初一年级数学小论文“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用到数学。”数学与我们的生活息息相关,数学的身影无处不在。 初一年级的几何是较复杂的一种题目,随常常搞得脑袋一团浆糊,但当解开一题的喜悦感也是无法形容的。全等三角形的解题方法算是简单的,但同解其他几何图形一样,也需要认真的读题目,用所给的条件延伸出另一个或几个关键的条件用来解题。 全等三角形的解题方法很简单,用于普通三角形的有4种,分别是靠两个三角形的边角边、角边角、角角边或边边边的相等而全等。当然,三角形中也有特例,比如直角三角形,他拥有一种他自己的解题方法——“HL”。“H”是指直角三角形的斜边,“L”是指直角三角形的一条直角边。如此,一条直角边和斜边对应相等的两个直角三角形全等。直角三角形也不是只可以用那一种方法,用于不同三角形的方法也可以用于直角三角形的。 那让我们先来热个身吧,先来看下边一道题:(此图为自作) 如图,已知AC丄BC,AD丄BD,AD=BC,CE丄AB,DF丄AB,垂足分别是E、F。证明:CE=DF. 题目中已经告诉我们两个垂直条件,AC丄BC,BD丄AD,所以△ACB与△BDA为直角三角形。再仔细看看图就能发现这两个Rt△有一条公共边AB,再加上已知条件AD=BC,就可以证全等了:在Rt△ACB与Rt△BDA中 AD=BC AB=BA 所以Rt△ACB≌Rt△BDA(HL) 因为题目所让我们求的是CE=DF,为了求证这个就必须求△ACE全等于△DFB,首先题目告诉我们了,CE丄AB,DF丄AB,,所以这又是两个直角三角。上面我们已经证明了一个全等,就可以利用上面全等的条件了,因为Rt△ACB≌Rt△BDA,所以AC=BD.又因为AB=BA,且EF为公共边,所以AE=FB,这样就又可以用HL来求这两个图形的全等了: 在Rt△ACE与在Rt△BDF中 CA=DB AE=FB 所以Rt△ACE≌Rt△BDF(HL) 所以CE=DF(全等三角形的对应边相等) 就这样,一道全等的几何体就完成了。其实只要认认真真的读题,将几何的基本概念掌握清楚,还是可以很容易就做出来的,可以在做题目的时候,在图上标标画画,这样更有助于理解。遇到很长的题目也不要害怕一字一字的慢慢读,不要着急,静下心来,利用自己所学过的知识,懂得变通,灵活一些,你会发现数学还是很有趣的!
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。3.倒数:若两个数的积等于1,则这两个数互为倒数。4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法.6.实数大小的比较:利用法则比较大小;利用数轴比较大小。7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
3月15日 07:45 整数和分数统称为有理数。这里的分数是指p/q中,p、q都为整数,且分母不为0 ,有理数是指有限小数或无限循环小数,因为它们都可化为整数和分数。无理数指无限不循环小数。它们都不可化为整数和分数。
编辑词条有理数 有理数(rational number): 无限不循环小数和开根开不尽的数叫无理数 ,比如π,... 而有理数恰恰与它相反,整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。 所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。 有理数分为整数和分数 整数又分为正整数、负整数和0 分数又分为正分数、负分数 正整数和0又被称为自然数 如3,,……,7/22都是有理数。 有理数还可以划分为正整数、负整数、正分数、负分数和0。 全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。 有理数集是实数集的子集。相关的内容见数系的扩张。 有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数): ①加法的交换律 a+b=b+a; ②加法的结合律 a+(b+c)=(a+b)+c; ③存在数0,使 0+a=a+0=a; ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0; ⑤乘法的交换律 ab=ba; ⑥乘法的结合律 a(bc)=(ab)c; ⑦分配律 a(b+c)=ab+ac; ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a; ⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。 ⑩0a=0 文字解释:一个数乘0还等于这个数。 此外,有理数是一个序域,即在其上存在一个次序关系≤。 有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。 值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。 有理数加减混合运算 1.理数加减统一成加法的意义: 对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。 2.有理数加减混合运算的方法和步骤: (1)运用减法法则将有理数混合运算中的减法转化为加法。 (2)运用加法法则,加法交换律,加法结合律简便运算。 有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。 一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,非负有理数 整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数
我的发现同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。 如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗? 同样的发现我还有:一个数乘只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了! 我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。 这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。 同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!
