近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Graphene Aerogel Fibers with Hierarchical Architecture”的论文。该论文报道了一种新型石墨烯气凝胶纤维,该纤维具有超强和韧性的特点,并且具有分层结构。这种新型石墨烯气凝胶纤维的制备方法简单易行,所得纤维具有超高的拉伸强度和韧性,并且具有显著的储能能力和超高的导电性能,因此在柔性电子、高强度材料和先进能源储存等领域有着广泛的应用前景。这项研究成果的发表不仅提高了我国在新型高性能材料领域中的国际影响力,而且也为石墨烯气凝胶纤维的制备和应用提供了新的思路。
现阶段我国城市污水处理厂每年排放的污泥量(干重)大约为130万吨,并以年增长率10%的速率增长。城市污水处理厂污泥的组分复杂,含有大量的有机质、营养元素、重金属、病原菌和有机污染物等,如不及时加以妥善处理,将会对环境造成严重的二次污染。因此,探求安全有效的方法进行污泥处理与处置,实现污泥减量化、无害化、稳定化和资源化就成文本文研究的出发点。1城市污水处理厂污泥处置的现状及发展趋势随着污泥安全处理处置问题的日益突出,国内不少城市自2002年开始建设现代化污泥处置设施。毋庸置疑,污泥处置实质性工作的开展在大部分污水处理厂还处于起步阶段,湿污泥被随意抛弃或露天堆放的现象比比皆是,只有20%不到的湿污泥实现了资源化处置,引起较多的二次污染。现阶段城市污水处理厂污泥资源化处置技术基本上采用引进西方技术,或在吸收西方先进技术的基础上进行改良、创新或国产化。目前水泥窑协同处置、空心桨叶热蒸汽烘干、高温好氧堆肥、污泥制砖、化学调理深度脱水加焚烧及循环流化床干化加焚烧等都在国内污水处理厂中有了实际应用,但诸如污泥低温制油、污泥制陶、污泥熔化、污泥湿式氧化、污泥制活性吸附剂等新技术还仍处于研究阶段,没有进行大规模工程应用。2城市污水处理厂污泥资源化处置的典型技术好氧堆肥污泥好氧堆肥是将固体有机废弃物转化为高质量有机肥的重要无害化和资源化途径,它不仅可以解决城市污泥环境污染问题,而且对于发展有机肥、保持和提高土壤肥力,促进农业持续发展有着重要的意义。例如陶娟娟在常温下以体积为1m3的堆体(包含污泥、稻草和木屑),C/N为30,含水率为55%,通过人工翻堆来进行通风,测得种子发芽系数为,腐熟度高。在塌陷区贫瘠土地上应用堆肥产品后,土壤中的重金属和营养元素等均有所提高,且重金属增加量符合国家标准《土壤环境质量标准(GB15618-1995)》所规定的农田土壤质量控制标准允许值,由此得出城市污水处理厂污泥在常温状态下自然通风堆肥效果较好。污泥制砖污泥制砖是指将污泥经过一定处理筛选后,与其他原料混合(如粘土)加压成型,焙烧后制得污泥砖。近年来,我国越来越多的学者开始对污泥制砖资源化展开相关研究:①有研究者将城市污泥加入到烧结砖中,考察制备得到的污泥粘土烧结砖的各项性能,结果显示当加入的污泥量在5%-6%之间时,生产得到的页岩及粘土烧结普通砖均可作为承重砖体使用。而当污泥的加入量少于5%时,所得到的页岩烧结空心砖强度,可作为填充墙(或隔离墙)使用;②有研究者利用污水处理厂剩余污泥制备粘土砖,结果显示当污泥添加量为5%到25%之间时,制备的砖体具有较好的保温隔音效果。如果投入工业生产,一个普通的陶瓷砖生产厂每天可消耗30吨污泥;③有研究者利用污水处理厂深度脱水污泥制备烧结砖时发现,当污泥掺量为20%时,砖体呈现较好性能,能够用作承重墙体的建造。经计算,生产100万块深度脱水污泥砖,能带来76000元的经济效应,同时分别能减排吨和吨的二氧化硫。污泥燃料化由于污泥具有较高的热值,在许多工业应用中将污泥作为替代燃料,有研究者利用污泥热值,将其添加到水煤浆中制备成生物质煤浆,此举既节约了煤资源,又省掉了污泥前处理等繁琐程序;有研究者以污泥、稻草和烟煤为原料,压制成污泥燃料,结果显示污泥:烟煤:稻草=::且控制成型压力和过量空气系数分别为50MPa和时,其污泥型燃料的燃烧速率最快;有研究者用成型干化工艺制备污泥-煤复合燃料,结果显示污泥的含水率、成型压力以及原材料的添加比例都对燃料的成型有很大影响,并且污泥煤秃先剂舷嘟嫌诖课勰嗑哂薪虾玫母苫性能,能同时实现污泥脱水和资源化的双重目的;有研究者制备了污泥秸秆衍生固体燃料,结果显示该种燃料相较于污泥单独燃烧和煤混合燃烧都具有更好的燃烧特性,能替代燃料使用。3结语城市污水处理厂污泥资源化利用在我国已经有超过20年的历史,自20世纪80年代初,第一座城市污水处理厂天津纪庄子污水处理厂建成投产后,污泥既由附近郊区的农民用于农田。而本文主要对好氧堆肥、污泥制砖和污泥燃料化技术的研究现状进行了阐述,以期为提高城市污水处理厂污泥资源化的效率,提供一些有益的参考。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
化工专业毕业论文开题报告范文
1.引言
中国有82%的人饮用浅井和江河水,其中水质污染严惩细菌超过卫生标准的占了75%,受到有机物污染的饮用水人口约亿。长期以来,人们一直认为自来水是安全卫生的。但是,因为水污染,如今的自来水已不能算是卫生的了。一项调查显示,在全世界自来水中,测出的化学污染物有2221种之多,其中有些确认为致癌物或促癌物。从自来水的饮用标准看,中国尚处于较低水平,自来水目前仅能采用沉淀、过滤、加氯消毒等方法,将江河水或地下水简单加工成可饮用水。自来水加氯可有效杀除病菌,同时也会产生较多的卤代烃化合物,这些含氯有机物的含量成倍增加,是引起人类患各种胃肠癌的最大根源。目前,城市污染的成分十分复杂,受污染的水域中除重金属外,还含有甚多农药、化肥、洗涤剂等有害残留物,即使是把自来水煮沸了,上述残留物仍驱之不去,而煮沸水中增加了有害物的浓度,降低了有益于人体健康的溶解氧的含量,而且也使亚硝酸盐与三氯甲烷等致癌物增加,因此,饮用开水的安全系数也是不高的。据最新资料透露,目前中国主要大城市只有23%的居民饮用水符合卫生标准,小城镇和农村饮用水合格率更低。水污染防治当务之急,应确保饮用水合格。为此应加大水污染监控力度,设立供水水源地保护区。母亲河黄河1972年第一次断流,1997年断流226天,近700公里河床干涸。海河300条支流,无河不干,无河不臭。华北地下水严重超采,形成面积7万多平方公里的世界上最大的地下水漏斗区,地面下沉,海水入侵。全国668个城市中,有400多个供水不足,100多个严重缺水。上世纪九十年代末以来,土地沙化速度上升到每年3400多平方公里。
更可怕的是,中国水资源总量还在下降。1997年总量为27855亿立方米,而2004年就降到24130亿立方米。从上世纪50年代以来,长江上游20多条河流平均萎缩了。世界自然基金会3月19日发表报告,将长度与水量均为世界第三的长江列入世界面临干涸的10条大河之一。水体污染影响工业生产、增大设备腐蚀、影响产品质量,甚至使生产不能进行下去。水的污染,又影响人民生活,破坏生态,直接危害人的健康,损害很大。目前,人们已意识到不能以破坏生态环境来发展经济,这样的代价太大了。中国已提出社会经济可持续发展和保护人民的身体健康的战略,对整治水域污染采取了一系列强有力的措施。
水污染处理有三种方法:物理法、化学法、生物降解法。
物理法:废水处理方法的选择取决于废水中污染物的性质、组成、状态及对水质的要求。一般废水的处理方法大致可分为物理法、化学法及生物法三大类。
利用物理作用处理、分离和回收废水中的污染物。例如用沉淀法除去水中相对密度大于1的悬浮颗粒的同时回收这些颗粒物;浮选法(或气浮法)可除去乳状油滴或相对密度近于1的悬浮物;过滤法可除去水中的悬浮颗粒;蒸发法用于浓缩废水中不挥发性的可溶性物质等[2]。
化学法:利用化学反应或物理化学作用回收可溶性废物或胶体物质,例如,中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相中溶解度不同的“分配”,回收酚类、重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌等[2]。
生物法:利用微生物的生化作用处理污水中的.有机物。例如,生物过滤法和活性污泥法用来处理生活污水或有机生产污水,使有机物转化降解成无机盐而得到净化[2]。
长期以来污水多采用活性污泥法处理,也是世界各国应用最广泛的一种生物处理流程,具有处理能力高,出水水质好的优点。
2.课题名称、专业年级、学生、指导老师
课题名称:三价盐氯化铝对活性污泥降解性能的影响
专业年级:××××级应用化工技术
成 员:×××
指导老师:×××
3.课题内容
①活性污泥的培养
实验室活性污泥培养是利用间歇培养的方法,利用曝气装置向活性污泥曝气,即闷曝,只是通入氧气,隔一段时间进行静置沉淀一小时,然后换水,要加入适量养料培养,如此反复,维持实验所需的活性污泥的浓度。
②三价盐氯化铝对活性污泥降解性能研究方法
水体质量的判断主要是依靠某些指标来表示,包括DO,COD,BOD等。其中COD是“化学需氧量(chemical oxygen demand)”的英文缩写,是反映水体中还原性污染物(包括有机的和无机的还原性物质)的指标。这里就采用COD指标来表示。COD的测定方法有很多种。参照大量文献最总总结出一种测定方法,即往试样中加入已知量的重铬酸钾溶液,在强酸介质中,以硫酸银作为催化剂,经高温消解后,用分光光度法测定COD值。当试样中COD值为100mg/L至1000mg/L,在60020纳米波长处测定重铬酸钾被还原产生的三价铬离子的吸光度,试样中COD值与三价铬离子的吸光度的增加值成正比例关系,将三价铬离子的吸光度换算成COD的值。当试样中COD值为15mg/L至250mg/L,在440±20纳米的波长处测定重铬酸钾未被还原的六价铬离子和被还原产生的三价铬离子两种铬离子的总吸光度;试样中COD值与六价铬离子的吸光度的减少值成正比,和三价铬离子的吸光度的增加值成正比,将总吸光度换算成COD值[3-8]。
配置不同浓度的三价盐氯化铝水样,在回流装置中加热,沸腾一小时后,放入锥形瓶中冷却,而后加入指示剂用而配置好的已知浓度的硫酸亚铁铵标准溶液进行滴定,记录数据。再重复上述操作,从而研究三价盐氯化铝对活性污泥降解性能的影响。
③验证
通过实验数据,作出不同浓度氯化铝水样的COD值随时间的变化曲线,从而分析三价盐氯化铝对活性污泥降解性能是否有影响。
4.本课题的目的、意义
随着社会的发展,造纸、化工行业都排放大量的工业废水。含重金属的废水污染环境,破坏生态平衡,影响动植物生长,严重危害人类健康。因此,国内外学者都在积极探索和研究一种高效的降解活性污泥的方法。
本文主要研究了废水中不同浓度的氯化铝对活性污泥降解性能的影响,通过测定污泥处理前后工业污水的COD值,研究不同浓度驯化下的活性污泥的生长及对有机物的降解情况,为进一步推广活性污泥在工业中的应用提供有力的数据支持[9]。
5.拟使用的主要试剂和仪器
①试剂:
无水氯化铝(分析纯)、六水合硫酸亚铁铵(分析纯)、重铬酸钾(优级纯)、浓硫酸(分析纯)、硫酸汞(分析纯)、硫酸银(分析纯)、葡萄糖(优级纯)(50g/L)、1,10-邻菲罗琳、蒸馏水等。
②仪器:
智能恒温电热套、鼓泡机、托盘天平、电子天平、圆底烧瓶(250mL)、空气冷凝管、小烧杯(50mL)、量筒(100mL)、量筒(10mL)、量筒(5mL)、锥形瓶(250mL)、离心机等。
6.预期目标
影响活性污泥活性的因素有很多,而本实验只研究不同浓度的氯化铝对活性污泥降解能力是否有影响,因此我们选氯化铝为研究对象,测定污泥处理前后污水的COD值,研究不同浓度氯化铝驯化下的活性污泥的生长及对有机物的降解情况,可以给对于活性污泥降解能力的研究提供一个客观的数据支持,另外在课题实验中还要最大可能的排除氯离子的影响,以达到一个客观准确的测量结果。
7.阶段性工作
第4~5周 文献查阅。
第6周 完成开题报告及文献综述,制定实验方案。
第7周 准备实验室,领取仪器和药品,配制所需试剂。
第8~14周 按实验方案完成实验,同时总结试验过程中的不足,以及实验过程中的现象和结论,记录并处理数据。
第15~16周 整理数据,制表画图,撰写毕业论文。
第17周 论文答辩
参考文献
[1] 崔衍立.城市污水处理常用方法比较研究[J].内江科技,2010.
