首页

> 学术期刊知识库

首页 学术期刊知识库 问题

卫星探测毕业论文

发布时间:

卫星探测毕业论文

2004年1月,我国探月计划“嫦娥1号”工程正式启动,这标志着我国的深空探测进入了实际操作阶段。探月工程将分“绕”、“落”、“回”3个阶段来具体实施。随着我国航天事业的发展,对空间飞行器的定轨精度要求越来越高。目前,我国火箭运载的能力可以确保把总重约吨的飞行器送到约38万公里的地月距离处,但保证其准确进入环月飞行工作轨道则有赖于地面测控系统的精密定轨和轨道预报。经多次反复论证,我国探月工程决定,探月飞行器的测控工作,以我国的联合S波段(USB)测控系统为主,辅以中国科学院的甚长基线射电干涉(VLBI)测量系统进行精密定轨。 本文以我国正在实施的探月计划“嫦娥1号”工程为背景,分析了在我国USB测控网和VLBI跟踪网的现有空间分布、观测弧段和尽可能接近真实情况的误差源等前提下的探月飞行器的精密定轨。“嫦娥1号”的整个飞行过程包括以地球为中心的调相轨道飞行、地月系之间的奔月飞行轨道以及环月轨道的飞行。各轨道段有不同的轨道特征,为此,本文重点分析了影响奔月飞行器和环月飞行器定轨精度的主要误差源,以及观测量精度、观测资料类型等对定轨的影响。在环月阶段,月球重力场误差是影响定轨的最主要的误差源,本文采用减缩动力学法,即采用合适的经验加速度参数吸收重力场误差对定轨的影响。采用的方法是仿真模拟计算,即首先模拟观测数据,然后在计人各误差源的影响后进行求解,并对解算结果进行比较。仿真模拟的工具是美国宇航局哥达德飞行中心的空间数据分析软件系统GEODYNⅡ。 仿真的计算结果表明:采用USB测距、测速和VLBI时延,时延率联合定轨能够提高定轨和轨道预报精度。在奔月阶段,提高观测量精度(时延)和减小测量船的点位误差将有助于提高定轨精度,而在环月阶段,采用减缩动力学方法和提高月球重力场精度将有助于提高定轨精度。

