我参加过两次建模比赛,也拿过奖,我有很多资料,包括自己写的论文,需要的话我发给你
历年优秀论文要不?
重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 1. 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据. 2. 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 3. 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要 表述:准确、简明、条理清晰、合乎语法。 字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表 简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。 在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。 5)在问题分析推导过程中,需要注意的: ▲分析要:中肯、确切; ▲术语要:专业、内行; ▲原理、依据要:正确、明确; ▲表述要:简明,关键步骤要列出; ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1) 最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。 当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 6.模型评价 优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献 限于公开发表的文章、文献资料或网页 规范格式: [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999. [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20-23. 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据 每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 1. 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 3. 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。 在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。 在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。
数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为米,单级楼梯的宽度为米,每级楼梯共有26级,楼梯口宽米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为 s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=××(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在 内才能完全疏散完毕。 设人员按照 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700= < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第(60+)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> f1 = (3400/ 8040) × 200 = 人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在(180+)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - ( – ) × = (人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 : f2 = (3400/8040) × 200 = (人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷ = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 120×3 = ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =×(~2)=~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
数学建模的话可以参考姜启源和韩中庚的《数学建模》,建模题目的类型这两本书上都有相关模型,论文的一般格式是:摘要、问题的提出、符号说明、问题分析、模型建立、模型求解、模型的评价与推广、参考文献、附录。还有点就是你的会计算软件,很多的题目手算是算不出来的。
下载一片获奖论文,之后的所有基本就都解决了吧!!
这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的
数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
小学数学是学生整个数学生涯的起步阶段,对于这个慢慢积累的过程而言,这个起始显得尤为重要。而小学四年级在这个起始阶段中又属于至关重要的一步。下面是我给大家推荐的小学四年级数学教学论文,希望大家喜欢!
《小学四年级数学教学方法浅谈》
摘 要:小学数学是学生整个数学生涯的起步阶段,对于这个慢慢积累的过程而言,这个起始显得尤为重要。而小学四年级在这个起始阶段中又属于至关重要的一步,作为小学四年级老师,“任重而道远”,必须要为了学生今后的发展呕心沥血,寻找最合适的教学方法。只有采取策略,打造一个全新的小学四年级数学课堂,发挥课堂教学的意义,才能帮助每个学生学好数学,成长成才。
关键词:小学四年级 数学 教学方法 浅谈
中图分类号: 文献标识码:A 文章编号:1003-9082(2015)07-0157-01
小学四年级的学生,虽然说还是孩子,但是也算是大孩子了,肯定不再像一、二年级那样什么都不懂,但是当然也没有初中生那般懂事。这时,老师作为孩子们学习道路上的引路人,就应该要发挥这种指明灯的作用,对教学工作进行深入思考,找寻最合适的教学方法,对学生起到帮助作用。小学四年级数学,对于这个年龄阶段的孩子来说,是比较难的,而且它又不同于语文,不是仅靠记忆力就能学好的,它需要极强的逻辑思维能力以及足够的耐心,还要有百分百的热情,愿意主动去学,只有做到了这些,学生才能学好数学。在课堂教学中,我们会发现,很多学生不喜欢数学课,不愿意认真听讲,课堂教学发挥不了它应有的效果,无法起到教学大纲规定的作用。针对这种情况,老师亟需改变现状,一定要设计适宜当前教学环境的教学模式,让学生在数学课上真的学到知识,发挥课堂教学的最大有效性。
一、教师转换在课堂上的角色
在传统教学中,总是认为老师的讲课质量最重要,在很多人看来,只有老师学识渊博,讲的课好,给学生传播的知识多,学生才能学好。的确,好的老师对于学生而言非常重要,但是,学生学习成绩的好坏,不能完全依赖于老师,还有学生本身的责任。老师只是一个引路人,这条路该怎么走,终究是要看学生自己。所以,要想教好学生,尤其是小学四年级的学生,就必须要转换教师在课堂上的角色,要让学生知道他们才是课堂的主人翁,要培养他们的主动性。数学这门课,若非主动去学,若是没有兴趣,遑论学好,所以只有将学生作为课堂的主体,而不是过于依赖老师,才会真正帮助学生。例如,北师大版小学四年级数学教材中会学到《认识图形》,在这节课上,老师会带领学生认识三角形、正方形、长方形、菱形等这些图形。按照传统教学方法,应该是老师一味地讲,告诉学生这都是什么图形,让他们牢牢记住。事实证明,这样的方法根本起不到良好的教学效果。要想发挥教学意义,就必须要转变老师的角色,将学生视为课堂主体。在教学过程中,老师多让学生自己去看、去说,让他们联系生活,向大家解释什么是三角形,什么是正方形,它们都有什么样的特征,我们该如何辨别。通过学生自己对这些问题的探讨,他们会印象深刻,学到的自然也就更多。如此,充分尊重学生的主体地位,转换教师在课堂上的角色,实现课堂教学的价值[1]。
二、注重提高学生实践操作能力