[2] 殷实.浅谈活性污泥在废水处理中的应用[J].环境研究与监测,2010,(2) :23-24.
[3] 孙惠修.排水工程.第四版.北京:中国建筑工业出版社,1999:105-107.
[4] 苏振中.CODcr与BOD5的相关性研究[J].黑龙江环境通报,2010,34 (2):75-78.
[5] 顾凤妹.李秀霞.重铬酸钾法测定COD影响因素分析[J].小氮肥,2009,37 (3):18-20.
[6] 李国刚,王德龙.生化需氧量BOD测定方法综述[J].中国环境监测,2004,20 (2):54-57.
[7] 肖肖,陈英姿.BOD5测定的影响因素分析[J].化学工程与装备,2009,9:176-177.
[8] 王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学环测学院,2009:9-11.
[9] 徐航.COD重铬酸钾分析法相关问题的探讨[J].化学工程与装备,2010,6: 171-172.
最近,苏州大学材料与化学化工学部的汪胜教授团队在高水平期刊《Nature Communications》上发表了题为“Hybrid nanogenerator for simultaneously harvesting sun and rain energy”的一篇论文。该研究团队成功地设计并制备了一种新型的混合纳米发电机,可以同时从太阳和雨水中收集能量。该混合纳米发电机采用了多层结构,包括由半导体纳米线、珍珠岩和碳纤维布组成的柔性基板和由钛酸锶、银、氧化锌和聚丙烯腈等复合材料制成的光电极。在实验中,该混合纳米发电机可以同时输出太阳能和雨能电能,达到了不错的能量转换效率。这项研究的成果具有重要的应用价值,可以在实现清洁能源方面发挥重要作用。该研究还证明了科学家们通过将不同技术结合在一起,可以开发出更加高效的能源转换装置。
现阶段我国城市污水处理厂每年排放的污泥量(干重)大约为130万吨,并以年增长率10%的速率增长。城市污水处理厂污泥的组分复杂,含有大量的有机质、营养元素、重金属、病原菌和有机污染物等,如不及时加以妥善处理,将会对环境造成严重的二次污染。因此,探求安全有效的方法进行污泥处理与处置,实现污泥减量化、无害化、稳定化和资源化就成文本文研究的出发点。1城市污水处理厂污泥处置的现状及发展趋势随着污泥安全处理处置问题的日益突出,国内不少城市自2002年开始建设现代化污泥处置设施。毋庸置疑,污泥处置实质性工作的开展在大部分污水处理厂还处于起步阶段,湿污泥被随意抛弃或露天堆放的现象比比皆是,只有20%不到的湿污泥实现了资源化处置,引起较多的二次污染。现阶段城市污水处理厂污泥资源化处置技术基本上采用引进西方技术,或在吸收西方先进技术的基础上进行改良、创新或国产化。目前水泥窑协同处置、空心桨叶热蒸汽烘干、高温好氧堆肥、污泥制砖、化学调理深度脱水加焚烧及循环流化床干化加焚烧等都在国内污水处理厂中有了实际应用,但诸如污泥低温制油、污泥制陶、污泥熔化、污泥湿式氧化、污泥制活性吸附剂等新技术还仍处于研究阶段,没有进行大规模工程应用。2城市污水处理厂污泥资源化处置的典型技术好氧堆肥污泥好氧堆肥是将固体有机废弃物转化为高质量有机肥的重要无害化和资源化途径,它不仅可以解决城市污泥环境污染问题,而且对于发展有机肥、保持和提高土壤肥力,促进农业持续发展有着重要的意义。例如陶娟娟在常温下以体积为1m3的堆体(包含污泥、稻草和木屑),C/N为30,含水率为55%,通过人工翻堆来进行通风,测得种子发芽系数为,腐熟度高。在塌陷区贫瘠土地上应用堆肥产品后,土壤中的重金属和营养元素等均有所提高,且重金属增加量符合国家标准《土壤环境质量标准(GB15618-1995)》所规定的农田土壤质量控制标准允许值,由此得出城市污水处理厂污泥在常温状态下自然通风堆肥效果较好。污泥制砖污泥制砖是指将污泥经过一定处理筛选后,与其他原料混合(如粘土)加压成型,焙烧后制得污泥砖。近年来,我国越来越多的学者开始对污泥制砖资源化展开相关研究:①有研究者将城市污泥加入到烧结砖中,考察制备得到的污泥粘土烧结砖的各项性能,结果显示当加入的污泥量在5%-6%之间时,生产得到的页岩及粘土烧结普通砖均可作为承重砖体使用。而当污泥的加入量少于5%时,所得到的页岩烧结空心砖强度,可作为填充墙(或隔离墙)使用;②有研究者利用污水处理厂剩余污泥制备粘土砖,结果显示当污泥添加量为5%到25%之间时,制备的砖体具有较好的保温隔音效果。如果投入工业生产,一个普通的陶瓷砖生产厂每天可消耗30吨污泥;③有研究者利用污水处理厂深度脱水污泥制备烧结砖时发现,当污泥掺量为20%时,砖体呈现较好性能,能够用作承重墙体的建造。经计算,生产100万块深度脱水污泥砖,能带来76000元的经济效应,同时分别能减排吨和吨的二氧化硫。污泥燃料化由于污泥具有较高的热值,在许多工业应用中将污泥作为替代燃料,有研究者利用污泥热值,将其添加到水煤浆中制备成生物质煤浆,此举既节约了煤资源,又省掉了污泥前处理等繁琐程序;有研究者以污泥、稻草和烟煤为原料,压制成污泥燃料,结果显示污泥:烟煤:稻草=::且控制成型压力和过量空气系数分别为50MPa和时,其污泥型燃料的燃烧速率最快;有研究者用成型干化工艺制备污泥-煤复合燃料,结果显示污泥的含水率、成型压力以及原材料的添加比例都对燃料的成型有很大影响,并且污泥煤秃先剂舷嘟嫌诖课勰嗑哂薪虾玫母苫性能,能同时实现污泥脱水和资源化的双重目的;有研究者制备了污泥秸秆衍生固体燃料,结果显示该种燃料相较于污泥单独燃烧和煤混合燃烧都具有更好的燃烧特性,能替代燃料使用。3结语城市污水处理厂污泥资源化利用在我国已经有超过20年的历史,自20世纪80年代初,第一座城市污水处理厂天津纪庄子污水处理厂建成投产后,污泥既由附近郊区的农民用于农田。而本文主要对好氧堆肥、污泥制砖和污泥燃料化技术的研究现状进行了阐述,以期为提高城市污水处理厂污泥资源化的效率,提供一些有益的参考。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
随着我国城市化进程的加快,城市污水处理率逐年提高,城市污水处理厂的脱水污泥产量也急剧增加。为避免给水体和大气带来二次污染,对生态环境和人类的活动构成严重威胁,有必要对脱水污泥的处理技术进行研究,提出适合我国脱水污泥无害化处理的技术。关键词:城市污水;脱水污泥;处理1 问题的提出随着我国城市化进程的加快,城市污水处理率逐年提高,城市污水处理厂的污泥产量也急剧增加。未经恰当处理处置的污泥进入环境后,直接给水体和大气带来二次污染,不但降低了污水处理系统的有效处理能力,而且对生态环境和人类的活动构成了严重的威胁。为避免给水体和大气带来二次污染,对生态环境和人类的活动构成严重威胁,有必要对脱水污泥的处理现状进行研究,提出适合我国脱水污泥无害化处理的技术。2 我国污泥处理现状据估算,我国城市污水处理厂每年排放的污泥量(干重)大约为130万吨。而且年增长率大于10%,特别是在我国城市化水平较高的几个城市与地区,污泥出路问题已经十分突出。如果城市污水全部得到处理,则将产生污泥量(干重)为840万吨,占我国总固体废弃物的。目前,我国污泥处理处置方法中,污泥农用占、陆地填埋占31%、其他处理约、没有处理约,这些所谓的“处理”和“处置”基本上都是在特定的条件下估算的,严格来说以上数字将会有很大的变化。据估计,我国用于污泥处理处置的投资约占污水处理厂总投资的20-50%,可以看出,污泥处理处置处于严重滞后状态。污泥处理处置问题已经在大城市中表现出来。早期的污水处理厂,由于没有严格的污泥排放监督,普遍将污水和污泥处理单元剥离开来,为了追求简单的污水率,尽可能的简化、甚至忽略了污泥处理处置单元;有的还为了节省运行费用将已建成的污泥处理设置长期闲置,甚至将未做任何处理的湿污泥随意外运、简单填埋或堆放,致使许多大城市出现了污泥围城的现象并已开始向中小城市蔓延,给生态环境带来了极不安全的隐患。目前我国虽然对污泥问题开始关注,但仍然停留在技术层次,2003年开始,我国主要大城市,开始尝试进行污泥处理处置规划,对其技术方案进行了充分论证。如:广州市近期采取生污泥填埋,远期将用于农肥;深圳市已完成专项规划,拟采取热干化加焚烧工艺;上海市则根据不同情况,采取处理分散化、处理集约化、技术多元化的方针;天津市计划建设3座污泥处理厂,采用污泥消化发电工艺,但尚无污泥最终的处置的方法。3 我国城市脱水污泥处理现采用的主要方法目前在我国脱水污泥处理中主要采取的方法有海洋倾倒、卫生填埋、焚烧、污泥热干化、堆肥等多种处理技术,各种方法有不同的优缺点。目前世界各国基本上都不允许往海洋倾倒污泥;卫生填埋虽然操作简单、费用低,但是渗漏液难处理,影响地下水系;焚烧处理技术优势在于处理的彻底性,其减容率可达到95%左右,其有机物被完全氧化,重金属,(除汞外)几乎全部截流在灰渣中。