首页

> 学术期刊知识库

首页 学术期刊知识库 问题

人工智能论文参考文献作者写在哪

发布时间:

人工智能论文参考文献作者写在哪

问题一:写论文时如果有引用文献,参考文献要在哪里注明?开头还是结尾? 结尾写出来,单独列出,可以看看你们写论文学校的格式要求 问题二:写论文的参考文献哪里可以找到啊 上期刊网,对论文的相关信息进行检索就可以找到相关的文献资料了。 这里有期刊网网址: dlibki/kns50/ chinaqking/ 问题三:论文,参考文献中 ISSN写在哪里 10分 一、参考文献著录项目 1.主要责任者 (专著作者、论文集主编、学位申报人、专利申请人、报告撰写人、期刊文章作者、析出文章作者)。多个责任者之间以“,”分隔,注意在本项数据中不得出现缩写点“.”。主要责任者只列姓名,其后不加“著”、“编”、“主编”、“合编”等责任说明。 2.文献题名; 3.文献类型及载体类型标识; 4.其他责任者(译者); 5.版本(初版省略); 6.出版项(出版地、出版者、出版年); 7.文献出处或电子文献的可获得地址; 8.文献起止页码; 9.文献标准编号(ISBN,ISSN,?)。 问题四:参考文献在哪里。。 百度学术可以找到参考文献,输入关键词,在输入年份,就能找到相对应的参考文献。如果不知道参考文献格式要求,可以百度搜,参考文献自动生成器。直接按着填就出来了。 百度搜索参考文献自动生成器,按着里面填,点生成参考文献就出来了。 作者.题名[D].所在城市:保存单位,发布年份. 李琳.住院烧伤患者综合健康状况及其影响因素研究[D].福州:福建医科大学,2009. 其他的: 作者.题名[J].刊名,年,卷(期):起止页码. 沈平,彭湘粤,黎晓静,等.临床路径应用于婴幼儿呼吸道异物手术后的效果[J].中华护理杂志,2012,47(10):930-932. 作者.书名[M]. 版次.出版地: 出版者,出版年:起止页码. 胡雁.护理研究[M].第4版.北京:人民卫生出版社,2012:38. 作者.题名[N].报纸名,出版日期(版次). 丁文祥.数字革命与国际竞争[N].中国青年报,2000-11-20(15). 作者.题名[EB/OL].网址,发表日期/引用日期(任选). 世界卫生组织.关于患者安全的10个事实 [EB/OL]. 其他: [R]、[P]、[A]、[C]、[Z]等。 1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。 5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 问题五:参考文献一般在什么地方 这是脑筋急转弯的问题吗?参考文献是在写论文的过程中,如果引用了别人文献场的观点与数据资料,需要在论文后注明来源。按参考文献的提示读者就能找到论文写作过程中参考的文献。在一般的论文、论著后都有参考文献。 问题六:毕业论文的参考文献必须详细到哪一页、哪一段吗? 参考文献就是你论文里面的一些段落,观点都借用过哪些书刊,报纸,杂志上面的内容!不说你也知道了,本科生的毕业论文百分之八十是抄的,其中那百分之八十就可以美其名曰“参考文献”,这样说你懂了吧?不过那百分之八十你抄的,都必须标明是抄自哪个书刊(哪一年出版的,具体到哪一段,那一页等),记得要标注明白! 问题七:写论文时对那些参考文献该如何引用 这样写的论文都是凑数的论文。很容易被认定为抄袭。 一篇学术价值高的论文一定是要以多年的专业积累为基础的,这样才会有自己的有见地的理论观点、充足的论据来进行充分的论证。即使参考别人的东西,也仅仅能参考思想,或者一句两句的直接引用,不能大段的抄。所有的参考引用加起来超过30%就判定为抄袭了。 问题八:毕业论文参考硕士论文,那参考文献的格式应该是怎样写的。是[M][J]还是什么? [M]和[J]分别代表专著和期刊, 其文献格式分别为: 专著 [序号]主要责任者.文献题名[文献类型标识].出版地:出版者,出版年.起止页码(可选). 〔1〕蒋挺大.亮聚糖〔M〕.北京:化学工业出版社,2001.127 〔2〕Kortun G. Reflectance Spectroscopy〔M〕. New York: Spring-Verlag,1969 期刊文章 [序号]主要责任者.文献题名[J].刊名,年,卷(期):起止页码. [5] 何龄修.读顾城《南明史》[J].中国史研究,1998,(3):167-173. [6] 金显贺,王昌长,王忠东,等.一种用于在线检测局部放电的数字滤波技术[J].清华大学学报(自然科学版),1993,33(4):62-67. 楼上那个胡说,这专著和期刊是硕士论文的主要文献来源。 问题九:写论文时都是参考百度文库里的一些内容,那这个参考文献要怎么写呀? 参考文献要写原文的名字,要具有权威性的。这样能增强自己论文的说服力。 百度文库在学术上没有发言权,只能用来给自己参考。