数学是一门工具性学科,它是学好其他学科的基础。所谓的工具性,自然也就是体现在它的实践方面。小学四年级学生,虽然较一、二年级懂事,但是终究还是孩子,活泼好动是孩子的天性。老师需要了解这点,懂得利用他们的这种特征,为课堂教学服务,才会真的有利于学生的学习和成长。也就是说,老师应该让学生有动手操作的机会,在“动”中学习。一个真正的高效课堂,就需要展示学生真实的学习过程,这种真实性该如何展示,当然是用实践了,因为“实践是检验真理的唯一标准”。所以,在实际教学中,老师需要注重提高学生的实践操作能力,多给他们动手的机会,让身体和大脑一起运动,这样才会达到事半功倍的效果。例如,北师大版小学四年级数学教材中有一课是《认识方程》,这是学生开始接触方程的第一步,这时教得好,学生今后对这方面才会熟稔。对于这个陌生的东西,老师在给学生讲课时,就可以从他们的兴趣出发,多给他们自己动手的机会,在实践中进行学习。比如给他们20根木棒,分成两堆,一堆14根,一堆6根,要想让两边达到平衡,一样多,该加多少根。老师可以让学生将这个“多少”视为“X”,然后问他们下一步该怎么做。引导他们列出“6+X=14”这个方程。因为前期有自己动手操作这个环节,学生的兴趣就被激发出来了,下面的学习对他们而言,关注度自然也会上升。通过这样的教学方法,让小学四年级学生喜爱数学课。
三、数学“读”百遍,其义自现
古人云:“书读百遍,其义自现。”这句话说明了“读”的重要性,在很多人眼里,认为“读”是语文、英语这些语言学科、或者说文科性学科的特色,而像数学这样的理科性学科,是需要大量做题的,通过“题海战术”才可以真的学好。这种传统观念非常不对,凡事都没有绝对,语文也可以通过做题提升学习能力,同理,数学也可以通过“读”进行学习。很多学生不会做题,就是因为对题目不熟,没懂它的意思,不知道该从何下手。针对这样的情况,老师可以让学生“读”数学,多读几遍,自然就明白是什么意思了。这时,再对其进行学习,自然是水到渠成,轻松简单很多。例如,北师大版小学四年级数学教材中会学到《线与角》,这是一课比较难学的内容,而且内容比较复杂繁琐,对于四年级学生而言,学习过程相对而言也比较吃力。会发现他们有很多知识都看不懂,不明白到底是什么意思。在这一课,会对“线”有一些初步认识,会学到“平移与平行”、“相交与垂直”、“旋转与角”,还有“角的度量”以及“画角”等,总之内容很多,而且还是不容易理解的。老师这时候要鼓励学生多“读”,那样才会明白这些名词都是什么意思,该怎么学。如果单纯地只靠做题,认为多做就能学好,根本不可能。这一课还不像别的,通过做题可以熟能生巧,这么庞杂的内容,要是没有很好的理解,真的无法学好。相反,如果学生“读”得多了,其义自现,豁然开朗地明白了它的意思,那么学好这一课不在话下。通过这样的教学方法,提高小学四年级学生的数学学习能力,帮助他们学好数学[2]。
结束语
小学四年级数学,对于学生的整个学习过程而言,是非常重要的一步。这时候的学生,需要老师的帮助,带领他们打开那扇神奇的数学之门,培养他们的数学兴趣,提高他们的数学素养。老师应该要转换在课堂上的角色,充分尊重学生的主体性,注重提高学生的实践操作能力,要让学生“读”数学,懂得其中内涵。通过这些教学方法,让小学四年级数学课堂活起来,为学生创造一个良好的学习环境,培养他们成才。
参考文献
[1]刘宗莲,改革教法、创新学法――浅谈小学四年级数学教学,[J]《新教育时代电子杂志(教师版)》2014(11)
[2]王彦福,浅谈提高小学四年级数学课堂教学效益,[J]《教育教学论坛》2010(8)
点击下页还有更多>>>小学四年级数学教学论文
作为小学数学教师,让四年级的学生写数学的小论文,对于学生的成绩提高有很大的作用。下面是我为大家整理的 四年级数学 小论文,供大家参考。
【摘要】要:新课改出台后,新的课程教学标准对小学数学教学也作了新的要求。如何在新课改背景之下采取有效的 教学 方法 和策略,提升数学教学效果,是摆在所有数学老师面前的问题。本文以小学数学四年级教学为对象,深入探讨了新课改背景下,教师转换身份角色、注重学生数学 逻辑思维 能力和实践操作能力的培养对提高数学教学效果的重要作用。
【关键词】四年级数学角色思维能力实践能力
随着新课程改革的不断深入,小学数学教学更加突出地体现出义务 教育 所具有的普遍性、基础性和发展性特点。小学数学课堂的改革也呈现出蓬勃的趋势。越来越多的数学教师逐渐对“合作、自主、探索”的课堂教学模式表示认可和推崇,切实践行了新课程改革中“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”的要求。小学四年级起着连接低年级与高年级的作用,是学生能否建立起学习的兴趣,顺利向小学高年级过度的重要阶段,因此,如何提升课堂教学效果,进而提高小学四年级数学教学质量是摆在所有数学教师面前的重要课题。