说明:有点乱,你自己整理一下吧。希望能采纳!著名的教育家苏霍姆林斯基曾说过:“如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么,这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲倦”。课堂教学是师生的双边活动,数学教学过程不但是知识传授的过程,也是师生情感交流的过程。课堂教学中可以从以下三方面发掘情感的积极因素,促使学生对数学知识和数学活动本身的追求。 1.建立民主平等的情感氛围。良好的师生关系与和谐愉快的课堂教学气氛是学生敢于参与的先决条件。学生只有在不感到压力的情况下,在喜爱所教老师的前提下,才会乐于学习。教师首先要放下架子,与学生多沟通,跟他们交朋友,在生活上、学习上都关心他们,从而激起对老师的爱,对数学的爱;其次,教学要平等,要面向全体施教,不能偏爱一部分人,而对学习有困难的学生却漠不关心。2.正确评价学生。学生学习的态度、情绪、心境与教师对学生的评价有着密切的联系。在数学教学中,我们经常看到许多学生积极思考问题,争取发言,当他们的某个思路或计算方法被老师肯定后,从学生的眼神和表情就可以看出,他们得到了极大的满足,在学习中遇到困难时他们会反复钻研、探讨,可见教师正确的评价也是促使学生积极主动学习的重要因素。美国电影《师生情》有这样一个片段:一位白人教师到黑人社区任教小学一年级,在第一节数学课中老师伸出五个手指问其中一名黑人孩子,"这是几个手指?”,小孩憋了半天才答道:“三个。”老师没有指责他说错了,而是高兴地大声赞道:“你真历害,还差两个你就数对了。”教师一句赞赏的话,就缓和了学生的心理压力,收到了意想不到的效果。可见,教师要善于用放大镜发现学生的闪光点,以表扬和鼓励为主,对每个问题、每个学生的评价不可轻易否定,不随便说“错”,否则就会挫伤学生的学习积极性。教学中教师还要承认学生数学学习的个体差异,积极地鼓励和肯定每个学生的每一进步。例如有的学生用课余时间完成了书上带*的习题或思考题,就及时在课堂上表扬鼓励,称赞他们爱学习,能自觉学习。学习较差的学生,往往对学习没有信心,没有动力,教师不要过多的指责他们不努力、不认真学,对他们既要晓之以理,更要注意发现他们的微小进步,予以鼓励,如告诉他们“你并不笨,只要你能不断努力,一定会学得很出色。”只有进行正确、科学的评价,才能使学生从评价中受到鼓舞,得到力量,勇于前进。3.成功是最好的激励。学习成功得到快乐的情绪体验是一种巨大的力量,它能使学生产生学好数学的强烈欲望。要使学生获得成功,教师必须设计好探索数学知识的台阶,包括设计好课堂提问和动手操作的步骤等,使不同智力水平的同学都能拾级而上,“跳一跳摘果子”,都能获得经过自己艰苦探索,掌握数学知识后的愉快情绪体验,从而得到心理上的补偿和满足,激励他们获得更多的成功。当学生在探索学习的过程中遇到困难或出现问题时,要适时、有效的帮助和引导学生,使所有的学生都能在数学学习中获得成功感,树立自信心,增强克服困难的勇气和毅力。特别是后进学生容易自暴自弃、泄气自卑,教师要给予及时的点拨、诱导,如画出线段图帮助他们理解应用题、让他们换句话说理解题意、举个例试试等,半扶半放地让他们自己去走向成功。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。 同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . ... ... ... ... ... 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形". 还有小故事: (一)失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。 在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。 古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。 (二)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。 兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。 (三)为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。 康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。 (四)数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。” 吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。 后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。但是,有些数字非记不可,也很容易记住……” (五)苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25岁,在函数论方面已有出色的研究成果.希尔伯特和闽可夫斯基很快就和他们的新老师建立了密切的关系.他们这三个年轻人每天下午准5点必定相会去苹果树下散步.希尔伯特后来回忆道:“日复一日的散步中,我们全都埋头讨论当前数学的实际问题;相互交换我们对问题新近获得的理解,交流彼此的想法和研究计划.”在他们三人中,赫维茨有着广泛“坚实的基础知识,又经过很好的整理,”所以他是理所当然的带头人,并使其他两位心悦诚服.当时希尔伯特发现,这种学习方法比钻在昏暗的教室或图书馆里啃书本不知要好多少倍,这种例行的散步一直持续了整整八年半之久.以这种最悠然而有趣的学习方式,他们探索了数学的“每一个角落”,考察着数学世界的每一个王国,希尔伯特后来回忆道:“那时从没有想到我们竟会把自己带到那么远!”三个人就这样“结成了终身的友谊.” (六)报效祖国宏愿--华罗庚的故事 同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。 1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:"你可以在两年之内获得博士学位。"可是华罗庚却说:"我不想获得博士学位,我只要求做一个访问者。""我来剑桥是求学问的,不是为了学位。"