论文的作者一般可以写在封面的那个论文大标题下方正中,或者是右下角!

发表论文作者信息通常放在论文首页的脚末行或参考文献的后面。包括基本信息、简历信息和联系信息。其中作者署名的规范,作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。

将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。

按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T 7714-2015《信息与文献 参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。

根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分。

格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围).”。多次引用的文献,每处的页码或页码范围分别列于每处参考文献的序号标注处,置于方括号后并作上标。作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。

作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

参考资料来源:百度百科-参考文献

人工智能论文参考文献作者

清华大学出版社最近推出了两部人工智能新教材?:《人工智能概论》和《人工智能导论》,前者为人工智能通识课教材,后者面向人工智能专业及计算机、自动化和电子信息类专业。也两本书的最大特点就是易读易懂,易教易学。

有《会计电算化教程》《管家婆会计电算化简明教程》《会计电算化理论与实务》等等。据查询相关公开信息《会计电算化教程》《管家婆会计电算化简明教程》《会计电算化理论与实务》均属于人工智能与会计电算化参考文献。受时代发展人工智能得以更加便捷系统地处理、呈现财务信息。这意味着人工智能将渐渐取代基层会计人员。

Peter Norvig 的《AI, Modern Approach 2nd》(无争议的领域经典)Bishop, 《Pattern Recognition and Machine Learning》. 没有影印的,但是网上能下到。经典中的经典。Pattern Classification 和这本书是两本必读之书。《Pattern Recognition and Machine Learning》是很新(07年),深入浅出,手不释卷。推荐两本有意思的书,一本是《Simple Heuristics that Makes Us Smart》另一本是《Bounded Rationality: The Adaptive Toolbox》 ---------------------------------------------------------------------<从CSDN上转载的> 机器学习与人工智能学习资源导引 我经常在 TopLanguage 讨论组上推荐一些书籍,也经常问里面的牛人们搜罗一些有关的资料,人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索这些无疑是 CS 领域最好玩的分支了(也是互相紧密联系的),这里将最近有关机器学习和人工智能相关的一些学习资源归一个类: 首先是两个非常棒的 Wikipedia 条目,我也算是 wikipedia 的重度用户了,学习一门东西的时候常常发现是始于 wikipedia 中间经过若干次 google ,然后止于某一本或几本著作。 第一个是“人工智能的历史”(History of Artificial Intelligence),我在讨论组上写道: 而今天看到的这篇文章是我在 wikipedia 浏览至今觉得最好的。文章名为《人工智能的历史》,顺着 AI 发展时间线娓娓道来,中间穿插无数牛人故事,且一波三折大气磅礴,可谓"事实比想象更令人惊讶"。人工智能始于哲学思辨,中间经历了一个没有心理学(尤其是认知神经科学的)的帮助的阶段,仅通过牛人对人类思维的外在表现的归纳、内省,以及数学工具进行探索,其间最令人激动的是 Herbert Simon (决策理论之父,诺奖,跨领域牛人)写的一个自动证明机,证明了罗素的数学原理中的二十几个定理,其中有一个定理比原书中的还要优雅,Simon 的程序用的是启发式搜索,因为公理系统中的证明可以简化为从条件到结论的树状搜索(但由于组合爆炸,所以必须使用启发式剪枝)。后来 Simon 又写了 GPS (General Problem Solver),据说能解决一些能良好形式化的问题,如汉诺塔。但说到底 Simon 的研究毕竟只触及了人类思维的一个很小很小的方面 —— Formal Logic,甚至更狭义一点 Deductive Reasoning (即不包含 Inductive Reasoning , Transductive Reasoning (俗称 analogic thinking)。