(一)要敢于并善于做出教师角色转换
长期以来,因为应试教育根深蒂固的影响而形成的教育教学模式已不能适应教育发展需要。作为小学教师,要提高数学教学质量,首要的是敢于做出自身教师角色的转换,在课堂教学上要进行创新,重视学生能力、 学习态度 以及 创新思维 的培养。摒弃传统教学中教师单纯地讲,学生被动地听这种填鸭式的教学方式。通过丰富多彩的课堂教学模式。发动学生的学习积极性,让学生在课堂教学中讨论、探讨,实际动手操作,相互帮助,真正树立学生是课堂核心的观念。
具体而言,要实现教师角色转化,应注意以下方面。一是要切实转变数学教学观念。随着新课程改革理念的提出,新时期的数学教师要切实转变传统的填鸭式教学模式。教师应发挥引导作用,尝试着让学生进行课堂分组讨论和合作,在此基础上进行评价和指导,教学效果必定会有显著的改变。二是数学教师要进一步加强自身知识素养,由单一型教师向综合型教师转变。数学教师不能针对数学教学而只讲数学教学,实际上,教师的知识素养应当包括专业知识素养、 文化 知识素养和教育知识素养等方面的内容。新课程改革背景下,数学教学可能涉及多门学科和知识,也就要求数学教师要尽力完善自身知识结构以适应新课改背景下教师教学要求。为此,数学教师要以继续教育为契机进一步拓宽自身获取文化知识资源载体的 渠道 ,提升自我的知识素养,在课堂教学中展现出综合教学能力,引导学生快速成长。三是要由课堂的主导者转向引导者,作知识平等的交流者和朋友。新课改背景下,教师要敢于改变传统高高在上的身份,走下讲台,深入学生之中,与学生一起探讨、交流,合作学习。真正坚持“以学生为本”,将课堂主动权交还给学生,发挥学生的教学主体作用。通过教师主导者向引导者身份的转变,逐渐建立起民主、平等的新型和谐师生关系,使学生在愉快轻松的氛围中学习到知识。四是要由教学的灌输者转变为服务者。为此,数学教师要充分利用课堂,创造条件,使学生充分发挥主观能动性参与到合作学习当中去。要采取激励机制,鼓励学生在课堂上勇于表达自己的思想。同时要善于倾听与评价学生提出的问题,并引导学生作出正确的解答。在这个过程中,进一步鼓励学生敢于表现、敢于质疑,建立起批判性思维。
通过笔者的试验,教师经过上述角色转化后,数学教学的课堂效果发生了明显的改变,学生的学习积极性显著提高了,课堂氛围更加活跃,学生课堂参与性更强。因此,在小学教育阶段,尤其是四年级数学的课堂教学中,教师角色的转换体现了素质教育要“以学生为本”的教育原则,是切实符合新课改要求和改革理念的。
(二)积极培养学生的数学逻辑思维
著名教育家赞可夫曾指出:“在数学教学中要始终注意培养学生的逻辑思维能力,培养学生的思维灵活性和创造性。”培养学生的逻辑思维能力是义务教育中的一项基本和重要任务,也是提升课堂教学效果的重要前提之一。数学逻辑思维能力的培养要从小就开始,具体而言,可以从以下方面着手培养学生的数学逻辑思维能力。一是思维能力的培养要贯穿于各年级的数学教学中。小学数学教师要明确各年级阶段都担负着学生思维能力培养的任务,尤其是作为承上启下的四年级,数学思维能力的培训更显重要。数学思维能力的培养要从一开始就有意识的进行,例如培养学生比较能力,可以从认识物体大小、长短、多少等方面着手;培养学生抽象、概括能力则可以从学习十以内数的加、减着手等等。数学教师在教学活动中,需要引导学生通过实际操作、观察等方式,逐步进行比较、分析、综合、抽象、概括,培养相应的思维能力。二是学生数学思维能力的培养要贯穿于每一堂课的学习中。数学思维能力时时刻刻都需要进行有意识的培养,不管是在开始的复习中,还是在教学新知识的过程中,或是在组织学生练习习题中,都要结合具体教授的内容有意识地进行培养。在教学新知识时,要引导学生去分析、推理,最后归纳出正确的结论或计算法则,这是比单纯得出答案更为重要的教学方法。三是要在数学各部分内容的教学中贯穿思维能力培养。具体来说,就是要在教学数学概念、计算法则、解答应用题或操作技能等内容时,都要注意培养学生的思维能力。因为从数学教学角度来讲,任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。在教授每一个数学概念时,都要注重通过实例或者实物引导学生分析、比较并寻找出共同点、不同点,揭示概念的本质特征,进而做出正确的判断。