刚刚过去的20世纪,是人类科学技术飞速发展的时代,也是航天技术飞速发展的时期,半个多世纪以来,航天技术对人类社会的发展做出了巨大贡献。与此同时,中国的航天事业也取得了举世瞩目的辉煌成就。下面我将回顾中国航天事业的历史成就,展望未来发展,并简要介绍中国在航天领域开展的国际合作。 一、中国航天事业取得的成就 经过51年的发展,我国航天事业已经形成了六个能力——进入空间的能力、卫星研制能力、载人航天能力、深空探测能力、航天基础与保障能力,以及卫星应用能力。 1、进入空间的能力 中国长征运载火箭具备了吨的近地轨道、吨的同步转移轨道的运载能力,能够发射世界上绝大多数商业卫星。1996年10月以来,长征火箭已经连续60次发射成功。 至今,长征火箭进行了102次飞行,将87颗国产卫星和6艘飞船、28颗国外商用卫星送入预定轨道。前50次发射用了28年,后50次仅用了9年并且全部发射成功。未来我们将迎来新一轮高密度发射。 2、卫星研制与运行能力 目前我国已经拥有通讯、遥感、资源、导航定位、气象、科学实验、海洋七个卫星系列。在通信卫星方面:1984年,中国第一颗地球静止轨道试验通信卫星东方红二号发射成功,此后我们先后发射了东方红二号甲实用通信卫星、东方红三号中等通信容量的广播卫星。今年,我们用东方红四号(DFH-4)大型静止轨道卫星平台,为尼日利亚成功研制并在发射了大容量通信卫星。东方红四号平台设计寿命15年,输出功率 KW,适用于大容量通信广播、电视直播卫星等。它的成功研制,标志着中国卫星研制达到了新的高度。 在遥感卫星方面:20世纪80年代至今,我们已经形成了气象卫星、资源卫星、海洋卫星等三个遥感卫星系列。 ——气象卫星:中国在上世纪80年代发射了首颗“风云1号”太阳同步轨道气象卫星,90年代发射了“风云二号”地球静止轨道气象卫星。两种气象卫星均实现了稳定的业务化应用,并被世界气象组织列入业务应用卫星序列。 ——地球资源卫星:上世纪90年代,中国和巴西合作开发了第一代中巴“资源1号”卫星,之后我们自行研制了第二代中国“资源二号”卫星,获得了更高的时间分辨率和空间分辨率。这些卫星均已实现业务化运行,广泛用于经济建设的各领域。 ——海洋卫星:进入21世纪,我们先后发射了海洋-1A和1B两颗海洋探测与监测卫星,用于海洋污染监测,海冰预报,海岸带特征调查、海洋资源探测等。两颗卫星获取的海洋基础信息在发展我国海洋事业中发挥了重要作用。 在返回式卫星方面:从1975年至今,我们成功发射和回收了5种类型、21颗返回式卫星。利用返回式卫星,我们开展了资源调查、地图测绘、地质调查等遥感应用,并为国内外用户进行了100多项微重力和空间环境条件下的材料、生命科学实验,以及农作物种子搭载试验等。 在导航卫星方面:从上世纪90年代开始,我们采用双星定位技术和较少的资金投入,自主研制、建设了第一代“北斗”区域导航卫星系统。这一系统已具备了在中国及周边地区范围内的定位、授时功能,可提供区域性全天候导航定位服务。 在科学技术试验卫星方面:40多年来先后发射了10颗科学技术试验类卫星,形成了科学试验卫星系列。这些卫星在空间环境探测、空间科学试验和新技术试验等方面,发挥了积极的作用。至今,我国自行研制和发射了80多颗人造地球卫星。未来,中国航天器的发射数量将大大增加,技术水平将不断提高。 3、载人航天的能力 1999年月11月,我国成功发射了第一艘无人飞船,2003年10月15日,中国神舟5号飞船圆满完成了我国首次载人飞行,标志着中国独立掌握了载人航天技术。2005年10月12~17日,两名航天员圆满完成神舟六号飞行任务,实现了2人5天、航天员直接参与空间科学实验活动的新跨越。 神舟飞船采用了三舱一段结构,两对太阳电池翼构型,升力控制返回和圆顶降落伞回收方案,飞船轨道舱兼具生活舱,可驻留轨道数月开展空间科学探测和技术试验。从神舟二号到五号,四个轨道舱的上百种仪器进行了对地观测、空间科学实验。这项工程形成了100多项具有自主知识产权的新技术、新方法。 4、深空探测的能力 实施月球探测工程是中国向深空探测迈出的第一步。这一工程分三个阶段实施。在第一阶段,发射在月球200公里轨道运行的月球卫星——嫦娥1号,它的任务是拍摄月表三维照片,分析月球上多种元素的分布,探测月壤厚度,探测地月空间环境。嫦娥1号已进入发射准备阶段,计划2007年10月发射,在轨运行一年。完成第一阶段工程后,将实施第二、第三阶段工程。 5、航天基础与保障能力 ——经过51年的发展,中国航天已具备较强的设计能力、加工制造能力、完备的测试和试验能力、可靠的发射能力、有效的测控管理能力,形成了较完整的航天工业体系 ——在发射场方面,建设了酒泉、西昌和太原发三个射场。为配合新一代运载火箭计划,正在论证在海南建设新的发射场。 ——在测控通信领域,建立了覆盖国家本土、太平洋和非洲地区的航天测控网,基本满足了航天活动的测控需要。 ——在地面和应用系统方面,建成了中国遥感卫星地面站、国家卫星气象中心、国家卫星海洋应用中心和中国资源卫星应用中心等卫星地面和应用系统。在载人航天、月球探测等领域,也建成了配套的专业工程体系。 6.空间应用能力 几十年来,中国的航天事业在国民经济和社会发展中发挥了重要的促进作用,形成了广泛的空间应用的能力。例如:通信卫星承担了几十套电视节目、30路对外广播和8000多部卫星电话的传输任务,使电视人口覆盖率由68%增加到90%以上,全国500多个大中城市开通了长途自动拨号电话,基本改变了新疆、青海、云南、贵州等边远地区及海防海岛收视难、通信难的状况。政府利用“村村通”卫星直播平台,解决了全国10万个行政村的电视覆盖盲点。依靠通信卫星电视广播网播出教育节目,使3千多万人接受了大中专电视教育,远程教育网培养的大学毕业生已达200多万人,现有1600多万人在校学习。卫星遥感已在我国气象、地矿、测绘、农林、水利、海洋、环保、区域和城市规划等方面得到广泛应用。利用卫星遥感对洪水、干旱、台风、地震、森林火灾、病虫害等进行预报和评估,每年减少数百亿元自然灾害造成的损失。 中国进行了300多种农作物种子卫星搭载试验,完成了50多个品系大面积种植推广,经过太空育种的种子,可比原有品种增产10%-20%。利用空间微重力的特殊环境,获得了高质量的蛋白质晶体,掌握了有应用前景的空间生物制药技术和方法。 二、中国航天事业的未来发展 去年10月,中国政府发布了《2006年中国的航天》白皮书,描述了未来五年及较长一个时期,我国航天事业的发展目标和主要任务。未来一段时间,我们将重点实施下面五项重大工程。 一是继续实施载人航天工程。重点突破航天员出舱活动、空间飞行器交会对接等重大关键技术,为建立具有一定应用规模的有人照料、长期在轨飞行的空间实验室奠定基础。2008年我们将发射神舟七号飞船,突破航天员出舱活动。 二是实施月球探测工程。发射“嫦娥1号”后,将实施探月工程第二、第三阶段计划,2013年左右,完成月面软着陆探测;在2020年前,发射小型采样返回舱,采集月球样品返回地球,进行深入研究。 三是启动并实施高分辨率对地观测系统工程。将在天基、近空间、空基不同层次进行大气、陆地、海洋的综合观测,形成全天候、全天时、稳定运行的对地观测能力,并可根据需要对特定地区进行高精度观测,满足立体观测和高分辨率观测的需要。 四是完善“北斗”导航试验卫星系统。自主研制并建成12颗卫星组成的区域导航定位系统,满足中国及周边地区用户需求;在此基础上,进一步扩展到由30多颗不同轨道卫星组成的全球卫星导航定位系统,获得高精度授时和用户位置报告能力。 五是研制新一代无毒、无污染和大推力的运载火箭。使近地轨道运载能力从吨提高到25吨,同步转移轨道运载能力从吨提高到14吨。新型火箭预计在2013年左右投入使用。 三、积极推进国际合作,为维护世界和平力做贡献 和平利用外层空间,造福全人类,是中国发展航天事业的宗旨。坚持“平等互利、和平利用、共同发展”是我们开展航天合作的原则。目前,我国与俄罗斯、欧洲空间局等几十个国家和国际组织建立了良好的航天合作关系,先后与60多个国家和组织开展了双边、区域、多边以及商业服务等多种形式的广泛空间合作。例如,我国已为国外客户成功发射28颗卫星;我国与巴西成功研制了中巴资源卫星;我国参加了欧洲伽俐略导航卫星项目,并与欧洲成功实施了双星探测项目。今年中国航天局与俄罗斯航天局签署了中俄火星探测合作协议。我们还为尼日利亚研制和发射了大容量通信卫星。作为重要的航天国家,中国加入了多个国际航天组织,并在联合国及有关组织的外空事务中发挥着重要作用。 结语 过去五十年,中国航天事业取得了举世瞩目的成就;未来十五年,中国航天事业将面临更多的挑战,也充满了难得的发展机遇,中国航天将进入更快发展的新时期。太空属于人类,航天需要合作。我们愿意与世界各国共同推进航天领域的国际合作,为人类和平利用太空贡献力量!

GNSS测量是用接收机与天线组成的测量系统,我整理了gnss测量技术论文,有兴趣的亲可以来阅读一下!

GNSS测量技术在城市测量中的应用

摘要:GNSS城市测量技术内容主要包括城市CORS系统建设、城市GNSS网建设、城市GNSS RTK测量、城市GNSS高程测量等,本文主要就这几方面的技术应用作了简要应用分析。

关键词:GNSS;CORS系统;控制网;RTK测量;高程测量

Abstract: GNSS measurement technology mainly includes the construction of city, city CORS city GNSS network construction, city, city GNSS RTK measurement of GNSS height measurement, this paper focuses on several aspects of this technology are briefly applied analysis.