还有诸多比如 Common Sense、Vision、尤其是最为复杂的 Language 、Consciousness 都还谜团未解。还有一个比较有趣的就是有人认为 AI 问题必须要以一个物理的 Body 为支撑,一个能够感受这个世界的物理规则的身体本身就是一个强大的信息来源,基于这个信息来源,人类能够自身与时俱进地总结所谓的 Common-Sense Knowledge (这个就是所谓的 Emboddied Mind 理论。 ),否则像一些老兄直接手动构建 Common-Sense Knowledge Base ,就很傻很天真了,须知人根据感知系统从自然界获取知识是一个动态的自动更新的系统,而手动构建常识库则无异于古老的 Expert System 的做法。当然,以上只总结了很小一部分我个人觉得比较有趣或新颖的,每个人看到的有趣的地方不一样,比如里面相当详细地介绍了神经网络理论的兴衰。所以我强烈建议你看自己一遍,别忘了里面链接到其他地方的链接。 顺便一说,徐宥同学打算找时间把这个条目翻译出来,这是一个相当长的条目,看不动 E 文的等着看翻译吧:) 第二个则是“人工智能”(Artificial Intelligence)。当然,还有机器学习等等。从这些条目出发能够找到许多非常有用和靠谱的深入参考资料。然后是一些书籍 书籍: 1. 《Programming Collective Intelligence》,近年出的入门好书,培养兴趣是最重要的一环,一上来看大部头很容易被吓走的:P 2. Peter Norvig 的《AI, Modern Approach 2nd》(无争议的领域经典)。 3. 《The Elements of Statistical Learning》,数学性比较强,可以做参考了。 4. 《Foundations of Statistical Natural Language Processing》,自然语言处理领域公认经典。 5. 《Data Mining, Concepts and Techniques》,华裔科学家写的书,相当深入浅出。 6. 《Managing Gigabytes》,信息检索好书。 7. 《Information Theory:Inference and Learning Algorithms》,参考书吧,比较深。 相关数学基础(参考书,不适合拿来通读): 1. 线性代数:这个参考书就不列了,很多。 2. 矩阵数学:《矩阵分析》,Roger Horn。矩阵分析领域无争议的经典。 3. 概率论与统计:《概率论及其应用》,威廉·费勒。也是极牛的书,可数学味道太重,不适合做机器学习的。于是讨论组里的 Du Lei 同学推荐了《All Of Statistics》并说到 机器学习这个方向,统计学也一样非常重要。推荐All of statistics,这是CMU的一本很简洁的教科书,注重概念,简化计算,简化与Machine Learning无关的概念和统计内容,可以说是很好的快速入门材料。 4. 最优化方法:《Nonlinear Programming, 2nd》非线性规划的参考书。《Convex Optimization》凸优化的参考书。此外还有一些书可以参考 wikipedia 上的最优化方法条目。要深入理解机器学习方法的技术细节很多时候(如SVM)需要最优化方法作为铺垫。 王宁同学推荐了好几本书: 《Machine Learning, Tom Michell》, 1997.老书,牛人。现在看来内容并不算深,很多章节有点到为止的感觉,但是很适合新手(当然,不能"新"到连算法和概率都不知道)入门。比如决策树部分就很精彩,并且这几年没有特别大的进展,所以并不过时。另外,这本书算是对97年前数十年机器学习工作的大综述,参考文献列表极有价值。国内有翻译和影印版,不知道绝版否。 《Modern Information Retrieval, Ricardo Baeza-Yates et al》. 1999老书,牛人。貌似第一本完整讲述IR的书。可惜IR这些年进展迅猛,这本书略有些过时了。翻翻做参考还是不错的。另外,Ricardo同学现在是Yahoo Research for Europe and Latin Ameria的头头。 《Pattern Classification (2ed)》, Richard O. Duda, Peter E. Hart, David G. Stork大约也是01年左右的大块头,有影印版,彩色。没读完,但如果想深入学习ML和IR,前三章(介绍,贝叶斯学习,线性分类器)必修。 还有些经典与我只有一面之缘,没有资格评价。另外还有两本小册子,论文集性质的,倒是讲到了了不少前沿和细节,诸如索引如何压缩之类。可惜忘了名字,又被我压在箱底,下次搬家前怕是难见天日了。 (呵呵,想起来一本:《Mining the Web - Discovering Knowledge from Hypertext Data》 ) 说一本名气很大的书:《Data Mining: Practical Machine Learning Tools and Techniques》。Weka 的作者写的。可惜内容一般。理论部分太单薄,而实践部分也很脱离实际。