首页

> 学术期刊知识库

首页 学术期刊知识库 问题

单晶硅的研究进展论文

发布时间:

单晶硅的研究进展论文

参考文献我这里倒是没有,不过我这里先确定你的硅是亲水性的,这是肯定的。你的审核人没有错!!!当然我不是你的审核人,你放心。因为我是做化工的,在蚀刻和显影这一块加硅的最主要的原因就是亲水,不会让水中的一些金属离子吸附!!主要就是保护设备的完整性,做到设备的使用寿命最大化。且用多久设备的内表面和管道都不会结逅,也就是喷嘴不会堵塞。

疏水。具体咋样,偶也不熟悉,希望自己找的文档对你会有帮助。非晶碳薄膜润湿性能的可控性研究 :以甲基三乙氧基硅烷(MTES)替代部分正硅酸乙酯(TEoS)作为前驱物,用溶胶一凝胶法制备了MTES改性二氧化硅溶胶和二氧化硅膜,研究了憎水基团的添加量对溶胶体系的稳定性和对二氧化硅膜润湿性以及水汽稳定性的影响.结果表明,随MTES/TEOS摩尔比增大,二氧化硅溶胶的稳定性降低,改性二氧化硅膜的表面自由能显著减小;表面润湿性降低,主要是表面张力中极性力的贡献,FTIR分析表明,这是由于二氧化硅颗粒表面一CH3非极性基团增加所致;在潮湿环境中陈化时,二氧化硅膜接触角的变化及吸水率随MTES/TEOS摩尔比增大而减小,疏水性二氧化硅膜的MTES/TEoS宜为0.8一1.0;AFM形貌分析表明陶瓷支撑体上的二氧化硅薄膜连续,膜表面较光滑、平整.关键词:二氧化硅膜;改性;润湿性;润湿性能是固体表面的重要特征之一,它是由表面的化学组成和微观几何结构共同决定的。无论是在工农业生产还是人们的日常生活中,润湿都是一种非常重要的现象,具有特殊润湿性和可控润湿性材料一直是人们关注的热点,比如超疏水材料(接触角大于150°)在窗户和天线的防雪防霜,汽车挡风玻璃的自清洁,以及生物细胞的活动等领域已经或者即将发挥极大的作用。作为一种经济适用并且环境友好的光电器件材料,非晶碳薄膜因其众多优良的特性而引起广泛研究兴趣。因此,辅之以特殊的润湿性能,非晶碳薄膜必将发挥更大的优势。 本文采用磁控溅射系统在普通玻璃和单晶硅上获得了具有不同表面形貌特征的非晶碳薄膜,此外利用等离子体表面处理系统,通过改进工艺方法,优化工艺条件,对非晶碳薄膜表面化学组成进行调控,获得了润湿性能从超亲水到超疏水范围变化的表面。系统地研究了工艺参数对非晶碳薄膜的表面结构以及润湿性能的影响,此外还对非晶碳薄膜润湿性能的环境稳定性进行了评估。 本论文的主要的研究工作进展如下:1.通过调控溅射工艺成功制备具有显著差异的表面形貌的非晶碳薄膜,其表面特征为从光滑平坦过渡到具有丰富的孔隙和极其复杂的皱褶的分形结构。而有趣的是,这种分形结构非常类似于自然界中荷叶的表面微观结构,这是目前在碳薄膜中首次发现具有这样特征的结构。对具有不同表面特征薄膜的润湿性能测试表明:仅仅通过工艺的调控,形貌的改变就可以使非晶碳薄膜的表面从非常亲水(接触角为40°)到超疏水(接触角为152°)大范围的浮动。 2.通过计盒分维法将不同形貌的薄膜定量描述。随着分形维数的增大,薄膜的表面具有更加复杂的结构,表面有更多和更精细的具有纳米尺度的凹凸、皱褶和缺陷结构,具有更大的吸附和容纳气体的能力,从而提高水滴薄膜表面的接触角。其中当沉积温度为400°C的时候,具有类荷叶的表面微细结构的分维达到了,而气体所占的分数为。 3.通过对具有特殊形貌的非晶碳薄膜进行CF4等离子体表面处理来调控其表面的润湿性能,优化处理工艺极大提高非晶碳薄膜表面的疏水性能,原来为弱疏水的表面(接触角为105°)变为超疏水表面,其接触角达到了162°。而氟化后的类荷叶状的表面与纯水的接触角达到168°,其接触角的变化范围为165°~171°。且在全pH(0~14)值范围内均展示了优异的超疏水性能,此外氟化处理后的非晶碳薄膜的超疏水性能表现了良好的热稳定性和耐久性;通过对非晶碳薄膜Ar、N2、H2等离子处理能够提高非晶碳薄膜的亲水性能,其中通过H2、Ar等离子体处理具有类荷叶表面的非晶碳薄膜时,其表面达到了超亲水性能,其接触角小于10°。 作 者: 周英 学科专业: 材料物理与化学 授予学位: 硕士 学位授予单位: 北京工业大学 导师姓名: 严辉 王波 学位年度: 2006 研究方向: 语 种: chi 分类号: TB43 O484 关键词: 润湿性能 非晶碳薄膜 超疏水 形貌 等离子体 机标分类号: TB43 O484 机标关键词: 非晶碳薄膜 润湿性能 等离子体表面处理 接触角 分形结构 超疏水性能 优化工艺条件 薄膜表面 表面特征 亲水性能 化学组成 荷叶 调控 表面形貌特征 磁控溅射系统 微观几何结构 汽车挡风玻璃 等离子体处理 超亲水 材料 基金项目: 参考文献(87条)1. 参考文献 2. R Blossey Self-Cleaning Surfaces-Virtual Realities 2003() 3. C L Low Friction Flows of Liquid at Nanopatterned Interfaces 2003() 4. 张立德.牟季美 纳米材料和纳米结构 2001() 5. 金美花 超疏水性纳米界面材料的制备及研究 [学位论文] 博士 2004() 6. V Y Controlling Droplet Deposition with Polymer Additives 2000() 7. 郑黎俊.乌学东.楼增.吴旦 表面微细结构制备超疏水表面 [期刊论文] - 北京工业大学 2004(17) 8. L Mahadevan Non-Stick Water 2001() 9. D Bico Slippy and Sticky Microtextured Solids 2003() 10. X Polyelectrolyte Multilayer as Matrix For Electrochemical Deposition of Gold Clusters:Toward Super-Hydrophobic Surface 2004() 像这样的专业性文章,在学校内网的图书馆都会各大数据库提供阅读和部分下载。

单晶硅建设项目具有巨大的市场和广阔的发展空间。在地壳中含量达的硅元素,为单晶硅的生产提供了取之不尽的源泉。 近年来,各种晶体材料,特别是以单晶硅为代表的高科技附加值材料及其相关高技术产业的发展,成为当代信息技术产业的支柱,并使信息产业成为全球经济发展中增长最快的先导产业。单晶硅作为一种极具潜能,亟待开发利用的高科技资源,正引起越来越多的关注和重视。 与此同时,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家正掀起开发利用太阳能的热潮并成为各国制定可持续发展战略斩重要内容。 在跨入21世纪门槛后,世界大多数国家踊跃参与以至在全球范围掀起了太阳能开发利用的“绿色能源热”,一个广泛的大规模的利用太阳能的时代正在来临,太阳能级单晶硅产品也将因此炙手可热。 此外,包括我国在内的各国政府也出台了一系列“阳光产业”的优惠政策,给予相关行业重点扶持,单晶硅产业呈现出美好的发展前景。 单晶硅性质;单晶硅具有金刚石晶格。晶体硬而脆具有金属光泽。能导电。但导电率不及金属。局随温度升高而增加。具有半导体性质。单晶硅石重要的半导体材料,在单晶硅中掺入微量的IIIA族元素。形成p型半导体。掺入微量的第vA族元素。形成N型和P型导体结合在一起。就可以做成太阳能电池。将辐射能转变为电能。在开发电能方面是一种很有前途的材料。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。发展趋势:日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,世界单晶硅材料发展将呈现以下发展趋势:1、微型化 随着半导体材料技术的发展,对硅片的规格和质量也提出更高的要求,适合微细加工的大直径硅片在市场中的需求比例将日益加大。目前,硅片主流产品是200mm,逐渐向300mm过渡,研制水平达到400mm~450mm。据统计,200mm硅片的全球用量占60%左右,150mm占20%左右,其余占20%左右。Gartner发布的对硅片需求的5年预测表明,全球300mm硅片将从2000年的增加到2006年的。日、美、韩等国家都已经在1999年开始逐步扩大300mm硅片产量。据不完全统计,全球目前已建、在建和计划建的300mm硅器件生产线约有40余条,主要分布在美国和我国台湾等,仅我国台湾就有20多条生产线,其次是日、韩、新及欧洲。%P 世界半导体设备及材料协会(SEMI)的调查显示,2004年和2005年,在所有的硅片生产设备中,投资在300mm生产线上的比例将分别为55%和62%,投资额也分别达到亿美元和亿美元,发展十分迅猛。而在1996年时,这一比重还仅仅是零。2、国际化,集团化,集中化 研发及建厂成本的日渐增高,加上现有行销与品牌的优势,使得硅材料产业形成“大者恒大”的局面,少数集约化的大型集团公司垄断材料市场。上世纪90年代末,日本、德国和韩国(主要是日、德两国)资本控制的8大硅片公司的销量占世界硅片销量的90%以上。根据SEMI提供的2002年世界硅材料生产商的市场份额显示,Shinetsu、SUMCO、Wacker、MEMC、Komatsu等5家公司占市场总额的比重达到89%,垄断地位已经形成。3、硅基材料 随着光电子和通信产业的发展,硅基材料成为硅材料工业发展的重要方向。硅基材料是在常规硅材料上制作的,是常规硅材料的发展和延续,其器件工艺与硅工艺相容。主要的硅基材料包括SOI(绝缘体上硅)、GeSi和应力硅。目前SOI技术已开始在世界上被广泛使用,SOI材料约占整个半导体材料市场的30%左右,预计到2010年将占到50%左右的市场。Soitec公司(世界最大的SOI生产商)的2000年~2010年SOI市场预测以及2005年各尺寸SOI硅片比重预测了产业的发展前景。4、硅片制造技术进一步升级 半导体,芯片,集成电路,设计,版图,芯片,制造,工艺目前世界普遍采用先进的切、磨、抛和洁净封装工艺,使制片技术取得明显进展。在日本,Φ200mm硅片已有50%采用线切割机进行切片,不但能提高硅片质量,而且可使切割损失减少10%。日本大型半导体厂家已经向300mm硅片转型,并向μm以下的微细化发展。另外,最新尖端技术的导入,SOI等高功能晶片的试制开发也进入批量生产阶段。对此,硅片生产厂家也增加了对300mm硅片的设备投资,针对设计规则的进一步微细化,还开发了高平坦度硅片和无缺陷硅片等,并对设备进行了改进。 硅是地壳中赋存最高的固态元素,其含量为地壳的四分之一,但在自然界不存在单体硅,多呈氧化物或硅酸盐状态。硅的原子价主要为4价,其次为2价;在常温下它的化学性质稳定,不溶于单一的强酸,易溶于碱;在高温下化学性质活泼,能与许多元素化合。 硅材料资源丰富,又是无毒的单质半导体材料,较易制作大直径无位错低微缺陷单晶。晶体力学性能优越,易于实现产业化,仍将成为半导体的主体材料。 多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。硅材料市场前景广阔,中国硅单晶的产量、销售收入近几年递增较快,以中小尺寸为主的硅片生产已成为国际公认的事实,为世界和中国集成电路、半导体分立器件和光伏太阳能电池产业的发展做出了较大的贡献。[