Key words: GNSS; CORS system; control network; RTK measurement; height measurement

中图分类号:P224

全球导航卫星系统(GNSS)技术的应用,导致传统测量的布网方法、作业手段和内外作业程序发生了根本性的变革,为城市测量提供了一种崭新的技术手段和方法。全球导航定位系统具有全球性、全天候、高效率、多功能、高精度的特点。在用于大地定位时,测站间不要求互相通视,无需造标,不受天气条件影响。一次观测,可以获得测站点的三维坐标。卫星定位城市测量技术内容包括城市CORS系统建设、城市GNSS网建设、城市GNSS RTK测量、城市GNSS高程测量等,适用于城市各等级控制测量、工程测量、变形测量和地形测量等。GNSS技术将以高速度、高精度、低成本为城市建设服务,快速、及时、准确地为城市规划、建设和管理提供测绘保障。

一、城市CORS系统建设

GNSS技术已在国内导航、定位、科学研究领域得到广泛应用。一个城市只应建设一个城市CORS系统,避免重复建设和资源浪费。系统建设不但要满足城市测绘部门对定位的需求,还要综合考虑地震、气象、土地和其他行业对系统的需求[1]。具体实施可根据城市和经济发展情况可以一次建设完成,也可分期建设,城市CORS系统作为城市重要的空间数据基础设施之一,首先要满足城市对空间定位的不同服务需求。

城市CORS网的布设不同于城市常规GNSS网的布设,常规GNSS网的边长一般较短,而CORS网站间距离可根据系统功能设计而适当加长。下表1列举了部分城市及地区已建成的CORS网平均边长。

表1部分城市及地区CORS网

根据对部分城市及地区已建成的CORS网平均边长的统计和分析,制定了城市CORS网的平均边长为40km这一指标。为了满足CORS系统厘米级的实时定位服务精度。在具体布设中可以根据城市地理位置、城市规模和建设应用等情况,有针对性地确定CORS站密度。但是相邻CORS站最长间距不宜超过80 km。由于地壳形变、自然灾害、地下水的过量开采等原因,可能导致城市CORS站站址的不稳定,应定期对CORS网进行坐标解算,解算周期不应超过一年。CORS站坐标的平面位置变化不应超过;高程变化不应超过3cm。当CORS站坐标的变化量不符合规定时,应分析原因,并应及时更新CORS站坐标或另选新站。对于地面沉降严重的区域,可另行制定高程变化的变化量限值。

二、城市GNSS控制网建设

GNSS网的布设应遵循从整体到局部、分级布网的原则。城市首级GNSS网应一次全面布设,加密GNSS网可逐级布网、越级布网或布设同级全面网。GNSS网布设特征:如果某GNSS网由n个点组成,每点的设站次数为m,用N台GNSS接收机来进行观测时,观测的时段数C:C=n﹒m/N一个时段中用N台GNSS接收机来进行同步观测时,可组成非独立的基线向量数:N(N-1)/2,所以该GPS网中共有非独立的基线向量数:J总=C﹒N(N-1)/2每个时段中可测定的独立基线向量数为N-1条,故在该网中独立基线向量数总数为:J独= C﹒(N-1)

在由n个点组成的GNSS网中只需要有(n-1)条基线向量就可以确定这n个点的相对位置(如果其中有一个点的坐标是已知的,就可以确定其余n-1个点的坐标)。因此, 该GNSS网的必要基线向量数:J必= n-1网中实际测定的独立基线向量数为C﹒(N-1)条,所以,网中的多余基线向量数为:J多= J独- J必= C﹒(N-1)-(n-1)举例:某GNSS网由80个点组成,现准备用5台GNSS接收机来进行观测,每个点重复设站为4次。则全网的观测时段数C为:C=n﹒m/N=80×4/5=64全网共有基线向量数:J总=C﹒N(N-1)/2=64×5×4/2=640条

网中独立基线向量数为:J独= C﹒(N-1)=64×4=256条。GNSS网的必要基线向量数:J必= n-1=80-1=79条。网中的多余基线向量数为:J多= J独- J必= 256-79=177条。三、城市GNSS RTK测量技术及其应用

RTK测量可采用单基站RTK测量和网络RTK测量两种方法进行。已建立CORS系统的城市,宜采用网络RTK测量。在实际作业过程中,有一些通信信号较弱或覆盖不到的困难地区,无法实时进行单基站RTK和网络RTK测量,现场可以采用后处理动态测量的模式进行RTK测量。单基站RTK测量的基准站设置是关键性的第一步。基准站的选择直接影响到作业半径和效率。若基准站选择不当,基准站观测数据质量和无线通讯信号传播质量无法保证。该基准站支持的所有流动站都不能顺利作业,或者造成基准站频繁迁站,影响工作进程。基准站的设置要与当前作业方式匹配,还要与流动站的模式匹配。

静态GNSS控制网测量可以通过基线精度、重复基线差及环闭合差和平差等作业过程对成果进行检验;RTK测量每个测设点都是相互独立的,点与点之间没有直接关系,对于因意外产生的粗差无法发现[2]。因此,为提高RTK测量的可靠性,保证仪器各种设置正确,测量过程中应选择一定数量的已知坐标点进行测量校核,以检查用户站设备的可靠性以及坐标转换参数的准确性。

利用已有RTK测设的控制点时,应进行坐标或几何检核。对已有的RTK控制点,可以作为RTK测量时的校核点,也可以作为同等级布设的控制点。该校核点如果要作为控制点使用时,应与新布设的控制点统一。统一进行控制点间的边长、角度以及坐标检核,应达到精度要求。RTK测量的精度会受到各种因素的影响。由于载波相位进行测量具有多值性,初始化过程中各种误差以及数据链传输过程中外界环境、电磁波干扰产生的误差的影响,可能导致整周未知数解算不可靠。同时,RTK测设点间的相互独立,与传统测量强调的相邻点间相对关系有着根本上的区别。

四、城市GNSS高程测量技术及实例应用

GNSS高程测量按作业过程应分为高程异常模型的建立、GNSS测量和数据处理。高程异常模型可利用已有模型。高程系统中最常用的有正高系统(以大地水准面作为参考基准面)和正常高系统(以似大地水准面为参考基准面)。我国使用的高程系统是正常高系统。采用GNSS测量技术测定地面点的高程是以地心坐标的地球椭球面为基准的大地高H,大地水准面和似大地水准面相对于地球椭球面有一个高度差,分别称为大地水准面差距N和高程异常ζ。大地高H、正高Hg和正常高Hγ之间按下列公式计算: H=Hg+NH=Hγ+ζ如果能够比较精确地确定地面点的高程异常,则用GNSS测量方法可精确测定地面点的正常高。

GNSS静态测量技术要求浅析

摘要:本文介绍了常用规范中有关卫星定位静态测量的技术要求,并对各规范的不同技术要求进行了比较与分析。

关键词GNSS静态测量GNSS测量常用规范GNSS技术要求比较与分析

中图分类号:P258]文献标识码: A 文章编号:

卫星定位技术具有全球性、高效率、多功能、高精度的特点。卫星定位静态测量其定位精度高达10-6~10-7,广泛应用于各种类型和等级的控制网的建立。有关卫星定位测量(以下简称GNSS测量)常用的规范较多,各个规范分别从相应的专业标准制定了详细的GNSS测量技术要求,使GNSS测量的应用具有良好的可操作性,发挥了巨大的作用。下面就常用规范中有关GNSS静态测量的技术要求作一些比较与分析:

1、坐标系统

满足测区内投影所引起的长度变形值不大于,是建立或选择平面坐标系的前提条件和基本准则;而确定控制网的位置基准则是GNSS网基准设计的主要问题,可根据测区的地理位置、平均高程来选择适宜的坐标系统。GNSS测量所获得的是空间基线向量或三维坐标向量,属于其相应的空间坐标系(WGS-84坐标系)。规范要求应将其转换至国家统一的高斯正形投影分带平面直角坐标系(2000国家大地坐标系、1954年北京坐标系、1980西安坐标系)或建筑施工坐标系等其他独立的坐标系的坐标。转换时通常应具备坐标系统相对应的参考椭球及基本参数、坐标系的中央子午线经度、坐标系的投影面高程及测区平均高程异常值、起算点的坐标和起始方位角以及纵、横坐标加常数等。

2、精度分级和技术设计

GNSS网精度指标通常采用相邻点的基线长度中误差公式:来衡量,GNSS网的全中误差不应超过其理论值。按照精度和用途,《全球卫星定位系统(GPS)测量规范》(以下简称《GNSS国标》)把GNSS测量的等级划分为A、B、C、D、E五个等级,并按相邻点基线向量中误差的水平分量、垂直分量来衡量相应级别的精度。而其它规范则是采用传统的三角形网按边长和精度来划分等级,用最弱间接边的相对中误差来衡量精度。相比较而言,前者较抽象,后者虽然较直观,但是遗憾的是,大多数的GPS随机软件中给出的却是直接观测边的精度。技术设计是为了得到最优化的布测方案,应根据项目的实际情况、GNSS网的目的、精度要求、控制点的密度、卫星状况、接收机的类型和数量、道路交通状况以及测区已有测量资料等,依据国家有关规范(规程),并按照优化设计的原则进行综合设计。

规范要求:GNSS网应由一个或若干个独立观测环构成,各同步图形之间采用边连式或网连式,避免出现自由基线。因为自由基线不参与构成几何闭合图形,不具备检查和发现观测成果中粗差的能力。限制最简独立环的边数是为了避免基线误差互相掩盖,含较大误差的边不能被有效地捡出,从而导致网的可靠性降低。要求对独立观测边构成的同步环和异步环进行闭合差检查,是为了检查观测质量、评定精度。

3、选点、埋石

如果点位不符合GNSS测量要求,将引起失锁、周跳、多路径效应误差,GNSS观测中的粗差及劣质观测值就增多。首先要求测站点的顶空开阔。由于GNSS卫星信号本身很微弱,所以GNSS测量选点时还应注意:避开周围的电磁波干扰源以保证GNSS接收机能正常工作;限制卫星高度角以减弱对流层的影响;远离强烈反射卫星信号的物体以减弱多路径效应的影响。规范要求应先进行图上技术设计和优化,并进行精度估算,最后再按技术设计的要求进行现场踏勘落实,对符合要求的旧有的控制点要充分利用。对GNSS点的标石和标志的埋设要求稳固,以易于长期保存、利用。

4、GNSS观测

GNSS接收机应在检定合格的有效期内使用,其标称精度应高于相应等级GNSS网的规范要求。由于双频接收机采用双频改正技术,可以很好地消除电离层折射误差的影响,所以基线边较长或等级较高的GNSS网采用双频接收机观测,精度提高尤为显著。为保证GNSS网中各相邻点具有较高的相对精度,网中距离较近的点一定要进行同步观测,以获得它们之间的直接观测基线。

各规范还对卫星截止高度角、同时观测的有效卫星数、时段长度、数据采样间隔率、PDOP值以及同步观测的接收机数目作了具体的规定。

随着卫星高度的降低,卫星信号接收的信噪比随之减小,对流层影响加大,测量误差也随之增大。各规范一般都要求卫星高度角不低于15°,这样可以在简化模型条件下保证所需的测量精度。

规定有效卫星数是因为同步观测的卫星越多,多余观测量就越多,成果精度也相应地提高。

观测时段长度和数据采样间隔率的限制是为了获得足够的数据量,从而有利于整周模糊度的解算和载波相位观测值周跳的探测。

PDOP值的大小与观测卫星在空间的几何分布有关,限制PDOP值是为了选择最佳的观测时间段,从而获得高精度的观测值。

有别于其他规范的重复设站数的规定,《工程测量规范》(以下简称《工规》)则提出了“独立基线的观测总数不少于必要观测基线数的倍”的规定。笔者认为:这两种提法的根本都在于增加多余的观测基线。通常作业中,按仪器的标称精度约有3% ~5%左右的闭合差不合格,有了多余基线,那么就可以舍去不合格的基线,从而保证网的观测质量。对于GNSS观测时间的确定,笔者在作业中发现,GNSS卫星信号良好的时候,采用双频接收机进行城市四等和一级GNSS测量时,由于其边长相对较短,观测时段分别采用30~40分钟和20~30分钟是可行的,从而提高工作效率。

5、成果资料

GNSS测量是基础性的测量成果,应长期保存,工作完成后,应提交完整的成果资料。包括:任务或合同书、技术设计书、已有成果资料的利用情况、仪器检校记录资料、点之记、外业原始观测记录、平差计算手簿、技术总结、检查报告、设计网图、观测网图、数据处理用图、成果图、坐标等成果资料及说明以及以上资料的电子文件光盘。

以上仅就常用规范中有关GNSS静态测量的技术要求作了一些浅显的比较与分析,在进行GNSS静态测量时,我们应根据项目的特点、精度和密度等要求,依据合适的规范进行设计、施测,以充分发挥GNSS技术的先进性、优越性。