但是该方法的缺点为投资和操作费用较高;在焚烧过程中产生飞灰、炉渣和烟气等难以处理的物质,且成本高;污泥热干化技术优点是占地少,自动化程度高,但如果污泥进行完全干化,干到含水0%以下能耗很大、设备投资高;污泥堆肥技术优点为利用生物能,节约能源,肥效好:其缺点占地面积大,周期长,易产生臭气等。4 适合我国脱水污泥无害化处理的技术综合以上污泥处理工艺技术的特点并结合我国国情,以及相关污水处理厂的资料,目前适合我国脱水污泥无害化处理的技术有:污泥预干化技术污泥干化技术是通过热能对污泥进行水分去除处理,在干化过程中将耗去大量的热能,为了降低污泥干化所需要的热能,大量试验表明:脱水污泥经加热干化使含水率由80%降到60%时所消耗能量小,其主要去除的是污泥中的游离水;同样含水率在35%以下继续干化消耗能量也小,这两段的能量消耗基本接近理论值;污泥在含水率35%-60%之间,为污泥的塑性阶段,这阶段污泥的流体特性类似胶水。胶状、黏稠,很难处置,对其干化消耗能量急剧增加,很难干化。根据上述特性,干化污泥要避开污泥塑性阶段。要充分利用污泥干化特性,尽量在含水率60%以上,35%以下。在含水率为35%-60%之间干化耗能约为含水率60%以上和35%以下干化耗能的倍;所以对脱水污泥需采用预干化技术,使脱水污泥含水率由80%降至60%,这样大大节约了能耗。 污泥高温好氧堆肥技术污泥高温好氧堆肥技术是将含水50-55%的污泥进行好氧堆肥发酵,高温好氧发酵过程是通过好氧性微生物的生物代谢作用,使污泥中有机物转化成富含植物营养物的腐殖质,反映的最终代谢物是CO2、H2O和热量,大量热量使物料维持在60摄氏度以上的持续高温,降低物料的含水率,有效地去除病原体、寄生虫卵和杂草种子,使污泥达到减量化、稳定化、无害化、资源化目的。 污泥晾晒技术近年来,许多污水厂在污泥处置方面做了大量的工作,如北京排水集团的大兴污泥消纳场,其每天平均消纳300-400吨含水率为80%的脱水污泥,其处理工艺是:从污水厂送来的含水率为80%的脱水污泥首先在露天的场地进行条垛堆肥,然后在进行部分干燥处理;由于含水率为80%的脱水污泥在露天堆放,则受天气的影响很大,在雨季污泥很不容易干化,并且大量的污泥露天堆放对环境也有很大影响。为了解决上述问题,可以将含水率为80%的脱水污泥在阳光大棚内以米的厚度堆放,并使用专用晾晒翻堆设备对污泥进行多次晾晒翻堆,使污泥含水率由80%快速降至60%,达到污泥好氧发酵的条件。该工艺是利用太阳能对污泥进行水分去处,工艺简单,耗能很低,并且污泥干化过程中产生的恶臭气体容易有效收集进行除臭处理。 污泥晾晒与好氧堆肥发酵处理集成技术含水率为80%的脱水污泥在阳光大棚中经过晾晒翻堆后,其含水率由80%快速降至60%,再与好氧发酵菌种、部分添加剂(粉煤灰)等回填物及除臭剂充分混合以后,通过布料设备均匀送到卧室发酵仓内,在发酵仓内强制通风使物料充分好氧发酵,同时通过翻堆机搅拌使其均匀发酵并且推动物料向前运动。经十天发酵后物料的含水率已降至25%,干燥后的物料一部分作为回填物循环利用,一部分根据市场需要加入土壤营养素制成标准成品肥,如果市场需求不足可以一部分制肥,一部分不加入营养素直接输出作为园林绿化、土壤改良或回填土用。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
行业进入快速发展期,政策密集出台
自20世纪60年代起,中国污泥处理行业经历了萌芽、缓慢发展、快速发展三大阶段。1961-1992年,公众对污泥认知度较低,污泥成为环境污染隐患,污泥处理行业开始萌芽。1993-2010年,污水排放量和处理量提高,污泥产生量增加,而污泥处理处置技术仍在探索中,污泥处理行业缓慢发展。2011年至今,相关国家政策频繁发布,指明污泥处理的目标,明确污泥处理的收费细则和补贴方向,倒闭企业重视污泥处理处置,促使污泥处理处置技术的研发,污泥处理处置行业快速发展。
从在国家政策层面来看,污泥处置始终是水污染防治行业的重点,政策支撑充分。2015年国务院印发的《水污染防治行动计划》要求我国地级及以上城市污泥无害化处理处置率应于2020年底前达到90%以上;2017年国家发改委和住建部联合印发的《“十三五”全国城镇污水处理及再生利用设施建设规划》要求城镇污水处理设施建设应由“重水轻泥”向“泥水并重”转变;2020年国家发改委与住建部联合印发《城镇生活污水处理设施补短板强弱项实施方案》,也明确提出要推进污泥无害化资源化处理处置。
城市污水处理厂污水处理能力上升,污泥产生量随之增加
由于城镇化和经济发展需求,中国城市近年来污水产生量和处理量呈上升趋势。从城市污水处理情况来看,截至2019年底,全国城市污水处理厂处理能力亿立方米/日,累计处理污水量532亿立方米。
由于城市污水厂污水处理率提高,污泥产生量随之增加。根据住建部统计数据,2018年我国城市污水处理厂干污泥产生量1176万吨,干污泥处置量为1129万吨,近年来城市干污泥处置率均在90%以上。前瞻据2019年城市污水处理厂处理能力增长率估算,2019年,城市污水处理厂干污泥产生量约为1232万吨,干污泥处置量约为1182万吨。
能源干化为主流的技术路线,占比超30%
根据E20统计数据,国内污泥处理领域各技术路线中,能源干化、机械脱水、好氧发酵、厌氧消化技术分别占比31%、27%、18%、20%,其中能源干化是最主流的技术路线。污泥能源干化即污泥热干化,是指向污泥中输入能量,使脱水污泥进一步去除水分,实现含水率降低的过程,干化后的含水率一般在15%-60%之间。复洁环保的技术路线是横跨了污泥脱水和污泥处理两个环节,板框压滤+低温真空干化一体化设备,将污泥从源头一次性降至40%以下。
以上数据来源于前瞻产业研究院《中国污泥处理处置深度调研与投资战略规划分析报告》。
随着我国城市化进程的加快,城市污水处理率逐年提高,城市污水处理厂的脱水污泥产量也急剧增加。为避免给水体和大气带来二次污染,对生态环境和人类的活动构成严重威胁,有必要对脱水污泥的处理技术进行研究,提出适合我国脱水污泥无害化处理的技术。关键词:城市污水;脱水污泥;处理1 问题的提出随着我国城市化进程的加快,城市污水处理率逐年提高,城市污水处理厂的污泥产量也急剧增加。未经恰当处理处置的污泥进入环境后,直接给水体和大气带来二次污染,不但降低了污水处理系统的有效处理能力,而且对生态环境和人类的活动构成了严重的威胁。为避免给水体和大气带来二次污染,对生态环境和人类的活动构成严重威胁,有必要对脱水污泥的处理现状进行研究,提出适合我国脱水污泥无害化处理的技术。2 我国污泥处理现状据估算,我国城市污水处理厂每年排放的污泥量(干重)大约为130万吨。而且年增长率大于10%,特别是在我国城市化水平较高的几个城市与地区,污泥出路问题已经十分突出。如果城市污水全部得到处理,则将产生污泥量(干重)为840万吨,占我国总固体废弃物的。目前,我国污泥处理处置方法中,污泥农用占、陆地填埋占31%、其他处理约、没有处理约,这些所谓的“处理”和“处置”基本上都是在特定的条件下估算的,严格来说以上数字将会有很大的变化。据估计,我国用于污泥处理处置的投资约占污水处理厂总投资的20-50%,可以看出,污泥处理处置处于严重滞后状态。污泥处理处置问题已经在大城市中表现出来。早期的污水处理厂,由于没有严格的污泥排放监督,普遍将污水和污泥处理单元剥离开来,为了追求简单的污水率,尽可能的简化、甚至忽略了污泥处理处置单元;有的还为了节省运行费用将已建成的污泥处理设置长期闲置,甚至将未做任何处理的湿污泥随意外运、简单填埋或堆放,致使许多大城市出现了污泥围城的现象并已开始向中小城市蔓延,给生态环境带来了极不安全的隐患。目前我国虽然对污泥问题开始关注,但仍然停留在技术层次,2003年开始,我国主要大城市,开始尝试进行污泥处理处置规划,对其技术方案进行了充分论证。如:广州市近期采取生污泥填埋,远期将用于农肥;深圳市已完成专项规划,拟采取热干化加焚烧工艺;上海市则根据不同情况,采取处理分散化、处理集约化、技术多元化的方针;天津市计划建设3座污泥处理厂,采用污泥消化发电工艺,但尚无污泥最终的处置的方法。3 我国城市脱水污泥处理现采用的主要方法目前在我国脱水污泥处理中主要采取的方法有海洋倾倒、卫生填埋、焚烧、污泥热干化、堆肥等多种处理技术,各种方法有不同的优缺点。目前世界各国基本上都不允许往海洋倾倒污泥;卫生填埋虽然操作简单、费用低,但是渗漏液难处理,影响地下水系;焚烧处理技术优势在于处理的彻底性,其减容率可达到95%左右,其有机物被完全氧化,重金属,(除汞外)几乎全部截流在灰渣中。但是该方法的缺点为投资和操作费用较高;在焚烧过程中产生飞灰、炉渣和烟气等难以处理的物质,且成本高;污泥热干化技术优点是占地少,自动化程度高,但如果污泥进行完全干化,干到含水0%以下能耗很大、设备投资高;污泥堆肥技术优点为利用生物能,节约能源,肥效好:其缺点占地面积大,周期长,易产生臭气等。