总的来说,数学思维能力的培养是一个长期的过程,但在小学四年级的教学中,又显得极为重要。思维能力一旦较好的建立起来,对学生今后更进一步的学习是大有裨益的。
(三)注重培养学生的实践操作能力
实践活动是学生学习成长的重要途径之一,也是学生形成实践能力的载体。针对四年级学生的年龄特点,在数学教学中应当注重通过实践操作的方式,培养学生的动手能力、主动参与意识和勇于创新的学习能力。通过实践能力的培养,使学生在亲自动手的实践体验中领悟数学,学会想象和创造,有力地摆脱了数学的枯燥乏味,培养了学习数学的兴趣,提高了学生的学习积极性。
参考文献
[1]丁始,马玲译.教师角色[M].北京:中国轻工业出版社.2002
[2]姚艳琼.激活课堂教学提高学习兴趣[J].课程教材教学研究:教育研究版,2007(4)
[3]周洪伟.提高初中数学复习课有效教学的若干策略[J].成功:教育,2010(8)
【摘 要】作为新课程改革所提倡的重要 学习方法 之一,合作学习方法被越来越多的教师应用在课堂上,在发挥积极作用的同时,存在着形式化、泛化的倾向,因此,对小学四年级数学课堂合作学习有效性进行研究具有重要的意义。本文首先提出了合作学习的概念,阐述了合作学习的意义,小学数学合作学习应具备的条件及小学数学合作学习有效发挥的制约因素,最后提出了提高小学四年级数学课堂合作学习有效性的策略。
【关键词】小学数学;合作学习;有效性
作为一种重要的学习方法,合作学习应用于所有学科的教学活动中,数学具有抽象性、严谨性和广泛应用性的特点,给合作学习提供了广泛的应用空间。目前,新课程改革所倡导的合作学习方法已广泛应用于小学数学教学中,但教师在实际应用过程中,还不能发挥合作学习的最大功效,仅流于形式,如何理解合作学习的真正含义,使合作学习发挥最大功效,本文结合现状对小学四年级数学课堂合作学习有效性问题进行初步探讨。
一、合作学习的基本概况
(一)合作学习的概念
相关文献表明,合作学习按照主要取向归结为四类:师生互动、师师互动、生生互动和全员互动。以生生互动为特征的数学合作学习是指在既定的教学内容下,课堂上遵循合作学习的基本原理和基本方法,学生在小组中通过互动等方式,共同学习,最终实现学生认知、情感等全面发展的一种教学活动。
数学合作学习有效性是指:从结果上看,通过合作学习,取得了明显的效果,学生学习成绩显著进步;从过程上看,通过合作学习,学生提高了学习效率,教师提高了教学效率;从长远影响上看,通过合作学习,学生提高了学习数学的兴趣,掌握了学习数学的方法,学生的内在潜能和创新能力得到全面发展。
(二)开展合作学习的意义
美国当代著名教育评论家埃利斯和福茨说过:合作学习如果不是当代最大的教学改革的话,那么它至少也是其中最大的一个。他充分肯定了实施合作学习的意义:一是学生通过合作学习,互 相学 习、互相帮助,在共同完成学习任务的同时,培养了学生的合作意识和合作精神,为学生以后融入社会打下良好的基础;二是以小组合作学习这种方式,给学生营造一个轻松的学生氛围,学生可以充分发表自己的看法,能够激发学生的积极主动性,展现学生的个性,体现学生在课堂上的主体地位。
(三)小学数学课堂合作学习应具备的条件
并不是所有的合作学习都是有效的,只有具备一定的条件,合作学习才是有效的。首先要具备良好的教学环境,包括科学合理的座位安排及和谐的学生氛围等,一般情况下,合作学习都是根据座位进行分组的,教师在座位安排时要充分考虑学生的知识结构、文化背景、性格差异等,同时,小组成员之间建立起良好的关系,给学生营造一种融洽、和谐的氛围。选择合适的教学内容是合作学习有效的基础,不是说所有的教学内容都适合使用合作学习的方法,合作学习的内容要综合考虑课程类型、所涉及知识领域及学生当时的学习氛围等因素。学生独立思考是合作学习有效的关键,合作学习的过程是学生进行独立思考后,通过互相讨论实现再认识、再提高的过程,如果没有独立思考,就不能真正参与其中,不能实现个人的发展,因此,合作学习需要学生独立进行思考。
(四)小学数学课堂合作学习有效发挥的制约因素
部分教师对合作学习的概念理解不到位,把合作学习简单的看成是小组学习,使合作学习流于形式,不能真正发挥作用。在小组合作学习过程中,有些教师没有找准定位,要么是过多干预,影响了学生的独立思考,要么是不给予适当的指导,导致部分小组讨论偏离主题、效率不高。此外,学生的年龄、心理特征、合作意识及合作技巧的掌握也是影响合作学习有效开展的制约因素。
二、提高小学四年级数学课堂合作学习有效性的策略