参考文献

[1] 全球定位系统(GPS)测量规范(GB/T18314-2009),测绘出版社,2009。

[2] 卫星定位城市测量技术规范(CJJ/T73-2010),中国建筑工业出版社,2010。

[3] 铁路工程卫星定位测量规范(TB10054-2010),中国铁道出版社,2010。

[4] 李征航、黄劲松 GPS测量与数据处理 武汉大学出版社,2010。

火星探测领域论文发表文献

火星,因其荧荧如火,亮度经常变化,位置也不固定,我国古人将火星取名为“荧惑”;古巴比伦人称“尼嘎”(刚烈英雄);古埃及人称“哈·底契” (红色亮星)。在古希腊和古罗马的神话中,火星是宙斯和赫拉的儿子,他司职战争,形象英俊,勇猛顽强,喜欢打仗,是力量与权力的象徵,是好斗与屠杀的战神。古希腊人称火星为“阿瑞斯”(战神)。 火星有两个平均直径十几千米的小卫星,就是以阿瑞斯的两个儿子——福波斯和德瑞斯命名的;古罗马人称火星为“玛尔斯”,是身披盔甲浑身是血的战神,火星的符号是♂。Mars之名和火星符号被国际沿用至今。 1609年,意大利科学家伽利略第一次用望远镜观察火星,开创了人类用科学仪器观测火星之先河。1666年,G.卡西尼 通过望远镜观察火星并确定了其转动周期,计算火星的日长是24小时40分钟。1672年,惠更斯第一次发现在火星的南极有一个白点,可能是极冠,并第一次提出了可能存在地外生命的猜想。1777-1783年,英国天文学家W.赫歇尔用自己发明的望远镜研究了火星,并错误地认为火星上黑暗的地方是海洋,明亮的地方是陆地,还认为所有的星球都居住有生命。他还预言,也许火星居民也享受着与我们类似的环境。 1877年米兰天文台台长亚帕雷利斯基观测火星之后,宣布他看到了火星上的“cannali”,原意是道路却被错译为“运河”,后来演绎出火星上有运河就有开凿和利用运河的火星人和兴盛的农业。19世纪末,开始了火星运河的狂热研究,大量有关 “火星人”、“火星人袭击地球”、“大战火星人”等小说和电影应运而生。1905年,美国的厄尔火星观察台,拍摄到火星38条“运河”的照片。 已知的火星 太阳系的八大行星,按照距离太阳由近及远的次序依次是:水星、金星、地球和火星,由于它们体积较小,密度较大,具有固体的岩石表面,被称为类地行星或内行星;火星之外是木星、土星、天王星和海王星四个巨行星,也叫类木行星。 火星的平均赤道半径为3393千米,仅为地球的53%;火星的质量是地球质量的;火星绕太阳的公转的运行轨道呈椭圆形,周期为687天,即个地球年;火星的自转情况跟地球相似,自转方向跟地球相同,自转周期也就是火星一天的时间为小时;火星的自转轴是倾斜的,倾角为。,因此火星上也有四季变化,但每个季节大约比地球季节要长一倍。 火星与太阳的距离比地球远,平均距离约为 亿千米(地球约亿千米),火星表面的年平均温度为-57。C,表面昼夜温度变化于20℃到一139℃之间,火星比地球寒冷,昼夜温差比地球大。 火星表面的重力加速度是米/秒2,逃逸速度米/秒,而地球分别是米/秒2和米/秒;因此火星的引力场较弱,大气比较稀疏容易逃逸,平均表面气压仅700帕,不到地球海平面气压的1%。火星大气的主要成分是CO2(占),其次是N2(占)。火星由于大气稀薄,风速很大,风在火星表面肆虐,形成了广泛分布的活动沙丘和沙漠。火星上经常发生台风和龙卷风。当风速达到50~100米/秒时,100微米的尘沙被吹到大气中,形成区域性尘暴。每个火星年约发生上百次区域性尘暴,几个区域性尘暴偶然联合起来,把大量尘沙卷到30千米的高空,发展成全球性大尘暴,可持续几个星期。 火星的地形明显地不对称,南半球的地势比北半球高。火星表面的2/3都是古老的、撞击坑非常密集的地形。南半球分布有无数网络状的河谷系统,它们看上去象是被流水切割形成的,太阳系最长、最大的水手大峡谷,长3000多千米,宽600千米、深约8千米;而地球上美国亚利桑那州的“大峡谷”,其长度仅 800千米、宽30千米、深千米。火星给人印象最深刻的面貌是巨大的盾状火山,例如奥林匹克火山就是一个庞然大物,直径达550千米,山峰高千米,是太阳系最高的山峰。火星的北半球似乎曾经是辽阔的大洋盆地,是“河流”汇集的“海洋”。火星是一个寒冷的、干燥的荒漠世界。 寻找生命迹象 自1961年以来,美国和前苏联在火星探测上展开了一场激烈的竞争。 2003年,欧空局开始发射“火星快车”探测火星,迄今为止对火星实施了42次探测,探测方式实现了对火星的飞越、环绕、软着陆、火星车巡视和现场分析样品,突破了一系列关键技术,大大提高了人类对太阳系探测的能力,获得了对火星深入系统的科学认识。火星探测的科学问题主要集中在探测火星生命活动的信息,探测与研究火星的演化,以及与类地行星的比较研究和探讨火星的长期改造与今后大量移民建立人类第二个栖息地的前景,为人类社会的持续发展服务。 火星探测的首要任务是探测火星生命活动的信息。通过大量火星轨道环绕探测器的探测,特别是美国在1975年发射的海盗1号和海盗2号着陆器和2007年发射的凤凰号着陆器,在火星表面开展了一系列生命活动信息的探测与生命科学实验,证明当今火星表面没有任何生命活动的迹象。 正当人们对火星生命的探测怀着绝望之际,却在火星大气层中发现了含有微量的水蒸气和甲烷,又重新点燃了探测火星生命的希望。凡有生命的活动必定会释放甲烷,大气层中的甲烷可能表证火星有最低等生命的活动。地球上广泛分布的天然气藏(主要成分是甲烷),绝大部分也是生物成因;但是,在大庆等地也发现一些天然气藏是由非生物过程形成的。因此,关键问题是要科学判别火星大气中的甲烷是生物成因,还是非生物成因?由于火星大气中甲烷的含量仅有30ppt(1ppt是1万亿分之一),当今火星探测卫星的同位素质谱仪还不具备测定甲烷等化合物碳同位素的技术能力,只能在技术取得突破后才有可能予以回答。 1984年在南极阿连山地区找到了一块火星陨石ALH84001。美国的科学家将陨石切片在电子显微镜下观察,发现陨石中有大量密密麻麻分布的微体生物 “化石”——细菌。微体生物的截面大约只有1%头发丝大小。经测定,ALH 84001的形成年龄为36亿年,表明36亿年前,火星曾繁衍过最低等的生命——细菌。当时,地球发育的生物水平也是最低等的微体生物——细菌。问题引发了更大范围的科学争论:既然火星的生物“化石”现在可以带到地球上来,在更远古的时代,火星的生命物质也可以随陨石带到地球上来,说不定地球的生命是火星生命的后代。当然也完全可以相反,地球的生命物质也可以随地球陨石带到火星上去,火星的生命却是地球生命的后代。也许地球和火星都曾各自发育过生命。由于火星环境恶劣,生命被夭折了,而地球的生命得以演化繁衍。ALH84001经过全世界科学家的精细研究,有一派科学家列举大量事实证明,这些“化石”并不是生命物质的化石,而是自然过程形成的特殊结构,是典型的非生物成因。火星是否曾经有过生命仍然是一个谜。 希望依然存在 火星现在没有任何生命活动的信息。火星过去可能发育过生命,火星的演化历史的确存在过气候适宜于生命产生与生存的环境。大量的探测成果表明,火星表面存在大量的古河道体系和水流动痕迹。生命产生与演化的必要条件之一是必须有水的存在,而火星上曾经有过大量的水体活动,无疑给火星上曾经有过生命物质的观点提供了有利的证据。要确证火星曾经存在过生命,必须找到火星表面的沉积岩并在沉积岩中发现火星的生物化石。 火星现在是不是具备生命存在与繁衍的条件与环境? 根据海底黑烟囱、极地冰盖下、盐湖淤泥和炎热沙漠等极端环境下各种生命形态的发现与研究,表明火星表面的环境依然具备生命繁衍的条件。由于火星表面是干枯的,没有水体的活动,而大量的事实证明火星的水体埋藏在地下。探测火星地下水的埋藏位置,有可能发现火星的低等生命形态。 火星生命的探测依然是任重而道远!

