日后学习和工作产生积极的影响。不过,从小学生的视角考虑数学建模,就需要特别注意建模的合理性定位,既不能失去数学建模的意义,又不能过于拔苗助长,导致教学效果的反向反弹。所以“数学建模”的定位要适合小学生的生活 经验 和环境,同时适合小学生的思维模式。 1、定位于 儿童 的生活经验 在小学对小学生的数学教学过程中,提供学生探讨研究的数学问题,其难易程度和复杂程度需要尽量贴近小学生的日常生活。在设计教学内容的时候,需要多设计小学生常见的生活数学问题,使学生因为好奇心而对学习产生动力,通过思考探索,体会数学模型的存在。 同时,在教学的过程中需要循序渐进,随着学生的年龄争长,认知度的加强,生活关注内容的变化,适时地增加数学问题的难度。在此过程中,既需要照顾学生们的学习差异性,又要尊重学生的学习兴趣和个性。 2、定位于儿童的思维模式 小学生的思维模式比较简单。在小学数学的建模过程中,需要根据学生的具体学习程度循序渐进,通过由简入深的学习过程,让学生具有充分的适应过程。只有适应学生思维模式的教学定位,才能使学生的数学意识得到提高,并且通过循序渐进的学习过程掌握运用数学模型解决实际问题的能力。 举例:在小学二年级,关于认知乘法和除法的过程中,将时间、路程、速度引入教学场景之中。学生跟随教师引导,逐渐发现时间与路程的关系,并且结合所学的数学知识,乘法与除法,找到了“一乘两除”的数学原型。从而使学生通过“数量关系”中,认知到生活与数学的关系。 三、小学“数学建模”的教学演绎 小学“数学建模”的教学演绎,主要分析以下两个方面。 1、在小学“数学建模”中促进结构性生长 因为小学生的 逻辑思维 能力还处于发展构成阶段,所以必须在数学建模教学过程中从学生的“逻辑结构图式”出发,充分考虑小学生的知识结构和认知规律,通过整合实际问题,从数学问题角度为学生整合抽象的、具有清晰结构认知性的,数学教育模型,从而使小学生能够直接清晰地对数学模型拥有直观深刻的认知。 2、在小学“数学建模”中促进学生自主性建构 在小学“数学建模”中教师需要引导和帮助学生,运用已学习的数学知识,构建具有应用性的数学模型。在教学过程中,教师需要对学生们习以为常的事物进行剖析,使事物露出具有吸引性的数学问题,通过激发学生的好奇心,引导学生探索生活中存在的数学问题,帮助学生发现生活中隐藏的数学问题和解决问题,最终促使学生能够独立自主地根据实际问题建立数学模型。 小学数学的“数学建模”是教学方式中新的尝试,它作为一种学习数学的方式、方法、策略和将生活与数学紧密联系的纽带,对引导学生更好的认识数学、学习数学、运用数学、具有十分积极的作用。小学生学习建模过程,实际就是锻炼逻辑思维能力的过程,对学生日后学习学习知识和 兴趣 爱好 都有显著的帮助。 参考文献: [1] 陈进春.基于数学建模视角的教学演绎[J].江苏教育,2013(4). [2] 储冬生.小学数学建模的分析讨论[J].湖南教育,2012(12). [3] 陈明椿.数学教育中的数学建模方法[J].福建师范大学,2014(1). 小学数学建模小论文篇3 浅析数学建模在小学数学中的应用 摘 要:小学阶段进行数学基础知识的教学时,适时适度渗透数学思想模式,不仅成为一种可能,也成为一种必需。学校教育由于长期受“应试教育”的影响,学生中存在着知识技能强,实际应用差的情况.为此,本文引入了“数学模型”这一概念,就此讨论如何帮助学生建立数学模型以及建立数学模型的意义,旨在促进学生的学习兴趣,提高他们的实际应用能力。 关键词:小学数学 模型 概念 应用 一、数学教学中数学模型应用的缺乏 数学课程改革的思路之一就是数学应强化应用意识,允许非形式化。事实上,数学课程中数学的应用意识早已成为发达国家的共识,而我国目前应用意识却十分淡薄,与世界数学课程的发展潮流极不合拍。 当前使用的数学教材中的习题多是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题,这样的训练,久而久之,使学生解现成的数学题能力很强,而解决实际问题的能力却很弱。教师要独具慧眼,善于改造教材,为学生创造一个可操作,可探索的数学情境,引领他们探索知识的生成过程,再现数学知识的生活底蕴。因此,引入“数学模型”这一概念。 二、概念界定 何谓数学模型?数学模型可描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构,而建立数学模型的过程,则称之为数学建模。 三、数学建模在小学数学中的应用 1、 让学生经历数学概念形成的过程,探索数学规律。