4 适合我国脱水污泥无害化处理的技术综合以上污泥处理工艺技术的特点并结合我国国情,以及相关污水处理厂的资料,目前适合我国脱水污泥无害化处理的技术有:污泥预干化技术污泥干化技术是通过热能对污泥进行水分去除处理,在干化过程中将耗去大量的热能,为了降低污泥干化所需要的热能,大量试验表明:脱水污泥经加热干化使含水率由80%降到60%时所消耗能量小,其主要去除的是污泥中的游离水;同样含水率在35%以下继续干化消耗能量也小,这两段的能量消耗基本接近理论值;污泥在含水率35%-60%之间,为污泥的塑性阶段,这阶段污泥的流体特性类似胶水。胶状、黏稠,很难处置,对其干化消耗能量急剧增加,很难干化。根据上述特性,干化污泥要避开污泥塑性阶段。要充分利用污泥干化特性,尽量在含水率60%以上,35%以下。在含水率为35%-60%之间干化耗能约为含水率60%以上和35%以下干化耗能的倍;所以对脱水污泥需采用预干化技术,使脱水污泥含水率由80%降至60%,这样大大节约了能耗。 污泥高温好氧堆肥技术污泥高温好氧堆肥技术是将含水50-55%的污泥进行好氧堆肥发酵,高温好氧发酵过程是通过好氧性微生物的生物代谢作用,使污泥中有机物转化成富含植物营养物的腐殖质,反映的最终代谢物是CO2、H2O和热量,大量热量使物料维持在60摄氏度以上的持续高温,降低物料的含水率,有效地去除病原体、寄生虫卵和杂草种子,使污泥达到减量化、稳定化、无害化、资源化目的。 污泥晾晒技术近年来,许多污水厂在污泥处置方面做了大量的工作,如北京排水集团的大兴污泥消纳场,其每天平均消纳300-400吨含水率为80%的脱水污泥,其处理工艺是:从污水厂送来的含水率为80%的脱水污泥首先在露天的场地进行条垛堆肥,然后在进行部分干燥处理;由于含水率为80%的脱水污泥在露天堆放,则受天气的影响很大,在雨季污泥很不容易干化,并且大量的污泥露天堆放对环境也有很大影响。为了解决上述问题,可以将含水率为80%的脱水污泥在阳光大棚内以米的厚度堆放,并使用专用晾晒翻堆设备对污泥进行多次晾晒翻堆,使污泥含水率由80%快速降至60%,达到污泥好氧发酵的条件。该工艺是利用太阳能对污泥进行水分去处,工艺简单,耗能很低,并且污泥干化过程中产生的恶臭气体容易有效收集进行除臭处理。 污泥晾晒与好氧堆肥发酵处理集成技术含水率为80%的脱水污泥在阳光大棚中经过晾晒翻堆后,其含水率由80%快速降至60%,再与好氧发酵菌种、部分添加剂(粉煤灰)等回填物及除臭剂充分混合以后,通过布料设备均匀送到卧室发酵仓内,在发酵仓内强制通风使物料充分好氧发酵,同时通过翻堆机搅拌使其均匀发酵并且推动物料向前运动。经十天发酵后物料的含水率已降至25%,干燥后的物料一部分作为回填物循环利用,一部分根据市场需要加入土壤营养素制成标准成品肥,如果市场需求不足可以一部分制肥,一部分不加入营养素直接输出作为园林绿化、土壤改良或回填土用。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
苏州美泓环保对现状的分析,随着工业的飞速发展以及城市人口的不断增加,使得城市污水的排放量空前增加,在这样的背景下污水处理厂的发展正方兴未艾。目前,我国城市污水处理厂的数量已经突破2000座,年污水处理量比十五期间增加了一倍以上。在污水处理工艺运行过程中,工艺产生的污泥一部分回流作为生物反应的反应物,而剩余的污泥要排出到系统之外。这些剩余污泥的量是惊人的,其含水率较高、体积庞大、易腐烂、 气味恶臭且含有大量的重金属病菌等有毒有害物质。
下面是中达咨询给大家带来关于污泥调理加板框压滤深度脱水技术的相关内容,以供参考。本文就污泥调理加板框压滤脱水技术进行阐述,从实际施工中累计经验,并运用到在建项目,提出相应的污泥调理方法,对污泥深度脱水技术具有一定的意义。要解决污泥处理问题,首先要解决污泥的脱水问题。污泥深度脱水是指对污泥进行调理,破坏细胞壁,释放结合水、吸附水和细胞内水,改善污泥的脱水性能,使脱水处理后的污泥含水率达到60%以下的脱水方式。较常用的污泥调理剂有三氯化铁、石灰等。1污泥特性与脱水难度要实现污泥的减量化、稳定化、无害化和综合利用,达到节能减排和发展循环经济的处置目标,污泥脱水至关重要,只有把污泥水份降至60%以下,资源化综合利用才有可能。污泥脱水的难易,除与水份在污泥中的存在形式有关外,还与污泥颗粒的大小,污泥比阻和有机物含量有关,污泥颗粒越细、有机物含量越高、污泥比阻越大,其脱水的难度就越大。2现常用污泥深度脱水工艺虽然目前各方均声称自己的工艺具有专有技术特点,但归纳起来,现深度脱水工艺均带有如下特征:脱水前均需投加药剂对污泥进行稳定调理;大部分采用板框隔膜脱水,极少数采用带机脱水。3工程案例上海市天山污水处理厂位于上海中心城区西部的天山路和双流路路口,服务于苏州河市区段上游地区;该厂污泥深度脱水技术改造工程设计规模为干污泥量13tDS/d,湿污泥量1300~1500m3/d,污泥含水率99~,折算成80%含水率污泥量为65t/d。污泥深度处理采用离心浓缩、添加消石灰和三氯化铁调理+隔膜压滤机脱水的工艺。本工程深度脱水工艺流程本工程采用铁盐石灰加板框压滤工艺,该工艺是在污泥里投加石灰和三氯化铁进行调理,然后通过高压隔膜压榨,使浓缩污泥经压榨后污泥含水率降到60%。污泥深度脱水技术方案比选石灰加带机压滤工艺污泥脱水效果较好,但石灰用量极大,运行环境条件差,产生的污泥量较大;调理剂加板框压滤工艺目前为厂家保密技术,须采用打包建运的模式操作,具有较大的不确定性,另外受调理剂的影响,污泥的病理和毒性尚不明确;相比较之下,三氯化铁、石灰加板框压滤技术深度脱水工艺目前应用较多,工艺技术成熟、脱水效果好、运行情况稳定,使用的药剂较易得到、价格便宜、无毒无害、不产生其它潜在污染,滤液对生物处理无不良影响。污泥调理的重要性目前,几乎所有的污泥深度脱水方法都需要事前对污泥进行调理,通过调理使固体颗粒物质水结合理减弱,同时使污泥结构达到均相。通过污泥调理,破坏以蛋白质为基础的细胞壁,释放污泥中的结合水和吸附水,细胞内水,克服污泥比阻,大幅度降低污泥粘性,提高污泥脱水效果。所以污泥调理技术决定污泥深度脱水项目的成败,是关键环节核心技术。影响污泥调理效果的因素主要有:(1)污泥性质;(2)调理剂的选择;(3)污泥调理条件(温度、pH、调理剂配制浓度、混合条件等)。本工程污泥调理方案的选择根据天山厂污泥性质,结合前期污泥调试摸索的结果,综合考虑各方因素选择投加石灰和三氯化铁进行调理。因为石灰和污水中的重碳酸钙生成的碳酸钙颗粒结构还能增加污泥的孔隙率,促进泥水分离,可显著提高污泥的脱水效果。同时,加入的三氯化铁和石灰和还有钝化重金属和杀菌除臭的作用。经过我们的小规模实验,得到了如下经验:(1)硬件设施、设备需完善。首先,污泥调理池应做好防腐处理,因为污泥具有高腐蚀性。池子底部应考虑排泥放空装置,定期进行排泥以防泥沙堆积影响调理效果;其次,调理池搅拌设备宜采用立式混合搅拌设备,以减少污泥对设备的腐蚀。其功率应满足要求以确保污泥和调理剂的充分搅拌调和。(2)根据不同性质的污泥,选用合适的调理剂。污泥性质的不同直接影响调理效果。对有机物含量高的污泥,较为有效的调理剂是阳离子型有机高分子调理剂。而对以无机物为主的污泥,则可以考虑采用阴离子型有机高分子调理剂。为达到一定的调理效果,所需调理剂的数量存在显著差异。一般来说,越难脱水的污泥其调理用药剂量越大,污泥颗粒细小,会导致调理剂消耗量的增加,污泥中的有机物含量和碱度高,也会导致调理剂用量的加大。另外,污泥含固率也影响调理剂的投加量,一般污泥含固率越高,调理剂的投加量越大。(3)温度。污泥的温度直接影响着调理剂的水解作用,温度低时,水解作用会变慢。如果温度低于10℃,调理效果会明显变差,可通过适当延长调理时间的方法改善调理效果。因此,冬季气温较低时,要重视污泥输送系统的保温环节(从污水处理系统排出的污泥温度一般不低于15℃),减少污泥输送过程中热量的损失。在必要的情况下,可以采取对调理剂稀释罐加热或适当延长混合溶解时间和加大搅拌强度的方法改善溶解条件。(4)配制浓度。调理剂的配制浓度不仅影响调理效果,而且影响药剂消耗量和泥饼产率,其中有机高分子调理剂影响更为显著。一般说来,三氯化铁投加范围是污泥的2~10%DS,石灰投加范围是污泥的5~40%DS,二者是根据干污泥计量。(5)投加顺序。当采用不止一种调理剂时,调理剂投加的顺序也会影响调理效果。当采用铁盐和石灰作调理剂时,一般先投加铁盐,再投加石灰,这样形成的絮体与水较易分离,而且调理剂总的消耗量也较少。本工程污泥调理时,先后采用浓度为38%的FeCl3溶液和级配大于100目的石灰进行调理。由加药泵投加三氯化铁溶液,使用电磁流量计来计量;由电子称计量后自动投加石灰。对调节最佳的氯化铁和石灰的投加量取决于污泥特性。(6)污泥调理后要尽快脱水处理。实验表明,调理后的污泥放置时间不宜过长,只有混合反应的强度和时间在一定范围内,才能取得较好的调理效果,而且调理效果会随着停留时间的增加而降低。这就是说,经过试验确定了调理的时间和强度后,必须在实际操作中严格遵守执行。一方面不能随意延长或缩短混合反应的时间,另一方面要尽可能快地使调理后的污泥及时送至板框机进行脱水处理,否则会导致过滤性能变差。调理后的污泥的含水率一般控制在94~96%。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