在火星第二大火山区Elysium Planitia收集的地震数据表明,在该星球表面下的熔岩流之间存在着一个浅的沉积层。 这些发现是在NASA的“洞察号”(InSight)任务(利用地震调查、大地测量和热能传输进行的内部 探索 )框架内获得的,包括科隆大学科学家在内的几个国际研究团队进行了合作。相关论文于11月23日发表在《自然-通讯》杂志上。

苏黎世联邦理工学院的地球物理学家Cédric Schmelzbach博士及其同事,包括地震专家Brigitte Knapmeyer-Endrun博士和科隆大学本斯堡地震观测站的博士研究员Sebastian Carrasco(硕士),利用地震数据分析了Elysium Planitia地区的构成。作者检查了浅层地下到200米左右的深度。就在地表之下,他们发现在15米厚的粗块状喷出物(在陨石撞击后被喷出并落回地表的岩石块)之上,有一个以沙质材料为主的再生石层,大约有3米厚。

在这些顶层下面,他们发现了大约150米的玄武岩,即冷却和凝固的熔岩流,这与预期的地表下结构基本一致。然而,在这些熔岩流之间,从大约30米的深度开始,作者又发现了一个厚达30到40米的层,地震速度很低,这表明相对于较强的玄武岩层,它含有较弱的沉积物质。

为了确定较浅的熔岩流的日期,作者使用了现有文献中的陨石坑数据。关于陨石撞击率的既定知识使地质学家能够确定岩石的日期:有许多陨石撞击坑的表面比有较少撞击坑的表面要老。另外,直径较大的陨石坑会延伸到下层,使科学家能够确定深层岩石的日期,而较小的陨石坑则使他们能够确定浅层岩石的日期。

他们发现,较浅的熔岩流大约有17亿年的 历史 ,形成于亚马逊纪--火星上的一个地质时代,其特点是陨石和小行星撞击率低,以及寒冷、超干旱的条件,始于大约30亿年前。相比之下,沉积物下面更深的玄武岩层形成的时间要早得多,大约36亿年前的西方纪,该时期的特点是广泛的火山活动。

作者提出,具有低火山速度的中间层可能是由夹在西方纪和亚马逊纪玄武岩之间的沉积物组成,或者是在亚马逊纪玄武岩本身之内。这些结果提供了第一次机会,将浅层地下的地震地面实测数据与先前基于轨道地质测绘的预测进行比较。在登陆之前,Knapmeyer-Endrun博士已经根据地面类似物建立了“洞察号”登陆点浅层地下的速度结构模型。现在的实际测量结果表明有更多的分层以及更多的多孔性岩石。

Knapmeyer-Endrun说:“虽然这些结果有助于更好地了解Elysium Planitia的地质过程,但与登陆前的模型进行比较对未来的登陆任务也很有价值,因为它可以帮助完善预测。对浅层地下的特性的了解是必要的,例如,评估其承载能力和漫游车的可通行性。此外,浅层地下的分层细节有助于了解哪里可能仍然含有地下水或冰。在科隆大学的博士研究框架内,Sebastian Carrasco将继续分析Elysium Planitia的浅层结构对火星地震记录的影响。”

“洞察号”登陆器于2018年11月26日抵达火星,在Elysium Planitia地区着陆。火星一直是众多行星科学任务的目标,但“洞察号”任务是第一个使用地震方法专门测量地表下层的任务。