DM的入门书已经不少,这一本应该可以不看了。如果要学习了解 Weka ,看文档就好。第二版已经出了,没读过,不清楚。 信息检索方面,Du Lei 同学再次推荐: 信息检索方面的书现在建议看Stanford的那本《Introduction to Information Retrieval》,这书刚刚正式出版,内容当然up to date。另外信息检索第一大牛Croft老爷也正在写教科书,应该很快就要面世了。据说是非常pratical的一本书。 对信息检索有兴趣的同学,强烈推荐翟成祥博士在北大的暑期学校课程,这里有全slides和阅读材料: maximzhao 同学推荐了一本机器学习: 加一本书:Bishop, 《Pattern Recognition and Machine Learning》. 没有影印的,但是网上能下到。经典中的经典。Pattern Classification 和这本书是两本必读之书。《Pattern Recognition and Machine Learning》是很新(07年),深入浅出,手不释卷。最后,关于人工智能方面(特别地,决策与判断),再推荐两本有意思的书, 一本是《Simple Heuristics that Makes Us Smart》 另一本是《Bounded Rationality: The Adaptive Toolbox》 不同于计算机学界所采用的统计机器学习方法,这两本书更多地着眼于人类实际上所采用的认知方式,以下是我在讨论组上写的简介: 这两本都是德国ABC研究小组(一个由计算机科学家、认知科学家、神经科学家、经济学家、数学家、统计学家等组成的跨学科研究团体)集体写的,都是引起领域内广泛关注的书,尤其是前一本,后一本则是对 Herbert Simon (决策科学之父,诺奖获得者)提出的人类理性模型的扩充研究),可以说是把什么是真正的人类智能这个问题提上了台面。核心思想是,我们的大脑根本不能做大量的统计计算,使用fancy的数学手法去解释和预测这个世界,而是通过简单而鲁棒的启发法来面对不确定的世界(比如第一本书中提到的两个后来非常著名的启发法:再认启发法(cognition heuristics)和选择最佳(Take the Best)。当然,这两本书并没有排斥统计方法就是了,数据量大的时候统计优势就出来了,而数据量小的时候统计方法就变得非常糟糕;人类简单的启发法则充分利用生态环境中的规律性(regularities),都做到计算复杂性小且鲁棒。 关于第二本书的简介: 1. 谁是 Herbert Simon 2. 什么是 Bounded Rationality 3. 这本书讲啥的: 我一直觉得人类的决策与判断是一个非常迷人的问题。这本书简单地说可以看作是《决策与判断》的更全面更理论的版本。系统且理论化地介绍人类决策与判断过程中的各种启发式方法(heuristics)及其利弊(为什么他们是最优化方法在信息不足情况下的快捷且鲁棒的逼近,以及为什么在一些情况下会带来糟糕的后果等,比如学过机器学习的都知道朴素贝叶斯方法在许多情况下往往并不比贝叶斯网络效果差,而且还速度快;比如多项式插值的维数越高越容易 overfit,而基于低阶多项式的分段样条插值却被证明是一个非常鲁棒的方案)。 在此提一个书中提到的例子,非常有意思:两个团队被派去设计一个能够在场上接住抛过来的棒球的机器人。第一组做了详细的数学分析,建立了一个相当复杂的抛物线近似模型(因为还要考虑空气阻力之类的原因,所以并非严格抛物线),用于计算球的落点,以便正确地接到球。显然这个方案耗资巨大,而且实际运算也需要时间,大家都知道生物的神经网络中生物电流传输只有百米每秒之内,所以 computational complexity 对于生物来说是个宝贵资源,所以这个方案虽然可行,但不够好。第二组则采访了真正的运动员,听取他们总结自己到底是如何接球的感受,然后他们做了这样一个机器人:这个机器人在球抛出的一开始一半路程啥也不做,等到比较近了才开始跑动,并在跑动中一直保持眼睛于球之间的视角不变,后者就保证了机器人的跑动路线一定会和球的轨迹有交点;整个过程中这个机器人只做非常粗糙的轨迹估算。体会一下你接球的时候是不是眼睛一直都盯着球,然后根据视线角度来调整跑动方向?实际上人类就是这么干的,这就是 heuristics 的力量。 相对于偏向于心理学以及科普的《决策与判断》来说,这本书的理论性更强,引用文献也很多而经典,而且与人工智能和机器学习都有交叉,里面也有不少数学内容,全书由十几个章节构成,每个章节都是由不同的作者写的,类似于 paper 一样的,很严谨,也没啥废话,跟《Psychology of Problem Solving》类似。比较适合 geeks 阅读哈。 另外,对理论的技术细节看不下去的也建议看看《决策与判断》这类书(以及像《别做正常的傻瓜》这样的傻瓜科普读本),对自己在生活中做决策有莫大的好处。人类决策与判断中使用了很多的 heuristics ,很不幸的是,其中许多都是在适应几十万年前的社会环境中建立起来的,并不适合于现代社会,所以了解这些思维中的缺点、盲点,对自己成为一个良好的决策者有很大的好处,而且这本身也是一个非常有趣的领域。 (完)