(一)为合作学习创设良好的环境
合作学习要想有效的开展,要保障有良好的环境,包括开展合作学习所取得的认可和课堂上合作学习的氛围。为合作学习创设良好的环境,需要有学校、家长及社会的支持,学校和社会要为合作学习投入一些教学设备,保障物质需求,家长要与教师积极配合,完成学生合作学习的预习及复习任务。
(二)教师和学生都要掌握一定的合作技巧
教师在明确教学任务的基础上,通过提出具有指向性的问题,把握合作学习的方向和进度,具备课堂组织和调控能力。教师在进行教学设计时,要充分考虑课程目标、学生特点、分组策略等因素。学生要想在合作学习中充分发挥主体作用,要进行 课前预习 ,搜集相关资料,提前思考,对问题有自己独立的见解,在课堂合作学习过程中,学生要具备倾听、思考、质疑的能力。
(三)处理好独立思考与合作学习的关系
教学中缺少必要的独立思考的合作学习将成为“无源之水,无本之木”。学生只有进行了独立的思考,才能融入讨论,参与合作探究,才能发表自己独特的见解,最终通过合作学习,达到一点即通、恍然大悟的效果。学生只有真正的独立思考,才能出现观点的针锋相对,才能找到问题的最佳答案,从而实现共享成果、共同进步、共同发展。
(四)关注合作学习小组的每一个成员,防止“搭车”现象
合作学习要让每一位学生都参与进来,感受集体的智慧和成功的喜悦。教师在进行分组时就要充分考虑小组成员的能力、个性、背景等差异,努力做到组内异质、组间同质,小组内成员优势互补,小组之间实力相当,这样既有利于学生之间互相帮助、互相学习,还能形成良好的竞争氛围。在进行合作学习的过程中,教师要有一定的指导和操控能力,小组讨论气氛不热烈时,及时予以指导,发现有“搭车”的成员,及时给予个别帮助,小组讨论气氛过于热烈时,及时予以提醒,使合作学习达到最佳的效果。
三、结论
综上所述,创设良好的环境,教师和学生具备一定的合作技巧,学生能够独立进行思考,并关注合作学习小组的每一个成员,防止“搭车”现象的出现,一定能够提高小学四年级数学课堂合作学习的有效性。本文对小学四年级数学课堂合作学习有效性的阐述还不够成熟,需要在以后的教学实践中不断完善。
【参考文献】
[1]朱智贤主编.心理学大词典[M].北京:北京师范大学出版社,1988:156.
[2]王坦.合作学习的理念与实施[M].北京:中国人事出版社,2003:2.
[3]杜和春.课堂教学中学生的独立思考与合作学习[J].教育艺术,2007(6):68.
【内容摘要】培养学生的数学学习兴趣是小学数学教育的重要任务之一,对提高学生学习数学的主动性和积极性有着极为重要的意义。本文以小学四年级为例,就如何提高学生的数学学习兴趣进行了探讨。
【关键词】小学数学 四年级 学习兴趣 数学教育
1 引言
兴趣是学生学习的源动力,是学生终身学习的支点,是影响学生注意力的重要因素,是建立和谐师生关系的楔合点。但如何培养学生的学习兴趣,如何让学生的学习兴趣得以保持,却一直是众多教师所面临的难点问题。小学四年级学生活泼好动,注意力不容易集中,开始产生逆反心理,小学四年级数学是一个重要的转折点,在内容量和难度上都有所增加,极容易影响学生的学习兴趣,因此必须注意学生学习兴趣的提高,帮助学生培养起可持续学习的动力,促进学生主动积极的参与学习,为学生的全面发展打下坚实的基础。下面,本文针对小学四年级数学教学,就如何提高学生的学习兴趣进行浅要的探讨。
2 小学四年级数学教材特点和学生年龄特点
小学四年级数学教材特点
相对于小学1~3年级的数学教材来说,四年级的数学教材在编写上,其内容更为丰富,更为注重算法的多样化,更侧重于培养学生灵活解决问题的能力,关注了学生学习方式的培养,注重学生自身的学习体验。丰富、系统、逻辑严密的数学知道需要学生有更好的知识基础与 抽象思维 能力,要求学生能举一反三的通过迁移类推来探索新的知识,逐步完成学生的知识体系结构。同时,小学四年级数学教材加强了数学知识同学生实际生活之间的联系,以帮助学生借助于实际活动和生活情境来理解、感受数学知识,在实践中探索数学知识,以培养学生灵活活的计算能力和解题能力。第八册教材,则将小数的相关知识作为了重点,逐步引起入四则混合运算,进一步提高学生的数感和计算理解能力,整体来看困难程度与复杂程度都有所提高,需要不断提高学生的思维方法与判断能力。
小学四年级学生年龄特点