太阳能电池行业主要上市公司:目前国内太阳能电池制造行业的上市公司主要有通威股份()、隆基股份()、中利集团()、晶澳科技()、协鑫集成()、东方日升()、中来股份()、航天机电()、亿晶光电()、爱旭股份()、天合光能()、拓日新能()、爱康科技()、亚玛顿()等。

本文核心数据:太阳能电池产业链、中国太阳能电池产量、太阳能电池出口情况

产业概况

1、定义分类:太阳能电池是光伏行业重要一环

太阳能电池又称为“太阳能芯片”或“光伏电池”,是一种利用太阳光直接发电的光电半导体薄片。它只要被满足一定照度条件的光照到,瞬间就可输出电压及在有回路的情况下产生电流。

根据半导体材料的不同,可以将太阳能电池分为晶硅太阳能电池和薄膜太阳能电池。晶硅电池是研究最早、最先进入应用的第一代太阳能电池技术,按照材料的形态可分为单晶硅电池和多晶硅电池,其中单晶硅电池根据基体硅片掺杂不同又分为P型电池和N型电池。目前应用最为广泛的单晶PERC电池即为P型单晶硅电池,而TOPCon、异质结、IBC等新型太阳能电池技术主要是指N型单晶硅电池。

2、产业链剖析

我国光伏行业于2005年左右受欧洲市场需求拉动起步,十几年来实现了从无到有、从有到强的跨越式大发展,建立了完整的市场环境和配套环境,已经成为我国为数不多、可以同步参与国际竞争并达到国际领先水平的战略性新兴产业,也成为我国产业经济发展的一张崭新名片和推动我国能源变革的重要引擎。太阳能电池属于光伏产业整体的一环,太阳能电池制造行业下游产业主要光伏发电市场,上游则主要是原材料行业。

目前,我国太阳能电池行业参与者众多,在上游太阳能电池配件行业有福莱特、通灵股份、安彩高科和明冠新材等;上游太阳能电池原材料行业则有众合股份、中环股份和有研新材等;中游电池制造行业,则有阿斯特、隆基、东方日升、中来股份等多家国内外知名企业。

产业发展历程:行业发展愈发成熟

我国太阳能电池行业发展大致经历了四个阶段,目前我国太阳能电池行业随着光伏行业整体技术的不断成熟,国家补贴的不断滑坡,行业发展逐渐进入成熟阶段,行业发展从过去依赖国家补贴逐渐向以市场需求为主导转变,企业通过规模化,产业化发展,整合行业,从而获取超额收益。

上游供给情况:中国多晶硅产量持续增长

我国多晶硅产业2005年以来在政策推动下起步,一路历经产能过剩、淘汰兼并,行业集中度不断提高。部分先进企业的生产成本已达全球领先水平,产品质量多数在太阳能级一级品水平。据中国光伏协会统计数据显示,2012年以来,我国多晶硅产量持续增长,2020年,全国多晶硅产量为万吨,同比增长。

下游发展情况:光伏发电量仍保持较快增速

据国家能源局统计数据显示,2015年以来,我国光伏发电量增长迅速。2015年,全国光伏发电量仅为392亿千瓦时,到2019年,全国光伏发电量2238亿千瓦时,同比增长。2020年我国光伏发电量为2605亿千瓦时,同比增长,虽近年来增速有所放缓,但仍保持着较高增长。

产业发展现状

1、供给:太阳能电池产量不断创新高

从我国太阳能电池生产数量来看,我国太阳能电池产量从2015年以来波动增长,2020年受疫情影响,行业产量增速也仅是较2019年小幅下降,2021年1-11月,我国太阳能电池产量已达到万千瓦,已超过2020年全年的数据。

2、需求:光伏发电装机容量不断增长

我国太阳能光伏行业虽起步较晚,但发展迅速,尤其是2013年以来,在国家及各地区的政策驱动下,太阳能光伏发电在我国呈现爆发式增长,据国家能源局统计数据显示,2017年,我国光伏发电新增装机容量为,创历史新高,2018年,受光伏531新政影响,各地光伏发电新增项目有所下滑,全年新增装机容量为,同比下降。受国家光伏行业补贴、金融扶持等政策影响,2020年光伏装机量大幅回升,2020年,全国光伏发电新增装机,同比增长。

从累计装机容量来看,据国家能源局统计数据显示,2013年以来,我国光伏发电累计装机容量增长迅速。2013年,全国光伏发电累计装机容量仅为,到2020年已经增长至。在2013-2020年,全国光伏发电累计装机容量已超过10倍增长。截至2021年前三季度,全国光伏发电累计装机。

3、出口:太阳能电池出口数量不断增长

从出口情况来看,我国是光伏产业大国,2015-2021年我国太阳能电池出口数量逐年增加,尤其是2019年,行业出口快速增长。根据海关总署数据显示,2015年我国太阳能电池出口数量仅有63249万个,到了2019年增加到245273万个,较2018年同比增长。截至2021年11月,我国太阳能电池出口数量已经达到291927万个,已超过2020年全年数量。

产业竞争格局

1、企业竞争:我国光伏企业数量众多

从企业品牌竞争来看目前我国太阳能电池行业竞争格局根据企业经营范围可以分为光伏一体化组件生产企业和专业电池生产厂商,两种类型企业均具有代表企业。

目前,我国太阳能电池制造行业上市企业数量众多,其中隆基股份在太阳能电池产量相比于其它企业有较大的领先。太阳能电池产业产业链上的其它代表性企业产能/产量情况如下:

注:统计的企业为公布相关产能/产量数据的上市企业,未公布具体产能/产量数据的上市企业未纳入统计中。

2、区域竞争:行业发展主要集中在华东地区

自2015年以来,我国太阳能电池的产量规模逐年提升,产业主要集中在华东地区。2020年,我国太阳能电池产量最多的地区是华东,占全国产量的,西南地区产量为,排名第二。在各省市中,江苏省产量最多,为万千瓦,是浙江产量的近两倍;浙江产量排在第二位,为万千瓦;安徽产量排名第三,为万千瓦。

产业发展前景及趋势预测

1、 产业将进入整合阶段

“十四五”规划提出要构建现代能源体系,推进能源革命,建设清洁低碳、安全高效的能源体系,提高能源供给保障能力。大力提升光伏发电规模,加快发展东中部分布式能源,建设一批多能互补的清洁能源基地,“十四五”期间非化石能源占能源消费总量比重提高到20%左右。

2021年5月11日,国家能源局发布《关于2021年风电、光伏发电开发建设有关事项的通知》,明确提出2021年全国风电、光伏发电发电量占全社会用电量的比重达到11%左右,后续逐年提高,确保2025年非化石能源消费占一次能源消费的比重达到20%左右。

随着我国太阳能电池行业的快速发展,光伏技术的不断成熟,太阳能电池产品发展将趋于智能化、轻量化和集成化;而行业补贴的不断滑坡,将不断促使行业的市场化发展,因此降低成本仍将是行业发展未来几年的主题,并且在这一大背景下,行业整合将进一步加剧,企业间兼并重组事件数量预计将大幅增加。

2、需求将推动行业产量持续快速增长

前瞻认为2021年我国太阳能电池行业产量将随着碳中和碳达峰政略的落实以及全球对环保能源需求的快速增加,从而继续保持高增长,行业产量将突破23000万千瓦。在随后的几年,我国太阳能电池行业虽然将受国家补贴下滑的负面影响,但由于整体绿色能源市场需求潜力巨大,因此太阳能电池需求仍将快速增长,而更多的则是行业内部的兼并重组,企业通过这一形式获取规模收益。前瞻预计2027年,我国太阳能电池产量将达到85000万千瓦,年复合增速约30%。

以上数据参考前瞻产业研究院《中国太阳能电池行业市场前瞻与投资战略规划分析报告》。

单晶硅回收价值研究论文

[目录]1、废弃电池回收、处理刻不容缓2、对废电池污染评价3、国外电池处理回收概况4、 国内废弃电池回收处理概况5、 治理废弃电池污染之我见[原文] 废弃电池对环境的污染正渐为国人所重视。人们一直在寻求技术上可行、经济上可取的科学处理方法。废电池的回收、处理利用是一项系统工程,应根据中国的国情建立有效的无害化管理机制,国家要从政策上给予扶持,建立健全法规,完善回收、处理运行体系,无公害的再利用方法须进一步论证、研究和开发。分析了各种废弃电池对环境的污染;报导了国内外回收、处理废弃电池的情况;结合国情提出了治理电池污染的对策。"地球只有一个",保护环境,爱护地球,给子孙后代留下一片蓝天和碧水,是全世界人民所向往并为之奋斗的共同目标。废弃电池对环境的污染已是一个不争的事实,关注电池的回收再利用,发展无污染、无公害的“绿色”化学电源产品已是时代要求和大势所趋,也是电池产品可持续发展的必由之路

废旧物品回收,往往可以重复利用资源,保护环境,变废为宝。我们还可在家里设置三个分类垃圾筐 家庭垃圾通常可以分为:一、可回收物,包括废纸、废塑料、废玻璃、废金属等;二、不可回收物,包括灰土、菜叶、瓜果皮核等厨房余物;三、有害物,包括电池、荧光灯管。在家里分设三个垃圾筐,就可以在产生垃圾的同时完成垃圾分装。 每月卖一次废塑料废品、废纸、废玻璃、金属 不少废塑料可以还原为再生塑料,而所有的废餐盒、食品袋、纺织袋、软包装盒等都可以回炼为燃油。 1吨废塑料=600千克汽油 每张纸至少可以回收两次。办公用纸、旧信封信纸、笔记本、书籍、报纸、广告宣传纸、纸箱纸盒、纸餐具等在第一次回收后,可再造纸印制成书籍、稿纸、名片、便条纸等。第二次回收后,还可制成卫生纸。 铝制易拉罐再制铝,比用铝土提取铝少消耗71%的能量;回收一个玻璃瓶节省的能量,可使灯泡发亮4小时。旧物资回收能够节能环保,防止对地球发生过多的消费垃圾,我们可以把糟蹋了的废旧物品回收进行一定的程序回收利用,对环境保护,以节省资源,促进资源的循环利用作出最大的贡献。 随着我们的发展和时代的进步,人们对环境质量的要求也越来越高,因此保护生态环境、提高环境质量,成为当今普遍关注的问题。1.买充电电池 我们日常使用的电池是靠化学作用,通俗地讲就是靠腐蚀作用产生电能的。当其被废弃在自然界时,这些物质便慢慢从电池中溢出,进入土壤或水源,再通过农作物进入人的食物链。用完的干电池攒到30公斤后,可联系废旧物资回收站。2.充分利用白纸,尽量使用再生纸 用过一面的纸可以翻过来做草稿纸、便条纸。拒绝接受那些随处散发的宣传物,制造这些宣传物既会大量浪费纸张,又会因为随处散发、张贴而破坏市容卫生。再生纸是用回收的废纸生产的。一吨废纸=800千克再生纸=17棵大树。使用再生纸已经成为时尚,人们以出示印有“再生纸制造”的句片为荣耀,以表明自己的环境意识和文明教养。