Yokoyama(2007)采用数值模拟的方法分析研究了外界环境温度对家用风冷式热泵热水器性能的影响。Cavallini(2005)对基本的两级压缩机中间冷却跨临界CO2系统(无回热器)进行了试验测试,并根据实验数据建立了热力学模型,分析优化了两级压缩机中间冷却跨临界CO2系统。通过在回气管路上增加回热器和在气体冷却器后增加后冷却器,可提高COP25%。Agrawal N(2007)同样对两级压缩机中间冷却跨临界CO2系统进行了优化设计,提出了三种优化方式并得出相应循环的最优高压压力和压缩机级间压力的计算公式。Skaugen等人对CO2制冷系统进行了计算机模拟,此模型可以对系统进行稳态模拟,也可以对系统进行优化设计。既可以用于制冷计算,也可以用于制热计算,而且空气和水都可以用做热源和热汇,这样包括了热水加热、空调、制冷和热泵系统。Wang和Hihara对CO2和R22热泵热水器的性能进行了研究,对每个部件和整个系统建立了模型。结果显示,CO2热泵热水器的COP值低于R22装置;但是当系统中加入回热器后,CO2的COP与R22 相当,只不过CO2压缩机的排气温度增加很快,并且最佳高压压力时所对应的制热量明显降低。Sarkar(2006)建立了跨临界CO2热泵系统同时制冷和制热时的稳态模型,得出了最优的COP和高压侧压力的关系式。Skaugen和Svensson对CO2跨临界热泵装置进行了动态模拟。他们首先开发了一个稳态模型,以便为动态模拟提供相关的初始数据,以及为CO2热泵装置的设计和操作进行优化。结果表明,两者在定性方面符合得很好。Pfafferott和Schmitz开发了CO2制冷系统用Modelica程序库模型,并对其进行了稳态和动态模拟,数据进行了比较结果显示符合得很好。国内主要有上海交通大学的丁国良等人进行了CO2汽车空调的仿真研究。Ma?Y?T对膨胀机在跨临界两级压缩CO2制冷系统中的优化配置进行了研究。Yang JL对三种不同循环形式的带膨胀机跨临界两级压缩CO2制冷系统进行了热力学分析比较,得出了膨胀机在两级压缩CO2制冷系统中最优的配置形式。CO2膨胀机构研究现状1) 活塞式膨胀机1994年,德国Dresden大学Heyl P教授和Quack博士开始研制开发跨临界CO2循环膨胀机。Heyl?P教授和Quack H博士(1999)开发出的第一代自由活塞膨胀压缩机,采用双作用对称式结构,具有两个膨胀缸和两个压缩缸,在CO2制冷实验台上的测试结果表明,与采用节流阀时的系统COP相比可提高30%。Nickl(2002)在发表的论文中介绍了第二代自由活塞式膨胀压缩机。通过增加一个双臂摇杆,使膨胀机活塞和压缩机活塞的运动速度不同,从而解决了第一代中膨胀机活塞和压缩机活塞必须同步运转的问题,减小了效率损失,其系统性能比第一代提高10%。Nickl等(2003)开发的第三代自由活塞式膨胀压缩机重新采用了第一代的全压膨胀原理,但是通过三级膨胀的办法,提高膨胀功的回收,减小效率损失。Quack等(2004)对第三代膨胀压缩机样机成功进行了原理性实验。实验验证了膨胀机的控制机构完全可行,同时验证了CO2自身携带的润滑油就可满足机器的润滑需要,无需额外的润滑系统。Nickl(2005)给出了对样机进行进一步实验得出的P-V图,并估算出膨胀机等熵效率达到65%—70%,压缩机等熵效率超过90%。Li等(2000)对CO2循环系统中不同的膨胀设备进行了热力分析,提出采用涡管和活塞式膨胀机来减小节流损失。BaekS(2002)将一商用的四冲程两缸发动机改造成活塞式膨胀机,吸、排气口的开闭采用快速电磁阀控制,实验测得膨胀机的等熵效率为10%左右, CO2制冷系统COP可提高7%—10%。BaekS(2005)对研制的活塞式膨胀机建立了详细的数学模型,并通过模型对样机进行了分析。2) 涡旋式膨胀机Preissner(2001)和HuffJ(2003)将两台半封闭式R134a涡旋压缩机改造成CO2膨胀机。样机Ⅰ的动盘盘高减小为,样机Ⅱ的动盘高度则保持不变,仍为14mm。但是因为内部泄漏比较大,样机Ⅰ的最大等熵效率和容积效率仅为28%和40%。对于样机Ⅱ,由于膨胀机的工作容积大,减弱了内部泄漏的影响,其性能高于样机Ⅰ,最大等熵效率和容积效率分别为42%和68%。Westphalen D(2004)也在理论上对CO2涡旋膨胀机进行了研究,提出了CO2涡旋膨胀机的设计方案和功回收的方式,预测其泄漏损失约为20%,摩擦损失约为15%,总效率可达到72%左右。3) 滚动转子式膨胀机天津大学的魏东,查世彤,李敏霞,管海清等人先后对CO2滚动转子式膨胀机进行了开发和研究。魏东开发了第一代型滚动活塞膨胀机。初步实验表明,膨胀机样机可以正常运转。查世彤在第一代的基础上开发了第二代型滚动活塞膨胀机,通过增加滚针轴承减小膨胀机内部的摩擦,为防止外泄漏,将发电机和膨胀机合并为一体。李敏霞在型膨胀机上进一步的改进成新型滑板滚动活塞膨胀机,型号,将线密封改为面密封,理论计算泄漏可减小50%。此外,李敏霞又设计开发了摆动转子式膨胀机,将滚动活塞与滑板做成一体,以减小膨胀机内部泄漏环节。样机的测试结果表明,型和型膨胀机效率均高于型膨胀机分别为33%—44%和35%—47%。管海清则在前人研究的基础上,设计开发了摆动转子式膨胀压缩机,测试出了样机中膨胀机和压缩机的效率分别为30%—50%和60%—80%。4) 其他膨胀机伦敦City大学的Stosic(2002)在理论上对CO2双螺杆膨胀压缩机进行了研究,膨胀机和压缩机的转子通过共轴方式连接,并置于两个独立的腔中,从而避免工质的内部泄漏。通过该配置方式,膨胀压缩机的轴向负荷可以完全抵消,径向负荷较小20%。Fukuta(2003)对滑片式膨胀机进行了研究,建立的数学模型模拟结果显示,泄漏是影响滑片式膨胀机性能的主要因素,传热的影响相对较小,模型预测滑片式膨胀机总效率在20%—40%,并随着转速的增加而增大。由滑片式油泵改造成的CO2滑片式膨胀机样机,在膨胀机进口压力,温度40℃,出口压力的工况下,总效率可达到43%。Fukuta(2006)研制了滑片式膨胀压缩机样机,其中压缩机部分作为CO2循环的二级压缩机。实验结果显示,压缩机部分的性能主要受压缩机前后压差和转速的影响。英国MIEE?Driver公司对普通的滑片式膨胀压缩机进行了改进,并申请了专利。5) 其它膨胀设备Li DQ建立了喷射器等压混合模型,并在2006年进一步建立了两相流动喷射器和相应的CO2循环系统的模型。计算结果发现,主喷嘴膨胀过程的等熵效率为95%,但副喷嘴的等熵效率很低只有26%。Tdell(2006)对CO2冲击式膨胀机进行了研究,目前这种膨胀机的效率非常低,喷管的等熵效率只有60%左后,能够回收的功仅占等熵膨胀功的20%—30%左右。CO2压缩机的研究现状1) 活塞式压缩机1998年,Süβ和Kurse对Bock公司生产的开启式CO2活塞压缩机和Danfoss A/S公司的斜盘式CO2压缩机进行了研究。Dorin公司在1998年IKK博览会上展示了开发的半封闭CO2活塞式压缩机,包括双缸单级和两级压缩机两种形式。瑞士苏黎世大学对应用在家用热水器上的半封闭小型无油活塞式CO2压缩机进行了研究开发。Nesk等人对半封闭式两级CO2活塞式压缩进行了研究,测试结果显示转速1450 r/min下,效率和等熵效率最大分别达到和,且在低温工况下,其性能要优于单级压缩。日本DENSO公司和静冈大学合作开发了活塞式CO2压缩机,对样机进行了测试并与理论计算结果进行了比较。研究发现活塞环的密封效果很好,但是存在通过气阀的反泄漏,这对相对较小的工作容积的压缩机效率影响很大。国内上海交通大学的陈江平和上海易初通用合作开发了车用斜盘式CO2压缩机并进行了一系列的研究。2) 滚动活塞式和摆动活塞式压缩机日本三洋公司开发出了全封闭CO2双级滚动活塞式压缩机。这种气路设计,使得机壳内压力为一级排气压力,约为5-6MPa,减小了压缩机工作腔与机壳腔体之间的泄漏,有利于提高压缩机的效率,据报道其在50—80Hz的工作频率下,最高绝热效率可达到以上。日本大金公司设计开发了摆动转子式CO2压缩机。日本大金公司研究认为,由于CO2摆动转子压缩机的偏心距较小,虽然其工作压差很大,但设计强度要求与R410A压缩机相当。Hubacher和Groll对一台全封闭两级压缩CO2转子式压缩机进行了实验测试,结果显示压比在—5范围内,容积效率为—。Dreiman和Bunch开发了全封闭式CO2转子压缩机。Yokoyama等人对用于热泵系统的两级压缩级间补气滚动转子式CO2压缩机进行了开发并进行了实验研究,在高压比和低转速情况下,两级压缩型式的CO2压缩机在效率和供热能力方面均优于单级。在国内,庆安制冷从2004年开始对滚动转子式CO2压缩机做了详细研究。