由人民邮电出版社出版的《人工智能通识》面向我国人工智能的通识教育与专业技术人才的培养。全书共8章,分为3篇,分别为人工智能的基本理论、人工智能的应用以及人工智能的融合拓展,涵盖了目前主流的人工智能技术。《人工智能通识》在介绍人工智能的基本原理时,尽量回避了相关的复杂模型和算法设计,方便读者在社会层面理解人工智能的应用形式和未来的发展路径。此外,书中每章都设计了一些思考与练习的题目,以便读者在课堂练习和研讨中使用。

人工智能论文参考文献作者排序

参考文献排序是按照自己的参考文献在文章中的出现顺序进行排序的,一般主要就集中在文献综述部分,按照在文献综述中出现的顺序进行排序。

录入需要排序的姓名在行首,注意要每个姓名占一行,也就是输入完一个姓名后要按一下“回车”键换行。

很多论文的参考文献是需要按作者名字的拼音和字母顺序排序的,很多人都是直接手动一个一个排序,这样子很麻烦,当文献量很多时,任务量就会很大,用户可以直接用Excel就可以做,我们只需要找到数据项中的排序,在排序对话框中找到“选项”按钮,选择“按字母排序”,在选号要排列的列和升降序,确定之后,就可以排序了。

论文参考文献注意事项

文献引用不能随意,是需要精心选择的。引用,要引用与自己的研究内容密切相关的。另外,我个人的观点是还要引用高质量的文献,引用文献也需要品位。

文献卡片上记录文献的信息(作者、年代、题目、期刊名称、卷期、页码等),在笔记本上摘录摘要的内容。写论文引用参考文献的时候,觉得一篇文献对于自己的结果论证很重要,但又苦于查不到原文,就只能是间接引用,采用“转引自”的方式引用。