可以变成新衣服,新包装袋,新书,新杂志等。可回收垃圾就是可以再生循环的垃圾。本身或材质可再利用的纸类、硬纸板(Pappe)、玻璃、塑料(plastics)、金属、人造合成材料(Kunststoffen)包装,与这些材质有关的如:报纸、杂志、广告单及其它干净的纸类等皆可回收。另外包装上有绿色标章是属于要付费的DualeSystem,亦属于可回收垃圾。主要包括废纸、塑料、玻璃、金属和布料五大类。废纸主要包括:报纸、杂志、图书、各种包装纸、办公用纸、纸盒等,但是纸巾和卫生用纸由于水溶性太强不可回收。塑料主要包括各种塑料袋、塑料包装物、一次性塑料餐盒和餐具、牙刷、杯子、矿泉水瓶等;玻璃主要包括各种玻璃瓶、碎玻璃片、镜子、灯泡等;金属主要包括易拉罐、金属罐头盒等;布料主要包括废弃衣服、毛巾、书包、布鞋等。扩展资料在一次排放中大多数工业产品均为可回收垃圾。不可回收垃圾是指无法进入材料再生、资源化的部分,例如生物垃圾如厨余垃圾,花草树枝树叶,污染污渍严重的纸张等。随着技术进步不可回收垃圾的范围逐渐缩小。例如以色列生活垃圾一体化处理 ,德国将落叶树枝处理成花肥出售。对比垃圾回收效益较好国家,德国将个人生活中排放的垃圾分为 纸张以及硬纸板,金属以及塑料,电池,废旧电器、电子产品,生物垃圾,剩余垃圾,房屋垃圾(包含废旧家具,涂料等)。此基于回收工艺。比如如果纸类制品经过打碎、去色制浆等多种工序为新的纸类产品。金属和塑料一般经过焚烧-冷却-磁选-涡流电选等工艺,生产电能、再生金属以及废渣。废渣中重金属离子量低的可以直接堆埋或者作为建筑材料使用。重金属离子含量高的部分必须封闭式堆埋,成本(50-70欧元/m2

1.电池回收的尴尬 当许多刚刚懂事的孩子,用小手小心翼翼地把电池放进电池回收箱之时,当北京百所大学联手回收电池的活动搞得如火如荼之时,当民间回收电池热情高涨,一对父女为回收电池,足迹遍布大半个中国、登世界屋脊捡电池赢得无数掌声之时,人们有没有想到,倾注无数人多年心血回收来的电池,都堆积在我国各个城市的某个角落里,几百吨上千吨的电池,默默地等待着处理,却无人理会它们。 在沉睡中腐烂 北京市从1998年开始回收废旧电池,废旧电池回收箱遍布全市。无论哪个回收点,只要回收的电池够了30公斤,打个电话,就会有车去把电池拉到集中存放地点。记者来到北京存放电池的二清集团,这里的一个垃圾站集中存放了几百吨的废旧电池,这些电池大都是一次性干电池,也有相当部分的充电电池。电池分装在七个集装箱中,已经占据了这个公司三分之一的非露天场地。废品站李站长从不同的集装中拿出一些电池,记者看到,这些电池已经开始腐烂了。就连最近收上来的电池,也表皮变软,渗出化学液体。 李站长说:“我们最发愁的是,这么多电池找不到下家!人家学生、市民辛辛苦苦地收集了送来,下边就没有人管了。这么堆放,什么时候是个头儿?这么多年,政府让我们回收电池,我们出车出人又出场地,可不能收上来就这么堆在这儿了呀!企业得讲经济效益。而且这么多电池集中在这儿,是不是也会威胁到工作人员的健康?”李站长说让记者给呼吁一下,赶紧给这些废旧电池找个“婆家”。记者问:“你认为谁来处理最合适?”李站长毫不犹豫地说:“谁污染,谁治理,生产一节电池,就应该交一份处理费!”不过,采访后,李站长还特地说:“要是没企业处理,我们还义务保存。” 网上公布了长长一串上海市回收旧电池的电活,网络满布全市。上海市集中回收电池的一位女士说,上海市3年来已经回收了100多吨旧电池,环保局说要等有条件的时候再处理;海口市环保部门有关负责人说,在无法处理这些回收上来的电池时,暂时存放在垃圾场比较安全的容器中;石家庄市有关部门对回收电池的热情很高,全市有1100个回收点,据说该市电池回收率是10%,高于全国大多数城市水平,目前石家庄的100多吨废旧电池都存放在密封的水泥箱中,里边还衬有塑料薄膜。 记者采访了许多城市的环保部门,都处于集中回收后的等待状况。 收还是不收——电池行业的激烈交锋 针对电池回收,我国电池行业有两派观点正在激烈争论。 一派认为集中回收一次性电池意义不大,在没有条件处理的情况下,集中回收会造成集中污染。一些专家认为,目前回收量最大的干电池,其主要成分是铁、锌、锰,还有微量的汞。这种电池汞含量不高,没有必要集中回收。铅酸蓄电池和对人体健康危害非常大的镍镉电池应该回收。高汞电池中的汞含量只有电池总量的千分之一,随垃圾填埋后,电池里的重金属进入填埋场渗液数量非常小,并不构成污染。而回收处理废旧电池成本过高,从经济角度看无利可图,何况在回收过程中还可能产生二次污染。 中国电池协会有关负责人说,目前我国的一次性干电池已经基本做到低汞化,正在迈向无汞化,随垃圾分散处理不会对环境产生威胁。更应该做的是从生产龙头上消灭污染,即实现无汞化。由于回收一性电池的费用很高,没有经济杠杆刺激企业来回收利用一次性电池,事情很难办。需要回收的是那些对环境污染大的充电电池及铅酸电池。一些专家还举例说目前一些发达国家也不集中回收一次性电池。 环保部门有关负责人认为,既然要达到无汞化,那么对一次性电池的回收不支持也不反对。这种观点,似乎是对目前我国民间回收电池巨大热情颇有意味的嘲讽。 另一种观点认为,无论哪类电池,都必须坚持回收。 这派观点的专家认为,虽然1997年我国轻工总会、国家经贸委等九部委联合发出《关于限制电池汞含量的规定》,要求电池制造企业逐步做到降低电池汞含量,2002年达到低汞水平,2005年达到无汞化。但我国的现状是,绝大部分民用电池是一次性电池,而且电池的无汞化进程并不乐观。据调查,目前我国1000多家电池生产企业中,在中国电池协会注册的仅300多家。虽然大电池企业生产的电池目前都做到了低汞化或无汞化,但大量小企业生产的电池还存在高汞现象。河北省干电池检验站高级工程师张虎说,目前我国电池含汞量参差不齐,有的质量非常好,小于百万分之一;有的极差,高于低汞电池标准的20倍,高于无汞电池标准一万倍。 记者了解到,我国目前能批量生产低汞无汞的大电池厂家还不到15%。不久前国家工商局对电池的一项调查显示,我国市场上的电池有20%达不到标准。所以,用已实现电池无汞化的发达国家不回收一次性电池的经验来套我国现实,还不合国情。有关专家认为电池中不仅汞会造成污染,锌、锰、镉、铅等随生活垃圾腐烂渗入地下,超过一定的限值,也会造成污染。这些有害物质随着食物链进入人体,极大威胁着人的健康。 目前我国垃圾处理方式水平较低,九五期间,我国垃圾年产生量为万吨,处理率为63%,但真正做到无害化处理的不到10%。我国大中城市的近千座垃圾填埋场中,90%仍是简易堆放,这种原始的处理方式极容易造成大面积污染。把废旧电池与生活垃圾一同处理后患无穷。专家认为,大量旧电池都随着垃圾到垃圾场,也是一种集中,怎么就不可能产生污染?北京市政管委会有关负责人郑先生说,把废旧电池集中起来,等有了条件再处理,这样比分散更安全。 从资源利用的角度上,电池回收也得到许多专家的肯定。北京科技大学的曾平荣教授说,目前国内生产的电池中90%以上是干电池,不可能对环境无污染。而且,对这些电池不回收利用也是巨大的资源浪费。3000吨废旧电池可以回收杂锌锭141吨、冶金二氧化锰300吨、铁皮260吨、电解锌181吨、电解二氧化锰340吨、铁皮500吨,价值相当于国家开发两个中型矿山的费用,更何况这些都是不可再生的一次性资源。 我国目前年消费电池80亿只左右,平均回收效率还不到2%,99%都随生活垃圾一起进入了垃圾填埋厂。就是这2%,已经让管理部门处于尴尬处境。 企业不愿干处理废旧电池的赔本事 既然许多环保部门都认为应该谁污染谁治理,那么,从法理上应该承担废旧电池处理的企业怎么想呢?记者采访了一些电池企业。 北京金普电池有限公司有关负责人说,回收处理废旧电池,是赔本的事儿,因为技术设备都不配套,收回来不及时处理,也都烂了。而且,国家对回收处理电池也没有补贴,回收成本太高,现在是市场经济,企业怎么能干无效益的事儿?天津力神电池企业有关负责人说:“我们只卖电池,收电池不是我们的事。”大电池企业大都持以上观点,有的接电话之人甚至不知电池回收之事。 我国有名的废弃物处理公司大连东泰公司说,废旧电池的处理费用太高,做这事没有效益,没有国家优惠政策,谁干谁亏。 有人想当唐吉诃德 当大电池企业都对处理废旧电池不感兴趣时,民营的北京东华鑫馨劳务服务有限公司却建立起了我国第一个,目前也是惟一的一个废旧电池处理厂。 其董事长王自新有“环保狂人”之称。之所以“狂”,就是敢做别人不做之事。王自新在北京建立起了几百个废旧电池回收点,建立了废旧电池回收电话,以至于记者把电话一打到北京市环保局,人家立即就把王自新的电池回收热线电话告诉记者。王自新对记者说,为了对后人负责,他要在废旧电池的产业化上做一番事业,为此现在已经把自己的几百万财产全部投入进去。他说,只有建立废旧电池回收利用的产业链,才能把这个事业进行下去。 王自新说:“大量一次性电池不回收,污染环境不说,还浪费了大量资源。每节电池中含有22%的锌、26%的锰、17%的铁,如果不处理就扔了,等于每年白白把几千万吨的有用原料都扔了,这可是从几万吨矿石中提炼出来的呀!这绝对是个朝阳产业,国营企业不做的事,我们民营企业要做!” 王自新以前学医,深入研究过废旧电池对人体的伤害,后来改做化工企业,又研究过废电池的利用。1999年,他开始了废旧电池回收利用的事业。 王自新走着一条布满荆棘的道路。他的废旧电池回收企业建立在河北易县,虽然技术设备都已经到位,却迟迟开不了工,原因是当地有关部门反对。当地有关部门认为,废旧电池处理企业肯定会产生污染。尽管这个企业的排放条件完全合乎国家标准,也不让生产。王自新曾想迁址,但到哪个地方,一说是废旧电池处理企业,人家就都不让进门了。王自新无奈地说:“不知道我的家到底能落在哪儿!”不过,他没有灰心,正在努力用最新的工艺让企业达到最严格的排放标准,然后争取得到国家环保部门的认证。他说要探索一条中国独特的处理废旧电池之路。 王自新还告诉记者,最近,他正准备在北京办一个电池回收处理企业,吸收下岗人员就业。他解释自己企业名字的含意义:第一个“鑫”字是财源兴盛之意,第二个“馨”是温馨之意。他说要办的是一个社会效益与经济效益双赢,充满人情味儿的企业。 当然,环保企业进入良性循环离不开国家政策支持。 记者问:“如果国家将来出台的政策不鼓励一次性电池集中回收呢?”他说:“那很可怕,因为这就意味着我的原料没有了。” 有税务部门问王自新:“民营企业,没利的事能干长吗?” 王自新说:“我把回收处理废旧电池当成事业。” 他充满激情地对记者说:“我现在就是当代的唐吉诃德,举着长矛冲刺。”他所挑战的,除了复杂的社会环境,还有观念的壁垒。 王自新对废旧电池产业链的每一个链条,都有详细的方案,力图做到让利益机制来运转电池的回收网络。他给北京市长写信说,到2008年,北京市的废旧电池回收率要达到50%。 看看国外怎么做 记者查了一些资料,让我们看看国外如何回收电池。 目前日本、美国和欧洲的锌锰干电池已全部实现了无汞化,对废旧电池的资源化利用主要集中在铅蓄电池和充电电池上。但日本却仍然坚持对一次性电池的回收和再生利用,对一次性电池的再生利用率达到50%左右。有专家认为,发达国家不回收一次性电池,从资源节约上说,也是不可持续发展的行为。 对铅酸电池、镉镍电池的回收。在美国,用户如不把废旧电池交回给制造商、零售商或者批发商,每买一节新的蓄电池要多付3—5美元。所以美国的蓄电池回收率几乎达100%。德国电池条例第6条规定,使用者没有归还废旧电池,销售者可以在售给其新电池时加收15马克的费用。意大利在1998年11月颁布了一项蓄电池回收法律,并根据该法建立了COBAT的联合会,其中50%的成员是再生铅冶炼厂,30%是蓄电池制造厂,10%为废料商,其余为蓄电池零售商。顾客在买蓄电池时要交附加税。瑞典早在1989年就颁布了一项旨在促进电池回收的returbatt计划,要求所有电池零售商回收废电池并对每节铅蓄电池征收35马克朗的税,这使瑞典的电池回收率在1991年就达到了100%。 有专家认为,发达国家不处理一次性电池,这种做法与我国国情不相符,因为目前我国一次性电池在电池消费中所占比重达97%。在吸取发达国家回收电池的经验同时,要结合我国国情才有意义。况且,在我国目前电池回收率如此之低的情况下,普及电池回收知识才是当务之急。 电池回收的尴尬局面,何时才能打破? 2.近两年,废电池对环境的影响成为国内媒体热门话题之一。有的报道称电池对环境污染很严重,一节电池可以污染数十万立方米的水。有的甚至说废电池随生活垃圾处理可以引起诸如日本水俣病之类的危害,这些报道在社会上引起了很大反响,有很多热爱环保的人士和团体开展或参加了回收废电池的活动。 现在我来为大家介绍一下电池吧:电池是一种将化学能直接转变成电能的装置。它可分为充电池和非充电池。下面我们要研究一下非充电池的结构了,主要分三个层次:一是最外的一层 “ 皮 ” 也是我们所说的壳,二是供反应化学物质,被壳包住,中间的是石墨电极。当化学物质反应之后转变成电能由石墨电极输出在外电路形成回路形成电流:电池就是工作了。非充电池分为:镍氢电池,镍镉电池。 电池再也不能供电了,成了一颗废电池,通常情况下人们就随手一丢,再买过另一颗新的。大多数人会说,这是很正常的哩。但他们没有想到,就在那举手投足之下,也是在破坏他们的家园 —— 地球。也许有人会问: “ 就这么一个小东西对于地球来说,能有什么了不起呢!还说什么破坏? ” 电池看上去并不那么具有破坏力,但是看东西不能全看表面。废电池里含有大量重金属汞、镉、锰、铅等。当废电池日晒雨淋表面皮层锈蚀了,其中的成分就会渗透到土壤和地下水,人们一旦食用受污染的土地生产的农作物或是喝了受污染了的水,这些有毒的重金属就会进入人的体内,慢慢的沉积下来,对人类健康造成极大的威胁!据测量一节一号电池烂在土壤里,可以使 一平方米 土地失去利用价值;一个扣钮电池可以污染 60 万升水,相当于一个人一生的饮水量。就近全球 50 亿人来计每个月每人丢一颗电池,一年累积下来 600 亿颗电池,对地球的破坏力可说是很大的了,其对人类健康危害造成的后果更难以想象了,据统计,仅 北京市 每年因废电池而进入自然环境的汞竟然达到 吨,这数目不能不让人头痛。所以废旧电池是不可以随意丢弃的。 同学们,让我们的家园不受废电池的危害吧!