主要工作集中在压缩机耐高压整体结构设计、轴承系统可靠性设计、供油系统设计、零件静态和动态强度设计、关键部件耐磨设计、压缩机运行带油量研究和分析、润滑油评估、零部件材料选取、电机设计、集中绕组直流电机拖动控制方案研究、控制器设计和制造工艺技术研究。在2008年开发出样机,样机容积效率达到,并通过了可靠性评价实验。3) 涡旋压缩机日本DENSO公司研制了CO2涡旋压缩机用于CO2热泵热水器中。日本松下公司在410A涡旋压缩机的基础上,对涡圈、壳体等部件进行了重新设计,开发了CO2涡旋压缩机样机。对样机的实验结果表明,压缩机容积效率和绝热效率随转速增大而增加,在—工作频率范围内,容积效率在—之间,等熵效率为—。日本三菱重工也开发了用于CO2热泵热水器的涡旋压缩机,压缩机的绝热效率可达到。Yano和Nakao等人还开发了大容量的CO2涡旋压缩机。4) 滑片压缩机美国马里兰大学和日本静冈大学合作对CO2滑片压缩机进行了理论研究,包括可行性、压缩腔内的温度和压力等关键参数分析、容积效率和指示效率的估算、滑片的受力情况等。研究发现,泄漏损失是影响压缩机效率的主要因素。另还对两级压缩滑片式CO2压缩机和滑片式膨胀压缩机进行了分析。5) 螺杆压缩机日本Maycom公司开发了CO2单级螺杆压缩机,设计的机组同时进行制冷和制热,压缩机排出的CO2首先用来加热热水,节流后用于制冷。英国City大学开发了用于CO2螺杆式膨胀压缩机。CO2换热器的研究现状1998年挪威NTNU的Pattersen开发了CO2系统紧凑换热器,利用多个平板组成传热管,平板被挤压成微通道。Schonfeld和Kraus对超临界流体换热进行理论计算和实验研究,发现计算结果高于实验值,说明超临界不能用常规对流换热方法精确计算。Dang和Hiara也进行了上述工作,比较了多个关联式,并在Pilta方程的基础上建立了新的关联式,计算结果与试验结果误差为20%。东京大学的Hihara和Tanaka对高压下CO2流体沸腾做了大量的试验,由于在蒸发器内,流体涉及两相流换热,流体的流型对换热影响很大。挪威NTNU的Pattersen对CO2流体在微通道内低压沸腾流动流型进行试验研究,给出了流型图,同时对CO2蒸发流动压力降进行了测试。Grol和Kim都对CO2流体干度对水平管换热系数的影响进行了理论与试验研究,当CO2流体完全变为蒸汽,则换热器系数迅速下降,换热效果恶劣。Choi对CO2流体在垂直管道的蒸发换热情况进行了实验研究,发现低流体干度区,随干度的增大,换热系数增大,当干度超过某一值时,换热系数迅速下降。Kim等人对CO2多层微通道蒸发器进行理论和试验研究,所建理论模型与试验吻合较好。Kulkarmi等人对消除CO2微通道换热器各通道的干度不均有性方面进行了研究。
请问太阳能热水器未来发展趋势是怎样的,我正在写一篇有关太阳能热水器的论文,主要是从技术角度分析因为你只有一次的人生及一次机会去做这全部的事。
太阳能长期以来,人们就一直在努力研究利用太阳能。我们地球所接受到的太阳能,只占太阳表面发出的全部能量的二十亿分之一左右,这些能量相当于全球所需总能量的3-4万倍,可谓取之不尽,用之不竭。其次,宇宙空间没有昼夜和四季之分,也没有乌云和阴影,辐射能量十分稳定。因而发电系统相对说来比地面简单,而且在无重量、高真空的宇宙环境中,对设备构件的强度要求也不太高。再者,太阳能和石油、煤炭等矿物燃料不同,不会导致"温室效应"和全球性气候变化,也不会造成环境污染。正因为如此,太阳能的利用受到许多国家的重视,大家正在竞相开发各种光电新技术和光电新型材料,以扩大太阳能利用的应用领域。特别是在近10多年来,在石油可开采量日渐见底和生态环境日益恶化这两大危机的夹击下,我们越来越企盼着“太阳能时代”的到来。从发电、取暖、供水到各种各样的太阳能动力装置,其应用十分广泛,在某些领域,太阳能的利用已开始进入实用阶段。1974年至1997年,美日等发达国家硅半导体光电池发电成本降低了一个数量级:从每瓦50美元降到了5美元。此后世界各国专家大都认为,要使太阳能电站与传统电站(主要是火电站)相比具有经济竞争力,还有一段同样长的路要走——其成本再降低一个数量级才行。目前美国等国家建的利用太阳池发电的项目很多。在死海之畔有一个1979年建的7000平方米的实验太阳池,为一台150千瓦发电机供热。美国计划将其盐湖的8.3%面积(约8000平方千米)建成太阳池,为600兆瓦的发电机组供热。今年6月,亚美尼亚无线电物理所的专家宣布,已在该国山地开始建造其“第一个小型实验样板”型工业太阳能电站。该电站使用的涡轮机不是新的,而是使用寿命已届满而从直升机上拆下来的涡轮机,装机容量仅100千瓦,但发电成本仅0.5美分/千瓦小时,效率高达40%—50%。俄罗斯学者在太阳池研究方面也取得了令人瞩目的进展。一家公司将其研制的太阳能喷水式推进器和喷冷式推进器与太阳池工程相结合,给太阳池附设冰槽等设施,设计出了适用于农家的新式太阳池。按这种设计,一个6到8口人的农户建一个70平方米的太阳池,便可满足其100平方米住房全年的用电需要。另一家研究机构提出了组合式太阳池电站的设计思想,即利用热泵、热管等技术将太阳能和地热、居室废热等综合利用起来,使太阳池发电的成本大大下降,在北高加索地区能与火电站竞争,并且一年四季都可用,夏天可用于空调,冬天可用于采暖。对于淡水资源缺乏的国家来说,太阳池还有另一项不可多得的好处:据专家测算,在近海浅水区建一个面积2163平方千米、深米的太阳池,可为10吉瓦的发电机组供热,并可每年产淡水2立方千米。在欧美一些先进国家,目前正在广泛开展应用“光电玻璃幕墙制品”,这是一种将太阳能转换硅片密封在(尤如夹层玻璃)双层钢化玻璃中,安全地实现将太阳能转换为电能的一种新型生态建材。美国的“光伏建筑计划”、欧洲的“百万屋顶光伏计划”、日本的“朝日计划”以及我国已开展的“光明工程”将在建筑领域掀起节能环保生态建材的开发应用热潮,极大的促进了太阳能在新型建材产品中的应用。在发展中国家,各国也在积极发展利用太阳能。如菲律宾早在九九年,政府已批出了首个太阳能计划,在澳洲政府“海外援助计划”的协助下,在全国263个社区安装1000个太阳能系统。目前菲政府正在推行全球最大太阳能应用计划,整个计划耗资4800万美元,是目前为止世界上最庞大的太阳能计划。太阳能发电计划共分两期,受惠的除了民居外,还包括25个灌溉系统、97个净水及分配系统、68间学校和社区中心,及35间诊所。由此看来,全人类梦寐以求的太阳能时代实际上已近在眼前,包括到太空去收集太阳能,把它传输到地球,使之变为电力,以解决人类面临的能源危机。随着科学技术的进步,这已不是一个梦想。由美国国家航空和航天局与国家能源部建造的世界上第一座太阳能发电站,最近将在太空组装,不久将开始向地面供电。在我国,太阳能的利用也一直是最热门的话题,经过多年的发展,国内在集热器(含太阳能热水器)已成为太阳能应用最为广泛、产业化最迅速的产业之一。1998年销售总额达到了35亿元,其产量位居世界榜首。我国的太阳能产业已开始运作。中国科学院宣布启动西部行动计划,将在两年内投入亿元人民币开展研究,建立若干个太阳能发电、太阳能供热、太阳能空调等示范工程。目前河北保定国家高新技术开发区正加快建设我国规模最大的多晶硅太阳能电池生产基地,该项目集太阳能电池、组件及应用系统等为一体,一期工程完成后可达到年产3兆瓦多晶硅太阳能电池的能力,填补了我国在太阳能开发应用方面多项空白,并将大大推动太阳能电池用低铁玻璃的生产、销售市场。但从整体上分析,国内太阳能光伏发电系统由于起步较晚,尤其是在太阳能电池的开发、生产上还落后于国际水平,整体上仍处于产量小、应用面窄、产品单一、技术落后的初级阶段。经粗略统计表明,国内目前仅建有5个(单晶硅)太阳能电池生产厂,年产量约有兆瓦(注:1兆瓦(MW)为1000千瓦),工厂设施仍停留在已有引进的生产线上。而国外不少企业已把眼光瞄准更为先进的薄膜晶体太阳能电池的开发与生产上。这种新一代的先进的薄膜晶体太阳能电池其转换效率可高达%,比目前平均转换效率提高了3个百分点。据业内人士介绍,我国太阳能电池平均转换效率不高,其主要原因是专用材料国产化程度低,如封装玻璃就完全依赖进口,低铁含量的高透过率基板玻璃市场仍不能满足需求,科研成果还没有迅速及完全转化为产业优势。目前国家计委和国家科委对发展太阳能技术及其应用给予了大力的支持,国内已有多家企业涉足。北新集团是最早率先组织专家对国内、国际太阳能光伏发电产业进行调查的单位之一。于1998年在国内首家引进了76千瓦国际上先进的屋面太阳能发电系统,至今一直运行稳定、效果良好。这套系统日均发电量为12千瓦时以上,可满足1个小康之家用电要求。该集团还与瑞士的ATLANTIS公司合资组建了北京-阿脱兰太阳能科技有限公司,合资生产太阳能光伏发电组件和屋面发电组件两大系列、多个品种的光伏发电产品,并将这一世界领先的太阳能利用新技术引入了中国。河北振海铝业集团公司是德国皮尔金顿(Piikington)太阳能国际有限公司在中国独家总代理,现已投入生产世界先进的太阳能电池玻璃封装设备和配套材料,如德国凯米特化学制品有限公司的优质湿法玻璃层压设备、湿法灌浆液(封装介质)等。振海集团的基地于1999年11月已在我国率先安装了100多平方米的光电玻璃幕墙示范建筑物,现已竣工投入应用,其运行使用效果良好,已成国内一大景观及太阳能光伏发电工程的典范。太阳能集热管是清华大学的一项专利技术,经清华阳光公司的产业化生产,目前其年产量为世界第一,其产品性能为世界领先,清华阳光公司的晒乐牌太阳能集热管及集热装置,用六七年时间完成了小试、中试到大规模生产,目前已经建成世界上生产规模最大的集热管生产厂,每年可生产500万支全世界集热效率最高的全玻璃真空集热管,预计这个项目的经营额再过不久将达到10亿元。