参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码(或页码范围)在文后参考文献中列出。

格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围).”。多次引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后(仅列数字,不加“p”或“页”等前后文字、字符。

页码范围中间的连线为半字线)并作上标。作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

扩展资料:

根据GB 3469--83规定,以英文大写字母方式标识以下各种参考文献类型标识:专著[M],沦文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P]。

对于非纸张型载体的电子文献,当被引用为参考文献时需在参考文献类型标识中同时标明其载体类型。建议采用以下标识:磁带(magnetic),磁盘(disk),光盘[CD],联机网络(online)。

参考资料来源:百度百科-参考文献

以WPS 2019版为例

1、打开文档,选中参考文献,依次点击“开始”--->“排序”

2、按拼音进行升序即可~

人工智能论文参考文献怎么写

1. [期刊论文]产教融合视域下汽车智能技术专业人才需求分析 期刊:《内燃机与配件》 | 2021 年第 002 期 摘要:在国务院印发《国家职业教育改革实施方案2. [期刊论文]汽车智能技术专业群"1+X"课证融通的探索与实践 期刊:《时代汽车》 | 2021 年第 011 期 摘要:职业教育改革中重点关注3. [期刊论文]汽车电子技术中的智能传感器技术分析 期刊:《电子测试》 | 2021 年第 002 期 摘要:现代电子信息技术的大力发展,使得各行各业的

“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!

对《人工智能》专业选修课教学的几点体会

摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.

本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。

下一页分享更优秀的<<<人工智能结课论文

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

学位论文参考文献格式范例如下:

1).期刊(journal)

[序号]主要责任者.文献题名[J.刊名,出版年份,卷号(期号):起止页码。

例如:[11毛峡,丁玉宽,图像的情感特征分析及其和谐感评价J.电子学报,2001,29(12A):23-

7.[2] Mao Xia, Property of Image and FractaDimension[J].Chaos

olitons&,2003:V15905-910

2).专著(monograph)

[序号]主要责任者.文献题名[M.出版地:出版者,出版年:起止页码。

例如:[3]刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,

[4]T·Parsons,The Social SystemNew York:Free Press1961:P36-45

3).会议论文集(collections)

[序号]主要责任者.文献题名[A]主编.论文集名[C].出版地:出版者,出版年:起止页码。

例如:[5]毛 峡.绘画的音乐表现[A].中国人工智能学会.2001年全国学术年会论文集[C].北京:北京

电大学出版社,2001:739-740.

4).学位论文(dissertation)

[序号]主要责仟者.文献题名[D].保存地:保存单位,年份

例如:[6]张和生.地质力学系统理论[D].太原:太原理工大学,1998.

测绘人工智能论文参考文献

可以写参考,工程测量规范,测量学,等等注意要写出版社和主编,其实随便拿本书,看最后一页模仿一下就好了

人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!

摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。

关键词:人类智能,人工智能,认知,心理学

人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?

1.你在和谁说话?

“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?

. 人工智能的定义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。

. 人工智能技术的发展

几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。

. 人工智能的研究领域

人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。

现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。

2.机器真的可以思考吗?

机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。

. 人类意识的本质

意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。

. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。

意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。

. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。

意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。

. 人类意识与人工智能的关系

认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:

l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。

l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。

l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。

随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。

3. 人工智能的未来

人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。

在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。

人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。

【参考文献】

1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页

2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页

3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年

4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年

5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年

下一页分享更优秀的<<<人工智能的期末论文

测绘工程论文参考文献

参考文献的著录格式是否规范反映作者论文写作经验和治学态度,下同时也是论文的重要构成部分,也是学术研究过程之中对于所涉及到的所有文献资料的总结与概括。以下是我精心整理的测绘工程论文参考文献,欢迎大家借鉴与参考,希望对大家有所帮助。

[1]于武盛,王守杰,吕锦有等.辽宁省地表水资源分布及成因分析[J].农业科技与装.(2):25-29

[2]李智慧,姜延辉,郁凌峰.辽宁省水资源时空分布特点及对策[J].东北水利水电.2011(11):30-34

[3]赵秀风,弓丨水隧洞洞内消能问题的研究[D]:(硕士学位论文).郑州:华北水电学院,2006.