卫星论文结语

中国科学院披露载人航天实验内容中国科学院有关负责人表示,载人飞船工程应用系统的主要任务是开展空间对地观测、空间科学及技术实验。我国载人航天工程(第一阶段)应用系统的目标是大力推进和发 展我国空间科学与空间应用技术,为国家经济建设和社会发展做出有重要价值的贡献,同时为今后有人参与的空间科学与技术实验打下基矗。其中,“对地观测任务”是以与国际同步发展先进空间遥感器及开拓地球系统科学研究为目的,确定了中分辨率成像光谱仪器、多模态微波遥感器(包括微波高度计、辐射计和散射计)、地球环境监测和遥感应用研究等在轨实验和应用任务。地球环境监测包括太阳常数监测、太阳和地球紫外辐射监测以及地球辐射收支探测。遥感器应用研究为我国遥感应用技术的发展奠定基础;开展成像光谱技术和微波遥感技术在海洋、陆地和大气方面的应用研究和应用示范。“空间科学研究”安排了空间生命科学、微重力科学(包括空间材料科学项目,微重力流体物理研究项目),还有空间天文项目、空间环境预报和监测任务,目标是全面提高我国空间科学水平。“空间生命科学和生物技术”研制了多种空间实验设备,开展空间生物学效应研究、空间蛋白质结晶、空间细胞培养、空间细胞电融合以及空间蛋白质和生物大分子分离纯化等研究;“空间材料科学研究”研制多工位晶体生长炉和晶体生长观测装置,开展二元和三元半导体光电子材料、透明氧化物晶体、金属和合金等材料研究和空间生长,研究空间晶体生长动力学;“空间环境预报和监测”研究可以建立空间环境预报中心,发布长期、中期、短期空间环境预报和警报,进行效应预测,保障航天员、载人航天器和空间设备安全。载人飞船构造:1,轨道舱呈圆桶形状,是航天员工作、生活和休息的地方。轨道舱调整了舱内布局设计以便安装应用系统设备及航天员食品和饮用水装置。轨道舱的后端底部设有舱门,航天员通过这个舱门可以进入返回舱。轨道舱外部两侧装有两个像鸟儿翅膀一样的太阳电池翼,轨道舱所需要的电能就是由这两个电池翼提供的。2,返回舱是载人飞船唯一返回地球的舱段,飞船起飞、上升到入轨及返回着陆时,航天员都在返回舱内。神舟六号的返回舱形状像钟,其舱门与轨道舱相连,航天员通过这个舱门,可以进入轨道舱。返回舱是飞船的指挥控制中心,舱内安装了航天员的座椅。飞船在起飞、上升和返回地面时,航天员躺在座椅上的。返回舱内还安装了飞行中需要航天员监视和操作的仪器设备,航天员通过这些仪表可以随时判断、了解飞船的工作情况,还可以在必要时人工干预飞船的系统和设备的工作。 3,推进舱形状也是圆柱形的,舱内安装推进系统发动机和推进剂,其使命是为飞船提供姿态高速和进行轨道维持所需的动力,飞船电源、环境控制和通信等系统的一部分设备也安装在这里。推进舱外部两侧也安装了两个太阳电池翼,为飞船提供所需的电能。 载人飞船的轨道舱和返回舱都是密封的舱段,舱内与外界完全隔绝,内部安装的环境和生命保障系统,将为航天员提供一个与地球环境一样的舒适生活环境。另外,还安装了供着陆用的主、备两具降落伞。返回舱侧壁上开设了两个圆形窗口,一个用于航天员观察窗外的情景,另一个供航天员操作光学瞄准镜观察地面驾驶飞船。长征2F运载火箭主要技术指标:火箭的可靠性为0.97,安全性为0.997:0.97的可靠性就是说100次发射里,只有3次火箭可能出现问题;0.997的安全性是指火箭出现1000次问题里,可能有3次会危及航天员的生命安全。这是载人火箭的特性。一般的商用火箭可靠性为0.91到0.93,没有安全性要求。 火箭起飞重量为479吨:火箭加上飞船重量约44吨,其它的都是液体推进剂。因此,火箭的90%都是液体,比人体含水量还大。水通常占人体的60%到70%。 飞船重量为8吨多,占船箭组合体起飞重量的六十二分之一:要把一公斤的东西送入轨道,就得消耗62公斤的火箭。神舟六号飞船比神舟五号在重量上有所增加,因此发射神六的火箭也重了不少。 火箭芯级直径为3.35米:古罗马人使用两匹马拉的车,车轮在石板路上磨出两道沟。由于车轮宽窄不一样,路上留下了不同宽窄的沟。后来他们想把轮距统一起来,就把两匹并排的马屁股当成标准,即1.435米,后来英国人修铁路也把铁轨轨距定为1.435米,并被各国沿用。按照这个轨距修建的铁路,能够运输的货物最宽为3.72米,去掉车厢外壳,只剩下3.35米。因此,用标准铁路进行运输的火箭最大直径只能达到3.35米。 火箭入轨点速度为每秒7.5公里:这个速度是音速的22倍。我们通常说的“十里长街”,是指北京建国门至复兴门的距离,长6.7公里。每秒7.5公里的速度,相当于1秒钟内从长安街东头跑到西头。 火箭轨道近地200公里,远地350公里:地球半径6400公里,火箭轨道与地球的距离,仅为地球半径的几十分之一。如果站在地球外面看,飞船就像贴着地面在飞行。

结直肠癌微卫星不稳定检测论文

有必要考虑化疗,这是控制肿瘤进一步发展的主要治疗方法,平时要通过生活调理,提高身体的抗病能力,预防并发症。微卫星不稳定性检测的意义:1、判断预后:目前大量证据表明,错配修复基因缺失/高度微卫星不稳定性是Ⅰ期结直肠癌患者预后良好的一个标志物。2指导治疗:一项回顾性研究结果显示,高度微卫星不稳定患者并不能从5-FU的辅助化疗中获益。如果考虑氟尿嘧啶类单药治疗推荐行MMR检测。3、帮助筛选Lynch综合征:Lynch综合征,既往亦称遗传性非息肉性结肠癌,是一种常染色体显性遗传病。由于MMR基因发生胚系突变所致,约占所有结直肠癌的3-5%。总之,高度微卫星不稳定性检测对于结直肠癌患者的预后判断和治疗指导具有重要意义。

微卫星稳定分为3中MSI-H、MSS和MSI-L。

从手术疗效上看MSI-H最好,MSS次之,MSI-L最差。

微卫星是遍布于人类基因组中的短串du联重复序列,微卫星不稳定zhi性(MSI)是指DNA甲基化或者基因突变致错配修复基因缺失,从而导致微卫星重复序列插入或缺失,继而长度改变,与肿瘤的发生密切相关。

MSI检测结直肠癌分子分型的基础,可用于结直肠癌的预后和化疗获益预测,还可以诊断Lynch综合征。

扩展资料:

微卫星不稳定性检测的意义:

1、判断预后:目前大量证据表明,错配修复基因缺失/高度微卫星不稳定性是Ⅰ期结直肠癌患者预后良好的一个标志物。

2、指导治疗:一项回顾性研究结果显示,高度微卫星不稳定患者并不能从5-FU的辅助化疗中获益。如果考虑氟尿嘧啶类单药治疗推荐行MMR检测。

3、Lynch综合征,既往亦称遗传性非息肉性结肠癌,是一种常染色体显性遗传病。由于MMR基因发生胚系突变所致,约占所有结直肠癌的3-5%。总之,高度微卫星不稳定性检测对于结直肠癌患者的预后判断和治疗指导具有重要意义。

参考资料来源:百度百科-微卫星

微卫星不稳定与结直肠癌发病有关,是引起遗传性非息肉病性结直肠癌(HNPCC)原因。与MSS患者相比,MSI-H患者死亡风险(Hazard Ratio, HR)为(95%CI, ),降低高达35%。