介绍有关空气源热泵产品的机型、性能、报价及应用场景
要资料悬赏分太低了
以扁穗冰草为材料,通过肥料的施用与行内疏枝组合处理,2年的试验结果表明:限制扁穗冰草种子产量的主要营养元素依次是氮、磷、钾。连续2年施氮,种子产量显著增加,秋施N45kg/hm2、春施N90kg/hm2、行内疏枝到45cm的扁穗冰草种子产量最高达;同一施氮量下,秋春季2次施氮的扁穗冰草种子产量高于春季一次施氮处理,另外,氮、磷、钾配施可以显著提高扁穗冰草种子产量。单位面积生殖枝数是影响扁穗冰草种子产量的主要组成因素,秋季施氮可以显著增加第二年单位面积生殖枝数,春季施磷有利于生殖枝数、小穗数、种子千粒重增加;春季施钾可以增加每小穗小花数、每小穗种子数及种子千粒重,疏行处理可以提高每生殖枝小穗数和小花数、每小穗种子数、种子千粒重。相关文献[1]施氮对蓝茎冰草种子产量及产量组分的影响. 孙铁军,李艳梅,韩建国. 2006[2]茄子/大葱间作及氮肥调控对植株硝酸盐含量及养分吸收的影响. 吴琼,赵同科,安志装,刘宝存,邹国元. 2010[3]葡萄标准化生产与施肥. 徐海英,张国军,闫爱玲. 2007[4]丛枝菌根真菌群落对白三叶草生长的影响. 王晓英,王冬梅,陈保冬,黄益宗,王幼珊. 2010[5]蔬菜间作及氮肥调控对土壤硝酸盐及氮素表观损失的影响(英文). 吴琼,赵同科,安志装,刘宝存,邹国元,杜连凤. 2012[6]充足底墒播后不灌水时肥料和播期组合对小麦生长和耗水的影响. 薛绪掌,王志敏,秦勇. 2003[7]设施蔬菜滴灌注肥控制系统水肥均匀性试验. 王秀,马伟,张睿,邹伟,周舟. 2011[8]作物推荐施肥方法研究进展. 串丽敏,何萍,赵同科. 2016[9]有机种植中施肥引发的重金属累积风险研究. 唐政,邱建军,陈小香,邹国元. 2012[10]不同施肥处理对特菜根芹菜产量和硝酸盐积累的影响. 马茂亭,安志装,邹国元,杜连凤,刘宝存,赵丽平,赵同科. 2010[11]氮磷钾施肥量对饲用菊苣生产性能的影响. 孟林,张国芳,高洪文. 2003[12]花烟草需肥特点及其施肥效应研究. 王静,王益权,邹国元. 2005[13]不同施肥措施对土壤氮素时空变化的影响. 马茂亭,安志装,邹国元,杜连凤,刘宝存,赵同科. 2012[14]蔬菜间作及氮肥调控对土壤硝酸盐及氮素表观损失的影响. 吴琼,赵同科,安志装,刘宝存,邹国元,杜连凤. 2011[15]基于主动光源的归一化植被指数测定系统研究. 魏士平,陈彦,王秀,张睿. 2012[16]施肥与填闲种植籽粒苋对油麦菜Cd和土壤Cd的影响. 谷佳林,苏世鸣,陈延华,赵同科,魏丹,杜连凤,邹国元. 2020[17]不同施肥处理对油麦菜镉吸收、硝酸盐含量及产量的影响. 谷佳林,梁丽娜,苏世鸣,王甲辰,赵同科,邹国元. 2018作者其他论文更多>>生物滞留池对农村生活污水净化效果分析与设计方案优化作者:庞卓;武菊英;范希峰;阚海明;孙铁军;聂明鹤关键词:生物滞留池;农村生活污水;净化效果;设计方案优化葡萄园种草的环境效应作者:巴德日胡;孙铁军;张颖娟关键词:果草间作;葡萄园;草地雀麦;野牛草不同草地建植模式对荒坡地土壤风蚀及理化性质的影响作者:孙铁军;肖春利;滕文军关键词:生态草地建植模式;荒坡地;风蚀;土壤理化性质草地雀麦种植对坡地土壤水分动态变化的影响作者:包贺喜吐;孙铁军;红雨关键词:草地雀麦;土壤水分;动态变化草地雀麦对北京山区石灰性褐土水土保持作用的研究作者:张磊;朴顺姬;孙铁军;武菊英关键词:草地雀麦;石灰性褐土;水土保持;灰色关联密云水库库区人工草地的水土保持作用作者:孙铁军;武菊英;滕文军关键词:密云水库;人工草地;水土保持;生态与经济效益密云水库库滨带植被水土保持作用的研究作者:孙铁军;武菊英;肖春利;滕文军关键词:水土保持;径流小区;密云水库
共有记录91条1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报(石油加工) 2007/06 2 高浓度含氟含油污水处理 徐波 内蒙古科技与经济 2007/21 3 玻璃钢罐应用于含油污水处理站 戴颂周 油气田地面工程 2007/11 4 含油污水处理自动化技术 王向阳 油气田地面工程 2007/11 5 叶轮气浮机在含油污水处理中的应用 于振民 工业水处理 2007/09 6 含油污水处理中回收水池的设计 满秀红 油气田地面工程 2007/07 7 国内油田含油污水处理现状与展望 陈斌 科技信息(科学教研) 2007/17 8 含油污水处理技术 李波 辽宁化工 2007/01 9 克拉玛依油田高含硫含油污水处理技术试验研究 李凡修 石油天然气学报(江汉石油学院学报) 2006/06 10 化学助剂对含油污水处理效果的影响研究 郭春昱 石油规划设计 2006/05 11 塔中联合站含油污水处理 王钦平 油气田地面工程 2006/07 12 用于含油污水处理的气浮旋流耦合技术研究 白志山 环境污染治理技术与设备 2006/08 13 连铸机含油污水处理新工艺及其应用 葛平 工业水处理 2006/06 14 浅析含油污水处理工程改造 白生禄 铁道劳动安全卫生与环保 2006/03 15 油轮压舱含油污水处理技术分析 王兰菊 石油化工环境保护 2006/01 16 油田含油污水处理中膜技术的研究与应用 陈兰 精细石油化工进展 2006/02 17 连铸含油污水处理新工艺的研究 潘冠英 工业水处理 2006/03 18 膜分离技术在油田含油污水处理中的应用研究进展 蔺爱国 工业水处理 2006/01 19 电气浮含油污水处理工艺工业性试验研究 张登庆 环境污染治理技术与设备 2005/11 20 铁路某机务段含油污水处理站改造工程的技术措施 朱立鹏 地下工程与隧道 2005/04 含油污水处理技术摘 要: 介绍常用的含油废水处理技术的原理、特点及其除油设备,综述含油污水的处理方法。关 键 词: 含油废水; 技术; 污水处理方法含油污水的产量大,涉及的范围广,例如石油开采、石油炼制、石油化工、油品贮运、油轮事故、轮船航运、车辆清洗、机械制造、食品加工等过程中均会产生含油污水。油污染作为一种常见的污染,对环境保护和生态平衡危害极大。当今油水分离技术较多,常用的方法有重力分离法、空气浮选法、粗粒化法、过滤法、吸附法、超声波法等技术,并且新的除油技术还在不断的研发中。本文从除油器的原理及方法方面加以介绍。1 重力分离法重力分离法是典型的初级处理方法,是利用油和水的密度差及油和水的不相溶性,在静止或流动状态下实现油珠、悬浮物与水分离。分散在水中的油珠在浮力作用下缓慢上浮、分层,油珠上浮速度取决于油珠颗粒的大小,油与水的密度差,流动状态及流体的粘度。它们之间的关系可用stokes 和Newton 等定律来描述。1. 1 横向流除油器[1 ]横向流含油污水除油设备是在斜板除油器的基础上发展起来的,它由含油污水的聚结区和分离区两部分组成。含油污水首先经过交叉板型的聚结器,使小分散油珠聚并成大油珠,小颗粒固体物质絮凝成大颗粒,然后聚结长大的油珠和固体物质通过具有独特通道的横向流分离板区,而从水中分离出来。在进行油水、固体物质分离的同时,还可以进行气体(天然气) 的分离。1. 2 波纹板聚结油水分离器[2 ]波纹板除油原理主要是利用油、水的密度差,使油珠浮集在板的波峰处而分离去除,其关键是在于借助哈真浅池沉淀原理,制成波纹板变间距变水流流线,过水断面是变化的,水流呈扩散、收缩状态交替流动,产生了脉动(正弦) 水流,使油珠之间增加了碰撞机率,促使小油珠变大,加快油珠的上浮速度,达到油水分离的目的。1. 3 聚集型油水分离器[3 ]奥地利费雷公司在世界上率先开发了CPS一体化波纹板式重力加速聚集型油水分离器。该波形板是费雷公司的专利产品,以聚丙烯为基础材料,内含多种添加剂,使其具有亲油而不粘油、抗老化是特点。波纹板一块一块地叠加起来的,间距一般为6 mm(当水中悬浮物含量较高时,可采用间距12 mm 的设计) 。1. 4 高效仰角式游离水分离器[4 ]将卧式和立式游离水分离器相结合,采用仰角设计,克服了立式容器内油水界面覆盖面积小和卧式容器油水界面与水出口距离短,分离时间不充分的缺点。来液进口位于管式容器的上行端,水中油珠能聚结并爬高上行至顶端油出口,而水下沉至底端水出口排出。