单晶硅片制作工艺研究论文

[生产工艺]加料熔化—➞缩颈生长—➞放肩生长—➞等径生长—➞尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。(5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力将使得晶棒出现位错与滑移线。于是为了避免此问题的发生,必须将晶棒的直径慢慢缩小,直到成一尖点而与液面分开。这一过程称之为尾部生长。长完的晶棒被升至上炉室冷却一段时间后取出,即完成一次生长周期。

太阳能电池的结构工作原理和制造技术

近几年来,受世界太阳能电池发展“热潮”的影响,我国太阳能电池产业发展空前高涨,本文收集了太阳能电池的一些有关技术,以供读者参考。

(一)太阳能电池的发展历史:

太阳能电池是产生光生伏打效应(简称光伏效应)的半导体器件。因此,太阳能电池又称为光伏电池,太阳能电池产业又称为光伏产业。

1954年世界第一块实用化太阳能电池在美国贝尔实验室问世,幷首先应用于空间技术。当时太阳能电池的转换效率为8%。1973年世界爆发石油危机,从此之后,人们普遍对于太阳能电池关注,近10几年来,随着世界能源短缺和环境污染等问题日趋严重,太阳能电池的清洁性、安全性、长寿命,免维护以及资源可再生性等优点更加显现。一些发达国家制定了一系列鼓舞光伏发电的优惠政策,幷实施庞大的光伏工程计划,为太阳能电池产业创造了良好的发展机遇和巨大的市场空间,太阳能电池产业进入了高速发展时期,幷带动了上游多晶硅材料业和下游太阳能电池设备业的发展。在1997-2006年的10年中,世界光伏产业扩大了20倍,今后10年世界光伏产业仍以每年30%以上的增长速度发展。

世界太阳能电池的发展历史如表1所示:

表1 世界太阳能电池发展的主要节点

年份 重要节点

1954 美国贝尔实验室发明单晶硅太阳能电池,效率为6%

1955 第一个光伏航标灯问世,美国RCA发明Ga As太阳能电池

1958 太阳能电池首次装备于美国先锋1号卫星,转换效率为8%。

1959 第一个单晶硅太阳能电池问世。

1960 太阳能电池首次实现并网运行。

1974 突破反射绒面技术,硅太阳能电池效率达到18%。

1975 非晶硅及带硅太阳能电池问世

1978 美国建成100KW光伏电站

1980 单晶硅太阳能电池效率达到20%,多晶硅为%,Ga As为%

1986 美国建成光伏电站

1990 德国提出“2000光伏屋顶计划”

1995 高效聚光Ga As太阳能电池问世,效率达32%。

1997 美国提出“克林顿总统百万太阳能屋顶计划

日本提出“新阳光计划”

1998 单晶硅太阳能电池效率达到%,荷兰提出“百万光伏屋顶计划”

2000 世界太阳能电池总产量达287MW,欧洲计划2010年生产60亿瓦光伏电池。

(二)、太阳能电池的种类

(三)、硅太阳能电池的结构及工作原理

硅太阳能电池的外形及基本结构如图1。基本材料为P型单晶硅,厚度为—左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。

当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。

太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体区域产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。

(四)、太阳能电池的制造技术

晶体硅太阳能电池的制造工艺流程如图2。提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。

1、 具体的制造工艺技术说明如下:

(1) 切片:采用多线切割,将硅棒切割成正方形的硅片。

(2) 清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。

(3) 制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。

(4) 磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。

(5) 周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。

(6) 去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。

(7) 制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。

(8) 制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。

(9) 烧结:将电池芯片烧结于镍或铜的底板上。

(10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

(五)、太阳能电池的芯片尺寸:

规模化生产太阳能电池的芯片尺寸分别为(103×103)mm2、(125×125)mm2、(156×156) mm2和(210×210)mm2的方片。目前的主流仍是(156×156)mm2,2007年将过渡到(210×210)mm2为主流芯片。最近德国已推出了代表国际最先进的(210×210)mm2硅片全自动生产设备。

芯片的厚度也愈来愈薄,从→300→ 270→ 240 →210 →180 um,目前晶体硅片主要使用厚度为210—240um。

(六)、太阳能电池的芯片材料及转换效率:

1、 晶体硅(单晶硅和多晶硅)太阳能电池:

2004年晶体硅太阳能电池占总量的 %,生产技术成熟,是光伏产业的主导产品。在光伏产业中占据着统治地位。

对于高效单晶硅太阳能电池,国际公认澳大利亚新南威尔士大学达到了最高转换效率为%,目前世界技术先进产品转换效率为19-20 %。对于多晶硅太阳能电池澳大利亚新南威尔士大学多晶硅电池效率已突破%,技术先进产品的效率为15-18 %。

2、 非晶体硅太阳能电池:

α-Si(非晶硅)太阳能电池一般采用高频辉光使硅烷分解沉积而成。由于分解温度低(250-500 0C),可在薄玻璃、陶瓷、不锈钢和塑料底片上沉积1um厚的薄膜,且易于大面积化。非晶硅太阳能电池多数采用PIN结构,有时还制成多层叠层式结构。

非晶硅太阳能电池大量生产的大面积产品的转换效率为10-12 %,小面积产品转换效率已提高到%,叠层结构电池的最高效率为21 %。

3、 砷化镓(GaAs)太阳能电池:

GaAs太阳能电池多数采用液相外延法或MOCVD技术制备,GaAs太阳能电池的效率可高达%,一般在%左右。产品具有耐高温和抗辐射特点,但生产成本较高,产量受限,主要用作空间电源。以硅片为衬底,拥MOCVD方法制造GaAs /Si异质结太阳能电池是降低成本很有希望的方法,最高效率 %,GaAs 叠层结构的太阳能电池效率接近40 %。

4、 其他化合物半导体太阳能电池:

这方面主要有CIS (铜铟硒)薄膜、CdTe (碲化镉)薄膜和InP(磷化铟) 太阳能电池等。这些太阳能电池的结构与非晶硅电池相似。但CIS薄膜一般厚度为2-3um,已达到的转换效率为 %。CdTe薄膜很适合于制作太阳能电池。其理论转换效率达30 %,目前国际先进水平转换效率为 %,多用于空间方面。2004年世界各种太阳能电池产量的种类分布如表2

表2 2004年世界各种太阳能电池产量的种类分布

序号 太阳能电池种类 总产量(MW) 百分比( % )

1 单晶硅平板电池  

2 多晶硅平板电池  

3 非晶硅(室内室外)  

4 带硅电池 41..0 

5 CdTea(碲化镉)电池  

6 CIS (铜铟硒)  

7 非晶硅/单晶硅电池  

总量  100

(七)、提高太阳能电池效率的特殊技术:

晶体硅太阳能电池的理论效率为25%(光谱条件下)。太阳能电池的理论效率与入射光能转变成电流之前的各种可能损耗的因素有关。其中,有些因素由太阳能电池的基本物理决定的,有些则与材料和工艺相关。从提高太阳能电池效率的原理上讲,应从以下几方面着手:

1、 减少太阳能电池薄膜光反射的损失

2、 降低PN结的正向电池(俗称太阳能电池暗电流)

3、 PN结的空间电荷区宽度减少,幷减少空间电荷区的复合中心。

4、 提高硅晶体中少数载流子寿命,即减少重金属杂质含量和其他可作为复合中心的杂质,晶体结构缺陷等。

5、 当采取太阳能电池硅晶体各区厚度和其他结构参数。

目前提高太阳能电池效率的主要措施如下,而各项措施的采用往往引导出相应的新的工艺技术。

(1) 选择长载流子寿命的高性能衬底硅晶体。

(2) 太阳能电池芯片表面制造绒面或倒金字塔多坑表面结构。电池芯片背面制作背面镜,以降低表面反射和构成良好的隔光机制。

(3) 合理设计发射结结构,以收集尽可能多的光生载流子。

(4) 采用高性能表面钝化膜,以降低表面复合速率。

(5) 采用深结结构,幷在金属接触处加强钝化。

(6) 合理的电极接触设计以达到低串联电阻等。

(八)、太阳能电池的产业链

(九)、上海太阳能电池产业概况:

上海对于光电转换器件的研究起步于1959年。当时在中科院技术物理研究所和上海科技大学等单位作为光电探测器件课题进行研究。上世纪八十年代,上海仪表局所属的上海半导体器件八厂等单位生产小功率的兰硅光电池在市场上销售。八十年代后期,受世界太阳能电池产业迅速发展的影响,上海开始建立专业的太阳能电池芯片生产企业和专业的研究机构。近10年多来,随着我国太阳能电池“热潮”的到来,制造太阳能电池组件的企业纷纷建立,而且随着单晶硅和多晶硅材料供应紧张,许多小型的硅单晶企业也蜂涌而至。从上世纪九十年代以来,上海的太阳能电池产业逐步形成规模。

目前,上海地区从事太阳能电池芯片、组件、硅材料和设备生产和技术研究的单位共20余个。

其中,太阳能电池芯片制造的主要企业有上海太阳能科技有限公司、上海泰阳公司等。2006年中芯国际(上海)公司Fab 10建成投产,利用8英寸硅单晶硅片制造太阳能电池芯片,开创了上海利用8英寸多晶硅片制造太阳能电池的新范例。目前,上海太阳能电池芯片的产量在30-40MW左右。上海太阳能电池组件的生产企业共有10个左右。主要企业仍有上海太阳能科技有限公司和上海泰阳公司(与上海交通大学合作)等。目前上海太阳能电池组件的产量为50-70 MW左右。由于太阳能电池组件生产技术及设备要求较为简单,因此,太阳能电池组件生产企业中,有多家为民营企业。由于国内太阳能电池芯片供应不足,这些企业往往采用进口芯片组装后绝大部分返销境外,仅少数投放国内市场。

近几年来,由于可提供太阳能电池芯片生产的硅单晶片和硅多晶硅片严重短缺,价格不断大幅度上升,例如2003年进口电子级多晶硅每公斤为22-25美元,而2006年进口同样多晶硅的价格上升200%至300%,有些经销商转手倒卖时,价格甚至抬高5至8倍。在这种情况下,许多中小型的硅单晶生产企业蜂涌而至。从上世纪九十年代以来,在上海及周边地区建立中小型太阳能电池硅单晶(或硅多晶)的生产企业达4至5个之多。上海通用硅有限公司和上海卡姆丹克公司(合资企业)是其中有代表性的企业。它们各具有许多直拉单晶炉,可以拉制〃,6〃,〃和8〃直径的硅单晶,形成了可供年产25——30MW太阳能电池芯片的市场。但是由于多晶硅原材料供应不足,这些企业拉制的硅单晶原材料只能供给生产20MW太阳能电池芯片所用。因此,硅材料缺乏已成为抑制上海(乃至全国)太阳能电池产业封装的瓶颈。因此,通过上海与外省市的合作发展多晶硅产业已是涉及到微电子产业和太阳能电池产业的战略问题。

(十)中芯国际(上海)的经验:

中芯国际(上海)为国内集成电路(或半导体器件)芯片制造企业开展太阳能电池芯片或组件生产走出了一条成功之路,从中芯国际(上海)Fab10投产的实践来看,证明了以下事实,即集成电路(或半导体器件)芯片制造企业太阳能电池芯片具有许多有利条件:

● 基本工艺相同;

● 废旧硅圆片可充分利用,有利于降低制造成本;

● 生产线设备基本上可用进口设备或国产设备节省投资;

● 太阳能电池芯片制造若延伸至组件制造,更有利于企业获得较好效益。

但由于集成电路(或半导体器件)芯片制造企业的可利用的单晶硅片数量有限,因此当太阳能电池芯片生产规模扩大时必须考虑其他晶体硅的来源

(温馨提示:文末有下载方式)

近期,硅片尺寸之争再起,硅片龙头隆基股份推出 M6 大硅片产品,并同时发布大硅片组件 Hi-MO4,清楚 表明了力推 M6 的意愿。那么 历史 上硅片尺寸经历过怎样的变化过程?隆基为何要力推 M6?与另一尺寸路线 方单晶相比,M6 有何优势,二者谁将胜出?M6 之后,是否会有更大尺寸的硅片产品推出?本报告试图 解答这些问题。

光伏硅片尺寸源自半导体,经历了从 125 到 156,从 M0 到 M2 这一不断增大的过程。 光伏硅片尺寸标准源 自半导体硅片,在摊薄成本和提高品质这两大需求的推动下,半导体硅片尺寸不断增大,光伏硅片也随之经历 了从小到大的过程。近年来,光伏硅片尺寸经历了 3 次较大的变革:1)1981 至 2012之间,硅片边距由 100 和 125 大幅度增大为156,成本大幅摊薄;2)2013 至 2017年,硅片规格从 M0(边距 156,直径 200)变革为 M1 (边距 ,直径 205)与 M2(边距 ,直径 210),组件尺寸不变,硅片尺寸增大,从而摊薄成本;3) 目前正在进行中的变革是硅片规格从 M2 变革为 方单晶或者M6大硅片,这次变革增厚了产业链各环节 利润空间,并将硅片尺寸推至当前设备允许的极限。

增大硅片尺寸的驱动力是提高溢价、摊薄成本、拓展利润空间,在这些方面上 M6 比 方单晶更有优 势。 在电站建设中,使用大硅片高功率组件可以减少支架、汇流箱、电缆等成本,从而摊薄单瓦系统成本,为 组件带来溢价;在组件售价端, 方单晶可溢价 2 分钱,M6 可溢价 8 分钱。在制造成本端,大硅片本身可 以摊薄硅片、电池、组件生产环节的非硅成本,从而直接增厚各环节利润;在硅片、电池、组件总成本方面: 方单晶可降低 2 分钱,M6 可降低 5 分钱。因而,总的来看, 方单晶的超额利润为 4 分钱,M6 超 额利润为 13 分钱,M6 的空间更大。在目前的价格水平下, 方单晶所获超额利润基本留在了硅片环节, 而 M6 大部分超额利润流向了组件环节。推广 M6 硅片的原动力在于增厚产业链各环节利润。在定价方面,我 们认为 M6 定价紧跟 M2 即可始终保持竞争优势,使得各环节的摊薄成本内化为本环节的利润,从而使各环节 毛利率均有提高。

M6已达部分设备允许尺寸的极限,短时间内硅片尺寸标准难以再提高。 增大硅片尺寸的限制在于现有设 备的兼容性。通过梳理拉棒切片、电池、组件三个环节用到的主要生产设备,我们发现现有主流设备可以兼容M6硅片,但这一规格已基本达到现有设备允许的尺寸上限,继续增大硅片尺寸则需重新购置部分设备,使得增 大尺寸带来的成本下降被新购设备带来的成本上升所抵消。因而短时间内硅片尺寸标准难以再提高,M6 将在相 当长的一段时间内成为标准上限。

硅片形状分类:方形和准方形

从形状来看,硅片可以分为方形硅片和准方形硅片两大类。方型硅片并非完全正方,而是在四角处也有小 倒角存在,倒角长度 B一般为 2 mm 左右。准方形硅片四角处为圆倒角,尺寸一般比方型硅片的倒角大很多, 在外观上比较明显。

硅片的关键尺寸:边距

对方形硅片来说,因为倒角长度变化不大,所以描述其尺寸的关键在于边距 A。 对准方形硅片来说,由于其制作过程为圆棒切方然后切片,倒角为自然形成,因而其关键尺寸是边距 A 与直径 D。

尺寸标准:源自半导体硅片

光伏硅片与半导体硅片技术本身极为相似,半导体产业规模化发展早于光伏,因而早期光伏硅片尺寸标准 主要源自半导体硅片行业。

半导体硅片尺寸经历了从小到大的过程。60 年代出现了 英寸的单晶硅片;1965 年左右开始出现少量 的 英寸硅片;1975 年左右出现 4 英寸硅片;1980 年左右出现 6 寸片;1990 年左右出现 8 寸片;2000 年左 右出现 12 寸片;预计 2020 年左右 18 寸片将开始投入使用。

半导体硅片尺寸不断增大的根本驱动力有两条:1)摊薄成本;2)提高品质。硅片尺寸越大,在制成的每 块晶圆上就能切出更多芯片,从而明显摊薄了单位成本。同时随着尺寸的增大,边缘片占比将减少,更多芯片 来自于非边缘区,从而产品质量得到提高。

近年来光伏硅片尺寸经历了3 次变革

光伏硅片尺寸标准的权威是 SEMI(国际半导体产业协会)。跟踪其标准发布 历史 ,可以发现近年来光伏硅片尺寸经历了 3 次主要的变革:

1) 由 100 和 125 大幅度增大为 156;此阶段为 1981 至 2012 之间。以 2000 年修改版后的标准 SEMI M6-1000 为例,类原片有 100/125/150 三个尺寸,对应的边距均值分别为 100/125/150 mm,直径分别为 125/150/175 mm,即严格按照半导体硅片尺寸来给定。2012 年,原 SEMI M6 标准被废止,新的 SEMI PV22 标准开始生效,边距 156 被加入到最新标准中;

2) 由 156(M0)小幅调整至 (M2);在标准方面,通过修订,新增的 M2 标准尺寸被纳入 SEMI 标 准范围内,获得了业界的认可;

3)由 (M2)小幅调整至 或者大幅增大为 166。此次变革尚在进行中。

第一次尺寸变革:125 到 156

2012 年前,光伏硅片尺寸更多地沿用半导体 6 寸片的规格,但由于电池生产设备的进步和产出量提升的需求,125 mm 硅片逐步被市场淘汰了,产品大多集中到156 mm 上。