[4]袁丹青,陈向阳,白滨等.水力机械空化空蚀问题的研究进展[J]#灌机械,(27):269-272

[5]肖富仁,苏玮,消能工的发展及其在工程中旳应用[J].水电站设计,(1):63-69.

[6]李超,管道内部锥阀水流水力特性及消能研究[D]:(硕士学位论文).西安:西安理工大学,2008.

[7]王才欢,肖兴斌,底流消能设计研究与应用现状述评[J].四川水力发电,(1):79-85.

[8]张慧丽,王爱华,张力春,底流消能及其在工程上的应用[J].黑龙江水利科技.

[9]方神光,吴保生,南水北调中线干渠闸前变水位运行方式探讨[J].水动力学研究与进展,.

[10]李冰,变水头无压输水隧洞洞内消能和稳定输水研究[D]:(硕士学位论文).郑州.华北水电学院,.

[11]武汉水利电力学院水力学教研室.水力计算手册[M].水利出版社,1980.

[12]SL20~92.水工建筑物测流规范[S].中国:水利电力出版社,1992.

[13]赵昕,赵明登等,水力学[M],北京:中国电力出版社,2009.

[14]刘亚坤等.水力学[M],北京:中国水利水电出版社,2008.

[15]李桂芬.水工水力学研究进展与展望[J].中国水利水电科学研究院学报,(3):183-189

[16]左东启等.模型试验的理论和方法[M],北京:水利电力出版社,1988.

[17]SL155—95.水工(常规)模型试验规程[S].中国:水利水电出版社,1995.

[18]中国水利水电科学研究院,水工(专题)模型试验规范(SL156~165-95)[M],水利水电出版社.

[19]电力部水利部水利水电规划设计总院、华北水利水电学院北京研究生部陈肇和等人翻译,泄水建筑物水力计算手册[M],.

[20]刘士和.高速水流[M].北京:科学出版社,2005.

[21]水利水电科学研究院,南京水利科学研究院编,水工模型试验(第二版)[D],水利出版社,1985.

[1]黄杏元,马劲松,汤勤.地理信息系统概论[M].修订版.北京:高等教育出版社,1990:165-171.

[2]《第二次全国土地调查技术规程》,TD/T1014-2007.北京,中华人民共和国国土资源部,2007.

[3]陈泽民.中国矢量数据交换格式的应用研究[J].武汉大学学报信息科学版,2004,29(5):451-455.

[4]吴文新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003,28-29.

[5]Kang-tsungChang著,陈建飞等译.地理信息系统导论[M].北京:科学出版社,2003,43-44.

[6]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.

[7]黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社,1990:130-133.

[8]陈先伟,郭仁忠,闫浩文.土地利用数据库综合中图斑拓扑关系的创建和一致性维护[J].武汉大学报信息科学版,2005,30(4):370-373.

[9]毋河海.关于GIS中缓冲区的建立问题[J].武汉测绘科技大学学报[J].1997,22(4):358-364.

[10]张国辉,胡闻达,李慧智.基于GDI+的缓冲区建立及边界描述方法[J].测绘科学技术学报,2010,27(3):292-232.

[11]冯花平,连文娟,卢新明.求缓冲区算法[J].山东大学学报自然科学版,2005,24(3):57-59.

[12]张欣,陈国雄,钟耳顺.优化栅格细化算法的`线状地物提取[J].地球信息科学,2007,9(3):25-27.

[13]潘瑜春,钟耳顺,刘巧芹.土地资源数据库中线状地物面积扣除技术研究[J].资源科学,2001,24(6):12-17.

[14]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报·信息科学版,2011,36(7):853-856.

[15]尹为华,刘盛庆.ARCGIS在地类面积统计中的应用[J].科技资讯,2012:29.

[16]刘洪江,曹玉香.基于ArcGIS实现地类图斑净面积的计算[J].城市勘测,2012(10)114-116.