该设备仰角小于12°,长18. 3 m ,直径为1 372 mm和914 mm两种规格。2 过滤法过滤法是将废水通过设有孔眼的装置或通过由某种颗粒介质组成的滤层,利用其截留、筛分、惯性碰撞等作用使废水中的悬浮物和油分等有害物质得以去除。常用的过滤方法有3 种:分层过滤、隔膜过滤和纤维介质过滤。膜过滤法又称为膜分离法[5 ] ,是利用微孔膜将油珠和表面活性剂截留,主要用于除去乳化油和某些溶解油。滤膜包括超滤膜、反渗透膜和混合滤膜等。膜材料包括有机膜和无机膜两种,常见的有机膜有醋酸纤维膜、聚砜膜、聚丙烯膜等,常用的无机膜有陶瓷膜、氧化铝、氧化钴、氧化钛等。乳化油处于稳定状态,用物理方法或者化学方法很难将其分离。随着膜科学的飞速发展,膜过程处理乳化油污水已逐步被人们接受并在工业中应用。3 离心分离法离心分离法是使装有含油废水的容器高速旋转,形成离心力场,因固体颗粒、油珠与废水的密度不同,受到的离心力也不同,达到从废水中去除固体颗粒、油珠的方法。常用的设备是水力旋流分离器。旋流分离器在液固分离方面的应用始于19 世纪40 年代,现在较为成熟,但在油/ 水分离领域的研究要晚得多。虽然液固分离与液液分离的基本原理相同,但二者设备的几何结构却差别较大。脱油型旋流分离器起源于英国。从20 世纪60 年代末开始,由英国南安普顿大学MartinThe w 教授领导的多相流与机械分离研究室开始水中除油旋流分离器的研究,发明了双锥双入口型液- 液旋流分离器。在试验过程中取得满意效果。随后,Young GAB 等人设计出的与双锥型旋流器具有相同分离性能但处理量要高出1 倍的单锥型旋流分离器。经过几何优化设计,Conoco 公司提出了K型旋流分离器,对于直径小于10μm的油滴分离性能提高更加明显。由于旋流分离器具有许多独特的优点,旋流脱油技术在发达国家含油废水处理特别是在海上石油开采平台上已成为不可替代的标准设备。4 浮选法浮选法,又称气浮法,是国内外正在深入研究与不断推广的一种水处理技术。该法是在水中通入空气或其他气体产生微细气泡,使水中的一些细小悬浮油珠及固体颗粒附着在气泡上,随气泡一起上浮到水面形成浮渣(含油泡沫层) ,然后使用适当的撇油器将油撇去。该法主要用于处理隔油池处理后残留于水中粒经为10~60μm 的分散油、乳化油及细小的悬浮固体物,出水的含油质量浓度可降至20~30 mg/ L 。根据产生气泡的方式不同,气浮法又分为加压气浮、鼓气气浮、电解气浮等,其中应用最多的是加压溶气气浮法。5 生物氧化法生物氧化法是利用微生物的生物化学作用使废水得到净化的一种方法。油类是一种烃类有机物,可以利用微生物的新陈代谢等生命活动将其分解为二氧化碳和水。含油废水中的有机物多以溶解态和乳化态,BOD5 较高,利于生物的氧化作用。对于含油质量浓度在30~50 mg/ L 以下、同时还含有其他可生物降解的有害物质的废水,常用生化法处理,主要用于去除废水中的溶解油。含油废水常见的生化处理法有活性污泥法、生物过滤法、生物转盘法等。活性污泥法处理效果好,主要用于处理要求高而水质稳定的废水。生物膜法与活性污泥法相比,生物膜附着于填料载体表面,使繁殖速度慢的微生物也能存在,从而构成了稳定的生态系统。但是,由于附着在载体表面的微生物量较难控制,因而在运转操作上灵活性差,而且容积负荷有限。6 化学法化学法又称药剂法,是投加药剂由化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的一种方法。常用的化学方法有中和、沉淀、混凝、氧化还原等。对含油废水主要用混凝法。混凝法是向含油废水中加入一定比例的絮凝剂,在水中水解后形成带正电荷的胶团与带负电荷的乳化油产生电中和,油粒聚集,粒径变大,同时生成絮状物吸附细小油滴,然后通过沉降或气浮的方法实现油水分离。常见的絮凝剂有聚合氯化铝(PAC) 、三氯化铁、硫酸铝、硫酸亚铁等无机絮凝剂和丙烯酰胺、聚丙烯酰胺( PAM) 等有机高分子絮凝剂,不同的絮凝剂的投加量和pH 值适用范围不同。此法适合于靠重力沉降不能分离的乳化状态的油滴和其他细小悬浮物。7 吸附法吸附法是利用亲油性材料,吸附废水中的溶解油及其他溶解性有机物。最常用的吸油材料是活性炭,可吸附废水中的分散油、乳化油和溶解油。由于活性炭的吸附容量有限(对油一般为30~80 mg/ g) ,成本高,再生困,一般只用作含油废水多级处理的最后一级处理,出水含油质量浓度可降至0. 1~0. 2 mg/ L 。1976 年湖南长岭炼油厂在废水处理中就采用了活性碳吸附进行深度处理。国内外对于新型吸附剂的研制也取得了一些有益的成果。研究发现,片状石墨能吸附由海上油轮漏油事件释放的重油并易于与水分离。吸附树脂是近年来发展起来的一种新型有机吸附材料,吸附性能好,再生容易,有逐步取代活性炭的趋势,有越来越多的业内人士研究高效吸油树脂的合成与应用[6 ] 。有研究表明,采用丙纶吸油材料从油工业废水中吸附分离和回收油类物质,可根据废水的初始状况、最终要求、水流流量等因素,选用合适的净化方法。此外,煤灰、改性膨润土、磺化煤、碎焦碳、有机纤维、吸油毡、陶粒、石英砂、木屑、稻草等也可用作吸油材料。吸油材料吸油饱和后,根据具体情况,再生重复使用或直接用作燃料。8 粗粒化法粗粒化法是利用油、水两相对聚结材料亲和力相差悬殊的特性,油粒被材料捕获而滞留于材料表面和孔隙内形成油膜,油膜增大到一定厚度时时,在水力和浮力等作用下油膜脱落合并聚结成较大的油粒。由斯托克斯公式可知,油粒在水中的浮升速度与油粒直径的平方成正比。聚结后粒经较大的油珠则易于从水中被分离。经过粗粒化的废水,其含油量及污油性质并无变化,只是更容易用重力分离法将油除去。8. 1 新型高效除油器[7 ]旋流除油、粗粒化除油及斜板除油技术,是当今普遍认为高效的除油技术。高效除油器是将上述多种高效除油技术于一体的高效合一除油器,其总体结构设计成卧式,由旋流(涡流段) 粗粒化段及斜板除油段组成。它不仅可提高除油效率,且方便操作、减少占地。根据江汉油田采出水特性,采用两段粗粒化及两段斜板除油,在进口ρ(油) ≤1 000 mg/ L 时, 出口达到后续处理设备(过滤器) 的进口要求ρ(油) ≤30 mg/ L 。8. 2 EPS 油水分离技术[8 ]EPS 油水分离器是一种高效、先进的油水分离装置。它融合了当今先进的板式除油和粗粒化聚结技术,集污水的预处理、油水分离以及二次沉淀和油的回收于一体;具有安装运行费用省、油水分离效果好,操作维护容易等特点,是立式除油罐、斜板除油装置(如美国石油协会的除油装置(API) 、波纹板斜板除油装置(CPI) 、平行斜板除油装置( PPI) 等的更新替代产品。EPS 油水分离器目前已在韩国、美国、波兰、印度、泰国、中国等国家有了实际的应用,污水处理效果普遍良好。9 声波、微波和超声波脱水技术声波可加速水珠聚结,提高原油脱水效率;超声波可降低能耗和减少破乳剂用量;而微波在降低乳状液稳定性的同时,还可加热乳状液,进一步促进水滴的聚结,在解决我国东部老油田因三采等引起的原油性质复杂的深度脱水问题方面具有很好的应用前景。微波是指频率为300 MHz~300 GHz 的电磁波[9 ] 。微波水处理技术是把微波场对单相流和多相流物化反应的强烈催化作用、穿透作用、选择性供能及其杀灭微生物的功能用于水处理的一项新型技术。超声波是一种高频机械波,其频率一般2 ×104~5 ×108 Hz 之间,具有能量集中、穿透力强等特点。超声波在水中可以发生凝聚效应、空穴或空化效应[10 ] 。当超声波通过含有污水的溶液时,造成微小油滴与水一起振动。但由于大小不同的粒子具有不同的相对振动速度、油滴将会相互碰撞、粘合,使油滴的体积增大。随后,由于粒子已变大、不能随声波振动了,只作无规则运动。最后水中小油滴凝聚并上浮,油水分离效果良好。超声处理乳化油污水时,必须以先通过实验,以确定最佳的声波频率,否则可能出现超声粉碎效应,影响处理效果。目前,国内外学者利用超声波技术降解水中的污染物已多达几十种,但所研究的对象多为单组分模拟体系,而实际污水中常含有多种污染物,因此超声波技术在实际污水处理中的适用性如何还有待进一步的研究。此外,目前有关利用超声波技术降解水中污染物的研究大多属于实验室阶段,且由于声化学反应过程的降解机理、反应动力学及反应器的设计放大等方面的研究开展得很不充分,目前还难以实现工程化。10 超声/ 电化学联用技术[9 ]利用超声的空化效应,可在电化学反应中使电极不形成覆盖层,避免电极活性下降;超声空化效应还有利于协同电催化过程产生·OH ,而使污水中的污染物的分解加速;超声还可使有机物在水溶液中充分分散,从而大幅度提高反应器的处理能力。Mizera 等在电解氧化处理含酚废水时发现,无超声存在时,只有50 %的分解率,若使用25 kHz、104 W/ m2 的超声波处理时,酚的分解率会提高到80 %。刘静等利用超声/ 电化学联用技术对印染废水的处理表明,在超声波和电场的协同作用下,废水的脱色率大大高于单独使用超声波时的脱色率。