从面积上来看,从 125 mm 硅片过渡到 156 mm,使硅片面积增大 50%以上,大大提高了单个组件产品功率,提高了资源开发与利用效率。

相比边距,当时直径的规格较多。边距 125 对应直径 164 mm 为主流,边距 156 对应直径 200 为主流(M0)。

第二次尺寸变革:M0 到 M1 再到 M2

第二次尺寸变革主要是指从 M0(边距 156 mm,直径 200 mm)变革为 M1(边距 mm,直径 205 mm) 与 M2(边距 mm,直径 210 mm)。这一变革在组件尺寸不变的情况下增大了硅片面积,从而提高了组件 封装效率。硅片面积的提升主要来自两个方面:1)边距增大使硅片面积增大,主要得益于设备精度不断提高, 可以增大硅片边距、减小组件排版时电池间的冗余留白;2)圆角尺寸减小使硅片面积增大,主要得益于拉棒成 本的不断降低,可使用更大直径的硅棒以减小圆角尺寸。

这一变革由中国硅片企业推动,并在 2017 年得到 SEMI 审核通过,成为行业统一的尺寸。2013 年底,隆基、 中环、晶龙、阳光能源、卡姆丹克 5 家企业联合发布 M1 与 M2 硅片标准,在不改变组件尺寸的前提下,M2 通 过提升硅片面积使组件功率提升一档,因而迅速成为行业主流尺寸。

设备无需更改,1 年时间完成切换。此次尺寸改动较小,设备无需做大更改即可生产 M2 硅片,因而切换时 间较短。以隆基为例,在其 2015 年出货产品中,M1 硅片占比 80%,M2 占比仅为 20%;2016 年 M2 占比已达 98%;2017 年已完全不再生产 M0 与 M1 硅片。

第三次尺寸变革:从 M2 到 M6

M2 尺寸标准并未持续很长时间。由于市场对高功率组件的需求高涨,而已建成的电池产线通过提高效率来 提升功率相对较难,相比之下通过增大电池面积来满足更高的组件功率需求成为了部分厂商的应对之策,使得 硅片尺寸出现了 、、、、 等多样化规格,给产业链的组织管理带来极大的不便。

在此情况下,业内再次考虑尺寸标准化问题,并出现了两种标准化方案:1) 全方片。这一方案在不 改变现有主流组件尺寸的情况下将硅片边距增加到极限 mm,同时使用方形硅片,以减小倒角处的留白, 从而使得硅片面积增加 3%,对应 60 型组件功率提升约 10W;2)166 大硅片(M6)。这一方案是当前主流生产 设备所允许的极限尺寸,统一到这一尺寸后业内企业难以再通过微调尺寸来提升功率,从而使得此方案的持久 性潜力更大。与 M2 硅片相比,其面积增益为 12%,对应 60 型组件功率提升约 40W。

使用大硅片的驱动力有以下两点:

1)在电站建设中,使用大硅片高功率组件可以减少支架、汇流箱、电缆等成本,从而摊薄单瓦系统成本, 为组件带来溢价;

2)在制造端,大硅片本身可以摊薄硅片、电池、组件生产环节的非硅成本,从而直接增厚各环节利润;

组件售价: 可溢价 2 分钱,M6 可溢价 8 分钱

电站的系统成本由组件成本和非组件成本构成,其中非组件成本可以分为两大类:1)与组件个数相关的成 本,主要包括支架、汇流箱、电缆、桩基和支架安装成本等;2)与组件个数无关的成本,主要包括逆变器和变 压器等电气设备、并网接入成本、管理费用等,这部分一般与电站容量相关。在电站容量一定的情况下,组件 个数取决于单个组件功率,因而组件个数相关成本也可叫组件功率相关成本。

对于尺寸、重量相近的光伏组件,在其设计允许范围内,支架、汇流箱、电缆等设备与材料的选型可不做 更改。因而对于单个组串,使用 M2、 全方片和 M6 三种组件的成本相同,由此平摊至单瓦则其组件个数 相关的成本被摊薄, 全方片比 M2 便宜 2 分钱,M6 比 M2 便宜 8 分钱。因此在组件售价端, 全方 片的组件最多可比 M2 的组件溢价 2 分钱,M6 的组件最多可比 M2 的组件溢价 8 分钱。在前期推广阶段,组件 厂可能将此部分溢价让利给下游电站,以推动下游客户偏好转向 M6 硅片。

组件成本: 可摊薄 2 分钱,M6 可摊薄 5 分钱

在总成本方面, 方单晶比 M2 低 2 分钱,M6 比 M2 低 5 分钱。这一成本降低是制造端产业链推广 M6 源动力,也是推广 M6 为产业链增厚的利润空间。拆分到各环节来看: 1)硅片单瓦成本方面, 方单晶硅片比 M2 硅片低 分钱,M6 硅片比 M2 硅片低 分钱; 2)电池成本方面, 方单晶比 M2 低 分钱,M6 比 M2 低 分钱; 3)组件成本方面, 方单晶比 M2 低 分钱,M6 比 M2 低 分钱。

硅片成本测算

硅片成本可拆分为硅成本、非硅成本、三费。其中:

1)硅成本与方棒面积成正比,即 M6 比 M2 贵 12%( 元/片), 比 M2 贵 3%( 元/片);

2)非硅成本中,在拉棒成本方面,圆棒直径变粗使得拉棒速度降低幅度小于圆棒面积增大幅度,最终 M6 比 M2 便宜 ( 元/kg); 方单晶切方剩余率较低,最终使其比 M2 贵 ( 元/kg)。切片成 本大致与方棒面积成正比,最终使得 M6 非硅成本比 M2 贵 ( 元/片), 比 M2 贵 ( 元/片);

3)三费均以元/片计。

综合来看,在单片成本方面,M6 比 M2 贵 ( 元/片), 比 M2 贵( 元/片);平摊到单瓦成本,M6 比M2便宜 元/W, 与 M2 基本持平。

非硅成本由拉棒成本和切片成本两部分组成。在单位重量拉棒成本方面,直径越大则单位重量长晶速度越快,因而M6 比 M2 便宜;方单晶切方剩余率低,因而 方单晶比 M2 贵。

电池成本测算

置成本、非硅成本、三费。其中: 1)硅片购置成本与硅片定价策略有关,这里以 2019-6-20 价格为例,M2/ 方单晶/M6 三种硅片含税价格分别为 元/片,摊薄到单瓦后,M6 与 M2 相近, 比 M2 贵 元/W; 2)非硅成本方面,M6 比 M2 降 元/W, 比 M2 便宜 元/W; 3)三费均假设为 元/W。

综合来看,电池环节的附加成本变化不大。

具体来看,在非硅成本中,银浆、铝浆、TMA 等的用量与电池面积相关,最终单瓦成本不变;折旧、人工 等与容量产能相关的成本会被摊薄。

组件成本测算

组件成本可拆分为电池购置成本、非硅成本、三费。其中:

1)电池购置成本与电池定价策略有关,目前 M2/ 方单晶两种电池含税价格为 元/W,M6 电池尚无公开报价,考虑到目前 M6 与 M2 硅片单瓦定价相同,且电池成本变化不大,因而假设定价与 M2 相同;

2)非硅成本方面,M6 比 M2 便宜 元/W, 比 M2 便宜 元/W;

3)三费均假设为 元/W。

综合来看,电池环节的附加成本降低幅度大于电池环节,但依然变化不大。

具体来看,在非硅成本中,EVA、背板、光伏玻璃等主要组成部分随本来就以面积计价,但 M6 与 产品提高了面积利用率,成本会有小幅摊薄;同时产线的产能节拍不变,但容量产能增加。从而接线盒、折旧、 人工等成本会被摊薄。

各环节利润分配: 超额利润在硅片,M6 超额利润在电池和组件

超额利润 4 分钱,M6 超额利润 13 分钱,M6 利润空间比 方单晶大约高 4 个百分点。在组件 售价端, 可溢价 2 分钱,M6 可溢价 8 分钱;在成本端, 可降低 2 分钱,M6 可降低 5 分钱,因而 超额利润为 4 分钱,M6 超额利润为 13 分钱。在所有环节均自产的情况下, 可提高净利率 个 百分点,M6 可提高净利率 个百分点。

在利润分配方面,在目前的价格水平下, 方单晶所获超额利润基本留在了硅片环节。M6 电池和组件 尚无公开报价,按照假设电池售价 元/W、组件售价 元/W 来计算,超额利润在硅片/电池/组件环节的 分配大致为 元/W,大部分超额利润流向了组件环节。

推广 M6 硅片的原动力在于增厚产业链各环节利润。由于目前硅片尺寸的另一选择是,所以推广 M6 需要在产业链各环节利润空间上同时大于 M2 和 方单晶。

静态情景:M6 组件定价与 M2 相同,让利下游电站,推动渗透率提升

最直接的推广方式是将 M6 组件价格设定为与 M2 相同,从而将电站端的系统成本摊薄让利给下游电站, 快速提升下游电站对 M6 组件的认可度。

目前 M2 组件价格为 元/W,若 M6 组件价格同样定为 元/W,则相应的 M6 电池价格需要下调为 元/W,与 M2 电池价格相同,以保证组件环节 M6 净利率大于 M2;硅片价格可以维持 元/片不变,此 时电池净利率可保持在 ,依旧高于 M2 电池的净利率 。在此情境下,M6 各环节净利率均超过 M2, 有利于 M6 推广。

与 方单晶相比,此时 M6 各环节超额利润为 5 分钱,而 方单晶超额利润为 4 分钱,M6 更有 优势。具体到各环节来看,M6 硅片环节净利率稍低,但电池和组件环节净利率高,更有利于全产业链共同发展。

动态情景:M6 定价紧跟 M2 即可始终保持竞争优势

在组件价格方面,M6 与 M2 定价保持一致,即可使 M6 组件保持在下游电站选型中的竞争优势。

在电池价格方面,M6 与 M2 定价保持一致,则可使组件环节的成本摊薄沉淀为组件环节的利润,使得对下 游组件厂来说生产 M6 组件时的毛利率始终高于 M2,因而 M6 组件更有吸引力。

在硅片价格方面,保持 M6 与 M2 单位面积的价格相同,则可使电池环节的成本摊薄沉淀为电池环节的利润,使得对电池厂来说生产M6 电池时的毛利率始终高于 M2,因而 M6 电池更有吸引力。

对硅片环节来说,保持 M6 与 M2 单位面积的价格相同则 M6 净利率比 M2 高 4 个点,硅片环节亦有推广动 力。这也为后续继续降价让利给电池、组件、电站留出了更多空间。

增大硅片尺寸的限制在于现有设备的兼容性。通过梳理拉棒切片、电池、组件三个环节用到的主要生产设 备,我们发现现有主流设备可以兼容 M6 硅片,但这一规格已基本达到现有设备允许的尺寸上限,继续增大硅 片尺寸则需重新购置部分设备,使得增大尺寸带来的成本下降被新购设备带来的成本上升所抵消。

拉棒与切片环节:单晶炉等关键设备裕度大,部分设备接近尺寸上限

在拉棒与切片环节,生产工艺主要分为拉棒、切方、切片三步,分别用到了单晶炉、截断机与开方机、切 片机等 4 种设备。总的来看,对于 M6 硅片来说,单晶炉与开方机尺寸尚有较大余量,截断机已接近部分厂家 设备尺寸的上限。

单晶炉:热屏尺寸尚有较大余量。当前主流单晶厂家热屏内径均留有较大余量。M2 硅片外径为 210 mm, 对应的圆棒直径为 214 mm 左右;M6 硅片外径为 223 mm,对应的圆棒直径为 228 mm。当前主流单晶炉热屏内 径在 270 mm 左右,拉制直径 228 mm 硅棒完全可行,且无须重大改造。