从年龄特征来看,小学四年级学生是个性差别最大的时期,在这一阶段的学生生理方面出现了较大的差异,一部分学生身体发育已经接近中学生指标,一部分学生则还稍显迟缓同一二年级学生相当。在生理方面,由于家庭环境、教育引导等方面的原因,一部分学生心理发育较快开始变得老成,其视野更为开阔,思想更为成熟,已经开始阅读成人书籍,而一部分学生在心理上还明显落后。这种生理和心理方面的差异,给教师的教学带来了极大的影响。此外,小学四年级学生的自主意识呈现整体增强趋势,开始根据自己的 兴趣 爱好 做出自主的选择,独立自主能力更强,但其爱好还不够稳定,并不如成人一样具有稳定的自主选择能力。
3 如何提高学生的学习兴趣
针对小学四年级数学教材的特点和学生生理与心理发展的特点,小学四年级数学要提高学生的学习兴趣,可以从以下几个方面入手进行:
环境改善培养学生学习兴趣
良好的学习环境对学生的学习兴趣有着直接的影响,在小学四年级数学教学中,为学生营造一个良好的学习环境,对生理与心理日渐成熟的孩子们来说更是如此。要营造出良好的学习环境,必须注意多从平等、民主、和谐方面下功夫,一方面注意教师与学生的关系,改变传统的高高在上的教师教育观,让自己从神坛上走下来,与学生做朋友,真正的让学生成为学习的主体,创建和谐的师生关系。另一方面注意学生与学生之间的关系,多设计数学活动,包括如制作班级学习报、组织数学兴趣小组、让优生帮助差生等,促使学生与学生之间的关系更为和谐。其次,要从整个学习氛围上下功夫,多对学生进行思想教育,让学生认识到数学的重要性,认识到学习的重要性,但注意思想教育不是讲大道理,只有学生能听懂、能理解、能接受的道理,才会真正对学生思想造成影响。
情境创设激发学生学习兴趣
相对于语文学科来说,数学学科的知识显得较为枯燥泛味,极容易使学生失去兴趣,尤其是小学四年级数学在内容、难度等方面都有所提高,使得学生学习压力更大,更容易失去兴趣。要让数学课堂变得更为生动有趣,情境创设极为重要。在教学过程中,教师应当改变过去传授知识的不良习性,变为引导学生探索知识,在设计教学时就充分考虑,如何为学生创造出一个探索性的学习情境,让学生在探索性的学习情境中去主动、积极的发现问题、思考问题、解决问题,最终获得知识,而不是在教师枯燥单调的讲解中去接受知识。此外,将数学知识与实践活动进行联系,让学生在可操作、熟悉的情境下去学习数学知识,让学生去动手测量、亲自演示,在数学游戏中激发学生的求知欲望,也可以极好的调动学生的学习兴趣。
促进成功壮大学生学习兴趣
每个人都希望成功,都希望得到别人的认可和赞同,小学四年级学生更是如此。这一阶段的学生开始有了较强的自主独立意识,竞争心理不断加强,充分利用这一点给予学生成功的机会,让学生获得更多成功的体验,能极好的壮大学生的学习兴趣。让学生获得成功的体验,可以多组织各类竞赛、活动等,让学生在竞争环境中主动积极的投入最后获得成功的体验,也可以是在课堂上多发现学生的闪光点,从各个角度去鼓励学生让学生获得成功,也可以通过降低难度、区别对待的方法让学生获得成功体验。
4 结束语
兴趣对学生的学习极为重要,其影响不仅是在校期间,还影响着学生参加工作以后的终身学习,因此在教学中要注意学生学习兴趣的培养。对于小学四年级学生来说,要培养他们数学学习兴趣,教师必须深入的把握小学四年级数学教材的特点,深入的分析这一阶段学生的心理和生理特点,为学生创造一个良好的学习环境,从多个方面去培养并壮大学生的学习兴趣,使学生受益终身。
【参考文献】
[1] 王莹.小学数学学习兴趣的培养之我见[J].现代教育教学导刊,2012(09)
[2] 张飞飞.浅谈小学数学教学中学生学习兴趣的培养[J].新课程,2011(06)
[3] 秦福秀.对小学生数学教学的几点探讨[J].学苑教育,2011(05)
1. 数学小论文范文
2. 数学小论文的范文
3. 小学生数学日记优秀范文 四年级
4. 小学生数学教学小论文范文
5. 一年级数学小论文范文
巧用运算定律快乐无限一镇头小学四年级4班数学手抄报四年级数学手抄报4四年级数学报图片 四年级数学手抄报图片巧手小工匠一四年级数学手抄报优秀作品展示巧手小工匠一四年级数学手抄报优秀作品展示美丽的数学一一四年级数学手抄报比赛初一上册数学知识点手抄报五年级数学手抄报苏教版四上数学知识点手抄报数学知识手抄报巧手小工匠一四年级数学手抄报优秀作品展示数学四年级上册手抄报关于趣味数学四年级的手抄报怎么画趣味数学四年级手抄报框架苏教版数学5年级下册13单元手抄报四年级下册手抄报8003数学手抄报模板二三年级电子版趣味数学小学生四年级小报063大关于数学四年级的小报最简单数学手抄报关于四年级大数的认识数学手抄报 大数的认识手抄报-