两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的"华氏定理",向全世界显示了中国数学家出众的智慧与能力。 1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:"朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……"虽然数学没有国界,但数学家却有自己的祖国。 华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。 据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。 (七)、中西文化交流之倡导者 莱布尼兹对中国、的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶酥会来华传教士格里马尔迪了解到了许多有关中国的情况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备通过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时间哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在这里,莱布尼兹不仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。他的虚心好学、对中国文化平等相待,不含“欧洲中心论”偏见的精神尤为难能可贵,值得后世永远敬仰、效仿。
关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。生活中的数学有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。奇妙的“黄金数”取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果!“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
解析几何中“设而不求”的妙用摘要】解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。本文谈了如何整体结构意义上的变式和整体思想在解析几何中”设而不求”的妙用。【关键词】解析几何;设而不求;直线;二次曲线解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。下面从六个方面举例,介绍“设而不求”这一方法,其实质是整体结构意义上的变式和整体思想的应用。1.与中点弦及弦的中点有关的问题例1:过点A(2,1)的直线与双曲线x2-y2/2=1,交于P1、P2两点,求弦P1P2的中点的P的轨迹方程。解:设P1(x1,y1),P2(x2,y2),则X21-Y21/2=1,X22-Y22/2=1两式作差并整理,得(y1-y2)/(x1-x2)=2·(x1+x2)/(y1+y2)。又设弦P1P2的中点P(x0,y0),因为Kp1p2=KAP,则(y0-1)/(x0-2)=2x0/y0,因此,所求中点P的轨迹方程是2x2-4x-y2+y=0例2:过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线方程:解:设以Q为中点的弦AB端点坐标A(x1,y1),B(x2,y2),则有y21=8x1,y22=8x2,两式相减,得:(y1-y2)(y1+y2)=8(x1-x2),又∵x1+x2=8,y1+y2=2解K=y2-y1x2-x1=8y1+y2=4∴所求直线AB方程是:y-1=4(x-4),即4x-y-15=0。评注:问题虽然简单,但提供了一种有关中点及弦的中点问题求解的程序化方法:设弦的两个端点P1(x1,y1),P2(x2,y2),代入二次曲线方程中并作差,便可以得到一组关于y1-y2/x1-x2、x1+x2、y1+y2的关系式,利用它们的几何意义,即可以方便地得到问题之解。2.与对称性有关的问题例3:已知抛物线C:x-y2-2y=0上存在关于直线:L:y=x+m对称的相异两点,求m的取值范围解:设抛物线C上关于直线L对称的两点是A(x1,y1)、B(x2,y2)代入抛物线方程并作差,得y1-y2/x1-x·2(y1+y2)+2(y1-y2)/x1-x2=1∵y1-y2/x1-x2=-1,∴y1+y2=-3,又将A、B两点坐标分别入抛物线C和直线L的方程中并分别相加,得,x1+x2=y21+y22+2(y1+y2),y1+y2=x1+x2+2m,∴y21+y22=(y1+y2)-2m-2(y1+y2)=3-2m∴y21+y22>(y1+y2)2/2=9/2,即:∴3-2m>9/2,∴m<-3/4评注:通过“设点代点”,整体代换,利用基本不等式得到了一个关于m的不等式,从而寻找到了解决问题的突破口。3.曲线方程的探求问题例4:一条直线L被两条相交直线L1:4x+y+16=0和L2:3x-5y-6=0,截得的线段中点恰好是坐标原点,求直线L的方程:解:设L与L1,L2分别交于M(x0,y0)和N,∵M、N关于原点对称,∴N(-x0,-y0),从而有4x0+y0+6=0,-3x0+5y0-6=0,这两个方程相加,得x0+6y0=0,可见M(x0,y0)在直线x+6y=0上,并且这条直线经过原点,所以,所求直线L的方程为x+6y=0。评注:设而不求,并巧妙地利用对称性,灵活而又生动。4.定值和定点问题例5:过点M(-2,0)的直线L与椭圆C:x2+2y2=2交于P1、P2两点,线段P1P2的中点是P,设直线L的斜率为K(K≠0),OP的斜率为K1。(0为椭圆的中心
额~~~我也是初一的,你们怎么写这个??
数字的历史 公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。 两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。 大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢? 771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。 后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝�6�1奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。 阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。