截断机:M6 尺寸在目前设备加工规格范围内,但已接近设备加工规格上限。切断机用于将硅棒切成小段, 其加工规格较难调整。以连城数控官网提供的多线切断机主要参数来看,其适用的单晶硅棒直径为 155-230 mm。 而 M6 硅片对应的圆棒直径是 228 mm,在该设备加工规格范围内,已接近设备加工规格上限。

开方机:加工尺寸裕度较大。开方机用于将圆棒切成方棒。以高测股份单棒四线开方机为例,其切割棒料 直径为 200-300 mm,开方尺寸为 157-210 mm。M6 硅片对应的方棒直径为 223 mm,开方尺寸为 166 mm,现有 设备裕度较大。

电池环节:扩散炉内径最关键,目前可满足要求

目前主流 PERC 电池的生产工艺分为清洗制绒、扩散、刻蚀、镀膜、激光刻划、印刷栅线、烧结等工序,涉 及的关键设备有扩散炉、PECVD、激光刻槽机、丝网印刷机、烧结炉等。其中扩散炉、PECVD、烧结炉等管式加 热或真空设备尺寸难以调整,因而是硅片加大尺寸的瓶颈环节。若硅片尺寸超出现有设备极限,则只能购置新 设备,成本较高。目前常见的管式设备内径最小 290 mm。

扩散炉:圆棒直径需小于扩散炉炉管直径。在扩散工序中,一般使用石英舟承载硅片,然后将石英舟放置 于扩散炉炉管中。在扩散炉中,硅片轴线方向一般与扩散炉轴线方向平行,因而硅片尺寸需在扩散炉炉管截面 之内,即硅棒的圆棒直径需小于扩散炉炉管直径,且需要留有一定的操作空间。将硅片边距由 mm 提高 到 166 mm 的同时,硅片外径将由 210 mm 增大到 223 mm,对于内径 290 mm 的扩散炉来说尚可行。在石英舟 方面,其尺寸经过合理设计一般可以满足M6 硅片进出炉体的要求。

PECVD:硅片边距需小于 PECVD 炉管内径。PECVD 与扩散炉的情况有以下两点不同:1)在 PECVD 中,使 用石墨舟装载硅片;2)硅片轴线与 PECVD 炉管轴线垂直放置,因而只需硅片边距小于 PECVD 炉管内径即可。 为了提高 PECVD 产能,炉管内径一般较大,以叠放更多硅片。将硅片边距由 mm 提高到 166 mm 对于内 径 450 mm 的 PECVD 来说无障碍。

丝网印刷机:M6 硅片可兼容。丝网印刷机的传输系统、旋转平台、刮刀头、视觉系统均与硅片尺寸相关。

以科隆威为例,其官网挂出的唯一一款全自动视觉印刷机PV-SP910D 可兼容 M6 硅片。

组件环节:排版串焊与层压设备均近极限

组件环节主要分为排版串焊、叠层、层压、装框、装接线盒、固化清洗、测试包装等工序,主要需要用到 排版机、串焊机、层压机等设备。

排版串焊:可兼容,问题不大。排版串焊机的关键尺寸是组件长和宽,若组件尺寸在设备允许范围内,则 只需更改设置即可适用于大硅片组件;若超出设备允许的最大组件尺寸,则很难通过小技改来兼容。以金辰的 高速电池串自动敷设机为例,其适用玻璃组件范围为长 1580-2200 mm、宽 800-1100 mm。预计使用 M6 硅片的 72 型组件长 2120 mm、宽 1052 mm,在排版串焊设备允许范围内。

层压:层压机尺寸已达极限。层压机的层压面积较大,一般一次可以处理多个组件。以金辰 JCCY2336-T 层 压机为例,其层压面积为 2300 mm×3600 mm。在使用 M2 硅片时,该层压机一次可处理 4 块 60 型组件,或 3 块 72 型组件。在使用 M6 硅片时,该层压机同样可以一次处理 4 块 60 型组件或 3 块 72 型组件。对于 60 型组 件来说,处理 M2 硅片组件时,该层压机长度方向的余量为 240 mm,较为宽裕;但处理M6 硅片组件时,由于 单片电池尺寸增大 mm,60 型组件长度将加长 ,层压机长度方向的余量仅剩 55 mm,较为紧张。

辅材尺寸易调整。组件辅材主要包括光伏玻璃、EVA、背板、接线盒等。其中光伏玻璃、EVA、背板目前幅 宽可生产 166 及更大尺寸材料,仅需调整切割尺寸即可。接线盒不涉及尺寸问题,仅需考虑组件功率提高后接 线盒内部线缆材料可能需要使用更高等级材料。

……

温馨提示:如需原文档,请登陆未来智库,搜索下载。

硅,Si,地球上含硅的东西多的很好像90%以上都是今硅的,你说的单晶硅,我想是用来做太阳能电池片的吧,太阳能级别的硅纯度6N以上就可以了,.我从开头说起吧,开始是石头,(石头都含硅),把石头加热,变成液态,在加热变成气态,把气体通过一个密封的大箱子,箱子里有N多的子晶加热,两头用石墨夹住的,气体通过这个箱子,子晶会把气体中的一种吸符到子晶上,子晶慢慢就变粗了,因为是气体变固体,所以很慢,一个月左右,箱子里有就很多长长的原生多晶硅,当然,还有很多的废气啊什么的,(四氯化硅)就是生产过程中产生的吧,好像现在还不能很好处理这东西,废话不多说,原生多晶有了,就开始酸洗,氢氟酸啊硝酸啊,乙酸啊什么的把原生多晶外面的东西洗干净了,就过烘房烘干,无尘检查打包,送到拉晶,拉晶就是用拉晶炉把多晶硅加热融化,在用子晶向上拉引,工人先把多晶硅放进石英锅里,(厂里为了减少成本,也会用一些洗好的电池片,碎硅片一起融)关上炉子加热,石英锅的融点是1700度,硅的融点才1410度左右,融化了硅以后石英锅慢慢转起来,子晶从上面下降,点到锅的中心液面点,也慢慢反方向转,锅下面同时在电加热,液面上加冷,子晶点到液面上就会出现一个光点,慢慢旋转,向上拉引,放肩,转肩,正常拉棒,收尾,一天半左右,一个单晶棒就出来了,当然还有很多是经验,我文笔不太好,说不清楚,比如放母合金,控制温度什么的,单晶棒有了就切方,单晶棒一般是做6英寸的,P型,电阻率0。5-6欧姆(一英寸等于2。4厘米左右)切掉棒子四边,做成有倒角的正方形,在切片,0。22毫米一片吧。好像就这么多了~~~~~~

单晶硅发展前景论文参考文献

[1] 苏旭, 常彦龙, 马传利, 王春明. 单晶硅表面贵金属晶粒层的制备[J]. 化学学报, 2008,(10) [2] 胡沙. 金川现有精炼流程改进的研宄[J]. 中国有色冶金, 1988,(07) [3] 魏永亨. 国外汽车排气净化催化剂的研究与开发[J]. 环境科学动态, 1988,(12) [4] 刘建国. 釉保护金法彩瓷[J]. 陶瓷研究与职业教育, 1990,(03) [5] 卢邦洪, 王松滨. 贵金属材料密度的精确测定[J]. 贵金属, 1997,(01) [6] 蒋鹤麟. 微电子工业中的贵金属浆料[J]. 贵金属, 1997,(04) [7] 崔薇. 俄罗斯规范贵金属开采业[J]. 世界采矿快报, 1997,(04) [8] 新技术与成果[J]. 中国金属通报, 2001,(07) [9] 张伟刚, 吴丰顺, 吴懿平, 安兵, 何劲强. 国外电子废弃物的回收利用技术[J]. 中国环保产业, 2006,(06) [10] 马弘, 侯凯湖. 贵金属回收中的离子交换树脂技术[J]. 中国资源综合利用, 2006,(09) [1] 金井升,舒碧芬,沈辉,李军勇,陈美园. 单晶硅太阳电池的温度和光强特性[J]. 材料研究与应用, 2008,(04) . [2] 杜家熙,苏建修,万秀颖,宁欣. 单晶硅片化学机械抛光材料去除特性[J]. 北京科技大学学报, 2009,(05) . [3] 杜忠明,刘祖明. 多晶硅与单晶硅的扩散比较[J]. 云南师范大学学报(自然科学版), 2007,(01) . [4] 高晓宇. 单晶硅微观力学性能研究[J]. 科技信息, 2008,(34) . [5] 吴明明,周兆忠,巫少龙. 单晶硅片的制造技术[J]. 制造技术与机床, 2005,(03) . [6] 黄国涛,沈致和. 单晶硅生产车间循环给水系统的设计[J]. 山西建筑, 2008,(15) . [7] 张献忠,姚松. 美国多晶硅-单晶硅-硅晶圆市场研究[J]. 精细与专用化学品, 2009,(02) . [8]空间太阳能电池用单晶硅片[J]. 中国集成电路, 2009,(05) . [9] 张玉红,陈占国,贾刚,时宝,任策,刘秀环,武文卿. 单晶硅材料电致双折射的研究[J]. 红外与毫米波学报, 2008,(03) . [10] 赵汝强,江得福,李军勇,梁宗存,沈辉. 采用正交实验优化单晶硅太阳电池表面织构化工艺[J]. 材料研究与应用, 2008,(04) .

[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998

硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质....