四年级上册数学小报做法步骤如下:
1、首先在手抄报上方写出主题,并在底部画上波浪线,写上一些数字。
2、接着画出四个边框,边框的周围画上信箱、爱心、小朋友等插图。
3、开始涂色啦,我们先给主题涂红色,左边的树涂绿色,底部的波浪涂蓝色,数字涂彩色。
4、再来给四个边框分别涂上黄色、蓝色、青色和红色,插图也全部上色。
5、在四个边框中画上横线,彩色的线条更好看哦!
6、最后给整个手抄报的背景色涂上浅蓝色,漂亮的数学手抄报就完成啦!
数学小报内容
1、大数的认识:10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
2、多位数的读法:从高位数读起,一级一级往下读。万级的数要按照个级的数的读法来读,再在后面加一个万字。每级末尾不管有几个零都不读,其他数位有一个“零”或连续几“零”,都只读一个。
3、多位数的写法:从高级写起,一级一级往下写。当哪一位上一个计数单位也没有,就在哪一位上写0 。特别注意:多位数的读写都先划上分级线。
四年级万物有数学手抄报数学四年级手抄报四年级上册数学一二单元简单漂亮手抄报四年级上册手抄报四年级上册数学第八单元手抄报四年级上册手抄报状元里四年级数学手抄报大pk第1-3单元整理与复习四年级一班的数学手抄报四年级小数数学手抄报数学四年级手抄报四年级数学手抄报内容四年级上学期数学知识手抄报四年级上册手抄报数学四年级上册第六单元手抄报四年级上册手抄报四年级数学第一单元手新东方四年级上册手抄报 四年级上册手抄报数学三年级上册知识树手抄报三年级上册手抄报状元里四年级数学手抄报大pk第1-3单元整理与复习小学四年级学生如何学数学手抄报 小学四年级手抄报数学四年级手抄报模板及图片数学小驿站手抄报图片数学四年级小报内容手抄报数学四年级手抄报四年级数学上册第二单元手抄报 四年级数学手抄报2012年小学四年级数学手抄报数学手抄报图片四年级下册第四单元
历年优秀论文要不?
数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为米,单级楼梯的宽度为米,每级楼梯共有26级,楼梯口宽米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为 s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=××(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在 内才能完全疏散完毕。 设人员按照 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700= < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第(60+)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> f1 = (3400/ 8040) × 200 = 人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在(180+)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - ( – ) × = (人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 : f2 = (3400/8040) × 200 = (人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷ = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 120×3 = ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =×(~2)=~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。
听数学建模课的感想今年,我选修了数学建模这门课,因为我感觉数学建模是非常有用的一门课,而且我对数学建模也非常感兴趣。在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。我相信,我会进步更多的!我永远不会忘了我的数学建模课!这是我写的,你看能不能用