《新课标》的总体目标中提出,要让学生“经历将一些实际问题抽象为数与代数的问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”让学生经历就必须有一个实际环境。学生在实际环境中通过活动体会数学、了解数学、认识数学。 在教学中“鱼段中烧”常常存在。没有在教学的应用上给予足够的注意和训练,即没有着意讨论和训练如何从实际问题中提炼出数学问题(鱼头)以及如何应用数学来满足实际问题中的特殊需求(鱼尾),很少给学生揭示有关数学概念及理论的实际背景和应用价值。为了避免这一情况,教师要帮助学生建立数感,在自己的水平上探索不同的数学模型。比如:在教学连减应用题时,可以让学生进行模拟购物。小售货员讲一讲自己怎样算帐,体会两种方法的不同:小强带了90元钱去买了一只 足球 45元,一只 排球 26元,要找回几元?大部分小售货员都这样算:先用90元钱去减一只足球的钱,再减去一只排球的钱,求出来的就是要找回的钱。算式是90-45-26=19(元)。也有一小部分售货员列出了这样的算式:45+26=71(元) 90-71=19(元)两种方法我都给予肯定,并总结:遇到求剩余问题的题目时都用减法来做。并总结出求大数用加法,求小数用减法的模型。学生只要在做题中知道求的是大数还是小数就可以了,从而培养了学生从数学的角度去观察和解释生活。 2、 开设数学活动课,重视实践活动,为学生解决问题积累经验。开设数学活动课,让学生自己动脑、动手解决问题,可以使他们获取数学实际问题的背景、情境,理解有关的名词、概念,有助于学生正确理解题目意思,建立数学模型,是培养学生主动探究精神和实践能力的自由天地。 比如:在上“几个与第几个”的拓展课时,出现一道题:从左往右数,小华是第9个,从右往左数,小华是第8个,这一排有多少人?在解这道题之前,我让一个组6个人站起来,数其中的一个人,发现就直接3+4=7,会多出一人来。为什么会这样?学生讨论后得出:其中的那个人多数一次了,要把他减掉。于是,得到一个模型:左边数过来的数+右边数过来的数-1=总人数。有了这个模型之后,解决这一类问题就容易多了。 3、 引导学生用图形解决问题,确立从代数到几何的过渡。代数与几何并不是孤立的两块。他们也有相通之处。我们可以用几何的观念来解代数问题。图形对于低段学生来说是更直观、更有效的形式。 例:让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用CAI课件或实物投影仪),学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往一个方向滚动,且上下两个底面是大小相同的圆面,抽象出“圆柱体”这一数学模型。这样通过向学生展示上述数学建模的过程,使学生知道数学来源于实际生活,生活处处有数学,在此基础上再引导学生把数学知识运用到生活和生产的实际中去。又如,在教学应用题时,我们往往借助线段图来解,将文字题有效地转化为图形,使题目变得浅显易懂。 四、数学模型在小学数学中的现实意义 1、 通过数学建模理论的学习研讨,有利于提高教师的数学素养。一般地说,在建模过程中,原始问题中的本质特征应被保留下来,当然也要简化,这种简化基于科学,而不完全基于数学,另一方面,一定的简化又是必须的,以便得到的数学体系是易处理的。这就需要教师必须具备精深的专业知识,能帮助学生建立准确的数学模型。 2、 建立数学模型能有效地激发学生的求知欲望。数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,更重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,学生更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识。 3、 数学建模是培养学生建模能力的重要途径。数学建模就是找出具体问题的数学模型,求出模型的解,验证模型解的全过程。由于小学生以形象思维为主,因此他们的数学模型大多和形象图有关。引导学生从画实物图、矩形图、线段图开始,逐步做到自觉主动地构建数学模型,并把它作为一种极好的解决问题的工具,使他们在这个过程中提高兴趣,增强能力。 4、 现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。 五、结束语 学生的建模思想的培养是长期的、复杂的过程,采用的方法是多样、灵活的。只要教师用心设计,耐心诱导,全体学生都能建立不同水平的数学模型。 猜你喜欢: 1. 数学建模教学相关小论文 2. 小学数学建模优秀论文 3. 关于小学数学建模论文 4. 学习数学建模心得体会 5. 小学数学教学小论文

相关百科

热门百科

首页
发表服务