中文别名:硅单晶 英文名: Monocrystalline silicon 分子式: Si 分子量: 号:7440-21-3 硅是地球上储藏最丰富的材料之一,从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。 直到上世纪60年代开始,硅材料就取代了原有锗材料。 硅材料――因其具有耐高温和抗辐射性能较好,特别适宜制作大功率器件的特性而成为应用最多的一种半导体材料,目前的集成电路半导体器件大多数是用硅材料制造的。 硅的单晶体。 具有基本完整的点阵结构的晶体。 不同的方向具有不同的性质,是一种良好的半导材料。 纯度要求达到%,甚至达到%以上。 用于制造半导体器件、太阳能电池等。 用高纯度的多晶硅在单晶炉内拉制而成。单晶硅熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。 超纯的单晶硅是本征半导体。 在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。 单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。 单晶硅主要用于制作半导体元件。 用途: 是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等 现在,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。 单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。 单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。 直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。 但大尺寸晶片对材料和技术的要求也越高。 单晶硅按晶体伸长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。 直拉法、区熔法伸长单晶硅棒材,外延法伸长单晶硅薄膜。 直拉法伸长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。 目前晶体直径可控制在Φ3~8英寸。 区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。 目前晶体直径可控制在Φ3~6英寸。 外延片主要用于集成电路领域。 由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。 在IC工业中所用的材料主要是CZ抛光片和外延片。 存储器电路通常使用CZ抛光片,因成本较低。 逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。 硅片直径越大,技术要求越高,越有市场前景,价值也就越高。 日本、美国和德国是主要的硅材料生产国。 中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为、3、4、5英寸硅锭和小直径硅片。 中国消耗的大部分集成电路及其硅片仍然依赖进口。 但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。 目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。 未来几年中,世界单晶硅材料发展将呈现以下发展趋势: 1,单晶硅产品向300mm过渡,大直径化趋势明显: 随着半导体材料技术的发展,对硅片的规格和质量也提出更高的要求,适合微细加工的大直径硅片在市场中的需求比例将日益加大。 目前,硅片主流产品是200mm,逐渐向300mm过渡,研制水平达到400mm~450mm。 据统计,200mm硅片的全球用量占60%左右,150mm占20%左右,其余占20%左右。 Gartner发布的对硅片需求的5年预测表明,全球300mm硅片将从2000年的增加到2006年的。 日、美、韩等国家都已经在1999年开始逐步扩大300mm硅片产量。 据不完全统计,全球目前已建、在建和计划建的300mm硅器件生产线约有40余条,主要分布在美国和我国台湾等,仅我国台湾就有20多条生产线,其次是日、韩、新及欧洲。 %P 世界半导体设备及材料协会(SEMI)的调查显示,2004年和2005年,在所有的硅片生产设备中,投资在300mm生产线上的比例将分别为55%和62%,投资额也分别达到亿美元和亿美元,发展十分迅猛。 而在1996年时,这一比重还仅仅是零。 2、硅材料工业发展日趋国际化,集团化,生产高度集中: 研发及建厂成本的日渐增高,加上现有行销与品牌的优势,使得硅材料产业形成“大者恒大”的局面,少数集约化的大型集团公司垄断材料市场。 上世纪90年代末,日本、德国和韩国(主要是日、德两国)资本控制的8大硅片公司的销量占世界硅片销量的90%以上。 根据SEMI提供的2002年世界硅材料生产商的市场份额显示,Shisu、SUMCO、Wacker、MEMC、Komatsu等5家公司占市场总额的比重达到89%,垄断地位已经形成。 3、硅基材料成为硅材料工业发展的重要方向: 随着光电子和通信产业的发展,硅基材料成为硅材料工业发展的重要方向。 硅基材料是在常规硅材料上制作的,是常规硅材料的发展和延续,其器件工艺与硅工艺相容。 主要的硅基材料包括SOI(绝缘体上硅)、GeSi和应力硅。 目前SOI技术已开始在世界上被广泛使用,SOI材料约占整个半导体材料市场的30%左右,预计到2010年将占到50%左右的市场。 Soitec公司(世界最大的SOI生产商)的2000年~2010年SOI市场预测以及2005年各尺寸SOI硅片比重预测了产业的发展前景。 4、硅片制造技术进一步升级:半导体,芯片,集成电路,设计,版图,芯片,制造,工艺目前世界普遍采用先进的切、磨、抛和洁净封装工艺,使制片技术取得明显进展。 在日本,Φ200mm硅片已有50%采用线切割机进行切片,不但能提高硅片质量,而且可使切割损失减少10%。 日本大型半导体厂家已经向300mm硅片转型,并向μm以下的微细化发展。 另外,最新尖端技术的导入,SOI等高功能晶片的试制开发也进入批量生产阶段。 对此,硅片生产厂家也增加了对300mm硅片的设备投资,针对设计规则的进一步微细化,还开发了高平坦度硅片和无缺陷硅片等,并对设备进行了改进。 硅是地壳中赋存最高的固态元素,其含量为地壳的四分之一,但在自然界不存在单体硅,多呈氧化物或硅酸盐状态。 硅的原子价主要为4价,其次为2价;在常温下它的化学性质稳定,不溶于单一的强酸,易溶于碱;在高温下化学性质活泼,能与许多元素化合。 硅材料资源丰富,又是无毒的单质半导体材料,较易制作大直径无位错低微缺陷单晶。 晶体力学性能优越,易于实现产业化,仍将成为半导体的主体材料。 多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。 [编辑本段]单晶硅市场发展概况 2007年,中国市场上有各类硅单晶生长设备1500余台,分布在70余家生产企业。 2007年5月24日,国家“863”计划超大规模集成电路(IC)配套材料重大专项总体组在北京组织专家对西安理工大学和北京有色金属研究总院承担的“TDR-150型单晶炉(12英寸MCZ综合系统)”完成了验收。 这标志着拥有自主知识产权的大尺寸集成电路与太阳能用硅单晶生长设备,在我国首次研制成功。 这项产品使中国能够开发具有自主知识产权的关键制造技术与单晶炉生产设备,填补了国内空白,初步改变了在晶体生长设备领域研发制造受制于人的局面。 硅材料市场前景广阔,中国硅单晶的产量、销售收入近几年递增较快,以中小尺寸为主的硅片生产已成为国际公认的事实,为世界和中国集成电路、半导体分立器件和光伏太阳能电池产业的发展做出了较大的贡献。

光子硅研究进展论文

导读

背景

光子学(photonics)是研究作为信息和能量载体的光子的行为及其应用的学科。光子学及其发展的相关技术即光子技术,具有丰富的内涵和广阔的应用前景。如果你使用智能手机、笔记本电脑、平板电脑,那么就有望从光子学的研究中获益。

创新

近日,美国特拉华大学电气与计算机工程系助理教授 Tingyi Gu 领导的一支团队正在开发光子器件方面的前沿技术,该技术可以使得器件之间以及使用者之间的通信速度更快。

最近,该研究小组设计出一种“硅-石墨烯”器件,它能以亚太赫兹的带宽,在一皮秒之内发射无线电波。这样不仅可携带更多信息,而且速度也更快。他们的研究近期发表在《美国化学会应用电子材料(ACS Applied Electronic Materials)》期刊上。

论文第一作者、研究生 Dun Mao 表示:“在这项研究中,我们仔细研究了用于未来光电子应用的集成石墨烯的硅光子器件的带宽限制。”

技术

硅是大自然产生的一种非常富足的材料,通常作为电子器件中的半导体使用。然而,研究人员们已经耗尽了仅由硅制成的半导体器件的潜能。这些设备受制于硅的载流子迁移率(电荷通过材料的速度)以及间接带隙(限制了释放和吸收光线的能力)。

现在,Gu 的团队将硅与一种具有更多有益特性的材料(二维材料石墨烯)相结合。二维材料以只有一层原子而得名。与硅相比,石墨烯具有更好的载流子迁移率以及直接带隙,使得电子传输得更快,并且电气和光学特性更好。通过将硅与石墨烯相结合,科学家们将可以继续利用已经在硅器件中使用的技术,硅与石墨烯的结合使运行速度变得更快。博士生 Thomas Kananen 表示:“通过研究材料的特性,我们能否比现在做更多的事情?这就是我们想要搞清楚的。”

为了将硅与石墨烯相结合,团队采用了一种他们正在开发的方法。一篇发表在《npj 2D Materials and Application》期刊上的论文描述了这种方法。团队将石墨烯放置到一个特殊的地方,即所谓的“p-i-n结”。它是材料之间的一种接口。通过将石墨烯放置在“p-i-n 结”上,团队以一种可以提升响应率和器件速度的方法优化了这个结构。

这个方法很健壮,而且便于其他研究人员采用。这一工艺产生在12英寸的超薄材料晶圆上,并利用了小于一毫米的元件。某些元件是在商业制造厂生产。其他的工作在特拉华大学的纳米制造设施进行,材料科学与工程系副教授 Matt Doty 是该设施的主任。

Doty 表示:“特拉华大学纳米制造设施(UNDF)是一个员工支持的工厂,它使用户可在7纳米的长度级别制造设备,约为人类发丝直径的万分之一。UNDF成立于2016年,为从光电子学到生物医学再到植物科学的一系列领域带来了新的研究方向。”

价值

硅与石墨烯结合之后,可作为光电探测器使用,可以感知光线,并制造电流,并且比现有方案的带宽更大和响应时间更少。所有这些研究意味着未来将带来更便宜、更快速的无线设备。博士后研究员、发表在《npj 2D Materials and Application》期刊上的论文第一作者 Tiantian Li 表示:“它可以使得网络更强、更好、更便宜。这是光子学的关键点。”

现在,团队正在思考拓展这种材料的应用途径。Gu 表示:“我们正在寻找更多的基于类似结构的元件。”

关键字

参考资料

【1】

【2】Dun Mao, Thomas Kananen, Tiantian Li, Anishkumar Soman, Jeffrey Sinsky, Nicholas Petrone, James Hone, Po Dong, Tingyi Gu. Bandwidth Limitation of Directly Contacted Graphene–Silicon Optoelectronics. ACS Applied Electronic Materials, 2019; 1 (2): 172 DOI:

采用超导硅片作为不可信的中继服务器,实现安全的量子通信。利用波导集成超导单光子探测器(中间有发夹形状的红色导线)特有的低死区时间特性,实现了最佳时bin编码贝尔态测量(四个光子之间呈蓝色和灰色波状曲线,用红球表示)。这反过来又提高了量子通信的安全密钥率。资料来源:南京大学 集成量子光子学(IQP)是实现可扩展的、实用的量子信息处理的一个很有前途的平台。到目前为止,IQP的大多数演示都集中在提高基于体积和光纤元件的传统平台实验的稳定性、质量和复杂性上。一个更苛刻的问题是:“在IQP中是否存在传统技术无法实现的实验?” 这个问题得到了由南京大学的马晓松、张拉宝和中山大学的蔡新伦共同领导的团队的肯定回答。据《Advanced Photonics》报道,该团队使用基于硅光子学的芯片和超导纳米线单光子探测器(SNSPD)实现了量子通信。该芯片的优异性能使他们能够实现最佳时bin Bell态测量,并显著提高量子通信中的密钥率。 单光子探测器是量子密钥分配(QKD)的关键元件,是实现实用和可扩展量子网络的光子芯片集成的理想器件。通过利用光波导集成SNSPD独特的高速特性,单光子探测的死区时间比传统的正入射SNSPD减少了一个数量级以上。这使得该团队能够解决量子光学中一个长期存在的挑战:时间bin编码量子位元的最佳贝尔态测量。 (a)实验装置示意图。MDI-QKD的服务器使用超导硅光子芯片进行最佳贝尔态测量,该芯片允许Alice和Bob在不受探测器侧通道攻击的情况下交换安全密钥。(b)当Alice和Bob发送相同的状态(蓝点)或不同的状态(红点)时,重合中的破坏性和建设性干涉计数。(c)不同损失下的安全关键利率。资料来源:郑等,doi: 。 这一进展不仅对量子光学的基础研究具有重要意义,而且对量子通信的应用也具有重要意义。该团队利用非均匀集成的超导硅光子平台的独特优势,实现了测量设备无关的量子密钥分配服务器(MDI-QKD)。这有效地消除了所有可能的检测器侧通道攻击,从而大大提高了量子密码的安全性。结合时间复用技术,该方法获得了一个数量级的MDI-QKD密钥速率的增加。 通过利用这种异构集成系统的优势,该团队在125mhz时钟速率下获得了高安全密钥率,这可以与目前最先进的MDI-QKD在GHz时钟速率下的实验结果相媲美。“与GHz时钟速率MDI-QKD实验相比,我们的系统不需要复杂的注入锁定技术,这大大降低了发射机的复杂性,”马博士团队的博士生郑晓东说,他是《先进光子学》论文的第一作者。 “这项工作表明,集成量子光子芯片不仅提供了一条小型化的道路,而且与传统平台相比,还显著提高了系统性能。结合集成的QKD发射器,一个完全基于芯片的、可扩展的、高关键速率的城域量子网络应该在不久的将来实现。”马说。

相关百科

热门百科

首页
发表服务