[17]边馥苓.地理信息系统原理和方法[M].北京:测绘出版社,1996.

[18]任娜,张道军.基于空间推理及语义的图斑扣除线状地物面积关键算法及其在土地调查建库中的应用[J].安徽农业科学,39(35):22013-22016.

[19]计长飞.土地利用现状图的矢量化方法研究[J].测绘与空间地理信息,2011,34(4):159-163.

[20]马欣,吴绍洪,康相武.线状地物的区域影响模型及其在综合评价中的应用[J].地理科学进展,2007,26(1):87-94.

[1]韩绍伟.GPS组合观测值理论及应用.测绘学报,1995,21(2):8-13.

[2]常青等.GPS载波相位组合观测值理论研究.航空学报,1998,5(19):614-616.

[3]王泽民,柳景斌.Galileo卫星定位系统相位组合观测值的模型研究[J].武汉大学学报(信息科学版),2003,28(6):723-727.

[4]申俊飞,何海波,郭海荣,王爱兵.三频观测量线性组合在北斗导航中的应用[J].全球定位系统,2012,37(6):690-695.

[5]中国卫星导航系统管理办公室.北斗卫星导航系统发展报告(版)[R].2013,12:3-6.

[6]邢喆,王泽明,伍岳.利用模糊聚类方法筛选GPS载波相位组合观测值[J].武汉大学学报(信息科学版),2006,31(1):23-26.

[7]黄令勇,宋力杰,刘先冬.基于自适应聚类算法的GPS三频载波相位组合观测值优化选取[J].大地测量与地球动力学,2011,31(4):99-102.

[8]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2003.

[9]李征航,黄劲松.GPS测量与数据处理[M].武汉大学出版社,2008.

[10]熊伟,伍岳,孙振冰,王泽民.多频数据组合在周跳探测和修复上的应用[J].武汉大学学报(信息科学版),2007,32(4):319-322.

[11]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉大学,2005.

[12]楼晓俊,李隽颖,刘海涛.距离修正的模糊C均值聚类算法[J].计算机应用,2012,32(3):646-648.

[13]徐军,陶庭叶,高飞.GLONASS三种载波频率组合值研究[J].大地测量与地球动力学,2013,33(1):86-89.

[14]陶庭叶,高飞,李晓莉.一种高精度GPS卫星钟差预报方法[J].中国空间科学技术,2013-4:56-61.

[15]何伟,陶庭叶,王志平.基于改进FCM的北斗三频组合观测值选取[J].中国空间科学技术(已录用).

[16]何伟,李明,阚起源.抗差加权非等时距GM(1,1)模型在大型建筑物沉降预测中的应用[J].测绘工程,2014-3,34-37.

[17]徐军,陶庭叶,高飞,张京奎.基于GLONASS三频组合观测值的周跳探测与修复[J].大地测量与地球动力学,2013,33(6):45-49.

[18]罗腾,白征东,过静珺.两种周跳探测方法在北斗三频中的应用比较研究[J].测绘通报,2011(4):1-3.

[19]范建军,王飞雪,郭桂蓉.GPS三频非差观测数据周跳的自动探测与改正研究[J].测绘科学,2006,31(5):24-26.

[20]刘旭春,伍岳,黄学斌等.多频组合数据在原始载波观测值预处理中的应用[J].测绘通报,2007(2):14-17.

[21]梁开龙,张玉册.现代化GPS信号的宽巷组合及其求解模糊度研究.测绘通报,2002年第4期:l-3

[22]张成军,许其凤,李作虎.对伪距/相位组合量探测与修复周跳算法的改进[J].测绘学报,2009,38(4):402-407.

[23]刘旭春,伍岳,张正禄.GPS三频数据在周跳和粗差探测与修复中的应用[J].煤炭学报,2006,31(5):334-339.

[24]王帅,高井祥.利用三频组合观测值进行GPS周跳探测与修复[J].测绘科学,2012,37(5):40-42.

相关百科

热门百科

首页
发表服务