1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。 算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。 算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢? 那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。 按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。 中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。 二进制思想的开创国 著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。 元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。 《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 分数和小数的最早运用 分数的应用 最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。 九九表的使用 作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。 根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。 除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。 乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。 负数的使用 人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。 负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。 在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。 圆周率的计算 圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。 我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为,也有人认为他得到了更好的结果:。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。3.人类认识0早,还是认识1早。1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。4.数学中的符号+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。 在中学数学中,常见的数学符号有以下六种:一、数量符号 如,圆周率;a,x等。二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。四、结合符号 如小括号( ),中括号[ ],大括号{ }。五、性质符号 如正号(+)、负号(-),绝对值符号(||)。六、简写符号 如三角形(△),圆(⊙),幂()等。这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。
小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
ouihbiubjibljkbhkvbhvlhjlhjvjhhhhvkjvjgcihgchfduduyfuyhbgybgyfiufty8itbvfuty
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
自己网上去查一篇啊 而且悬赏分也没有.....
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
五年级数学小论文【一】
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
五年级数学小论文【二】
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?
我思索了一会儿,不慌不忙地说:可以这样算:
51=5305=150(小时)200小时150小时
还可以这样算:
51=52005=40(小时)30小时40小时
由这几步可得出结论,节能灯泡省钱。
妈妈又问我:很好。再想想看,还有没有别的办法来算?
我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:
5/200100=
1/
或者这样算:
200/5100=40100=4000
30/1100=30100=3000
40003000
因此,也是节能灯泡便宜。。
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:生活处处有数学这个道理。
五年级数学小论文【三】
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶元,但是货柜上整箱16瓶装的却标价元,如果按元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用元。310ml王老吉罐装饮料一瓶元,整箱12瓶装的标价42元,如果以元的单价买12瓶则只需元,比整箱购买便宜了元;而同样的该品种,24瓶装一箱标价元,如按元的零售价买24瓶才元,比整箱购买整整少了元。旁边的啤酒每罐单价元,24瓶应收元,但是超市收款元。整整多出元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
可参考各种数学书的前言或去百度上找【数学 论文】
ouihbiubjibljkbhkvbhvlhjlhjvjhhhhvkjvjgcihgchfduduyfuyhbgybgyfiufty8itbvfuty