近年来微卫星不稳定性与肿瘤发生发展的关系成为肿瘤标志物研究、肿瘤的特性及其预后的研究热点,本文将对目前微卫星不稳定性的药物研究进展进行简单总结。

微卫星不稳定性与错配修复缺陷

微卫星(microsatellite)又称简单重复序列,是存在于基因组中的一些小片段核苷酸的重复序列,重复单位一般由1 6个核苷酸组成,15-65个这些序列在基因组上重复分布就构成了一段微卫星微卫星序列(如下图所示)。人类基因组约存在55000 100000组微卫星序列,它们广泛分布在基因组的各个角落,但在染色质末端的部分出现频率较高。微卫星的存在具有广泛性,原核、真核细胞的基因组中都有微卫星的存在。目前研究已经鉴定并确认至少2000个以上的人类基因组多态性微卫星标记,其中很大一部分已经被应用于遗传连锁研究。

[图片上传失败...(image-1e6ee3-1639915746449)]

微卫星序列具有高度保守性和稳定遗传性,属非转录和组成型基因,根据以上特点可将微卫星归结为一类呈高度多态的遗传标志,应用于个体鉴定、人类基因分析等方面。实验研究证明这些序列可以影响某些细胞基因的表达,对基因组起着直接或间接的调节作用,它们定位、连接于多个重要的基因位置,这些位置不仅与人类疾病相关的标记,而且直接与病因学相关。

微卫星不稳定性 (microsatellite instability, MSI ),即由于复制错误导致微卫星区域出现碱基对的插入或丢失的现象,MSI最先在结直肠癌中被发现并被认为是遗传性非息肉病性结直肠癌 (hereditary non-polyposis colorectal cancer,HNPCC,又称Lynch综合征)的特征,此后又发现于多种散发性肿瘤中(如胃癌、肺癌、子宫内膜癌)。

目前认为微卫星不稳定性的原因主要有以下三种:

1点突变

点突变造成MSI的机制很好理解。某些肿瘤由于DNA损伤修复功能遭到破坏,基因组不稳定性增加,反应在微卫星序列上的结果就是MSI。

2 滑链错配(slipped-strand mispairing)

一般认为DNA复制过程中的滑链错配(slipped-strand mispairing)是导致重复序列多态性的主要机制。复制滑动是在DNA合成过程中,一条单链DNA可以发生一过性脱位,生成一个中间性的结构后,再与另一条DNA单链错配,形成链滑动,继续DNA的复制或修复。滑动错配可以造成缺失、插入或碱基替换:

[图片上传失败...(image-5718e3-1639915746449)]

3 错配修复缺陷(MMR deficient,dMMR)

微卫星序列是DNA复制过程中最容易发生错配的序列,需要错配修复(mismatch repair,MMR)相关蛋白进行修复。MMR是一种高度保守的细胞过程,在DNA复制过程中起着重要的作用。MMR主要负责在DNA复制后对碱基进行修复,另外也可以修复一些小的核苷酸插入或缺失。执行MMR功能的关键基因包括MutL同源物1(Mult homolog 1,MLH1)、MutS同源物2 (Mult homolog 2,MSH2)、MSH6和减数分裂后分离增加2(postmeiotic segregation increased 2,PMS2)等。MMR蛋白在DNA复制、遗传物质重组和化学或物理损伤过程中以异二聚体复合物的形式存在,这些复合物包括MutSα(MSH2蛋白与MSH6蛋白组合)、MutLβ (MLH1蛋白与PMS1蛋白组合)、MutSβ(MSH2蛋白与MSH3蛋白组合)和MutLα (MLH1蛋白与PMS2蛋白组合)。在DNA复制发生错配后,首先MutSα识别并结合DNA链,招募MutLα,经构象改变后,从错误位点释放,随后招募核酸外切酶-1切除错配区域,复制因子A稳定单链DNA,由DNA聚合酶Polδ和增殖细胞核抗原形成的复合物填补空缺,最后由DNA连接酶修复缺口。有研究证实,MMR使DNA复制的准确性提高了100~1000倍。若MMR基因或蛋白功能缺陷,DNA复制错误得不到修正,错误的逐渐积累加剧基因的变异,进而产生dMMR表型。

根据MSI水平的高低,可将MSI分为三种类型:低微卫星不稳定(low microsatellite instability,MSI-L)、高微卫星不稳定(high microsatellite instability,MSI-H)以及微卫星稳定(microsatellite stability,MSS)dMMR是高水平微卫星不稳定的必要条件,在临床实践中,基本可以将dMMR等同于MSI-H。

MSI与疾病

MSI是许多疾病的特征,其中绝大多数为肿瘤,在非肿瘤疾病中以Lynch syndrome林奇综合征最为著名。

林奇综合征是一种由错配修复(MMR)基因突变导致,易患结直肠癌和其他恶性肿瘤的常染色体显性遗传病。包括已经患有肿瘤和尚未发生肿瘤的人。是最常见的一种遗传性结直肠癌综合征,过去多称为遗传性非息肉病性结直肠癌(hereditary non-polyposis colorectal cancer,HNPCC),以强调其遗传性和有别于家族性腺瘤病。由于HNPCC这个命名强调的是这类患者易患结直肠癌,而忽略了其肠外肿瘤的高发率,现许多学者和机构提倡重新命名为“林奇综合征”更合适。

1895年,美国病理学家Warthin发现他的女裁缝家庭的许多成员死于肠道或女性生殖器官的肿瘤。根据其家族史,Warthin于1913年发文将该家系称为“癌易感家族”。1966至1967年Creighton大学医学院的Henry Lynch先后报道了8个遗传性癌家系的发病情况,并总结出其临床特征:恶性肿瘤部位分布广泛,多原发癌多见,结肠癌和子宫内膜癌发生率明显高于普通人群,由于当时对于家族性腺瘤息肉病(familial adenomatosis polyposis,FAP)的认识己经非常清楚,Lynch认为这些家族不同于已报道的FAP及Gardner综合征,其大肠癌不是由息肉发展而来。Lynch将这种不同于FAP的遗传性癌家族称为“癌家族综合征”,1984年Boland将之命名为林奇(Lynch)综合征。后续研究者逐渐认识到MMR家族蛋白功能异常在林奇综合征发生中的作用:大多数林奇综合征家系(85% 90%)检测到的是MLH1和MSH2突变,剩余的10% 15%的家族存在MSH6的突变,少数存在PMS2的突变。研究证明,林奇综合征和部分散发性大肠癌的发生与癌基因激活和抑癌基因失活关系不大,而是由于错配修复基因突变引起MSI所致。目前MSI/dMMR检测已经成为国际上筛选林奇综合征患者的重要诊断指标。

除了林奇综合征以外,某些肿瘤中也存在着较高的MSI。肿瘤的发生是一个多基因参与的生物学过程,目前已发现,人类多个部位的肿瘤与错配修复缺陷有关。如下图所示:

此处需要注意,虽然广泛的基因突变是几乎所有肿瘤的共同特征,但高水平的MSI并非在所有的肿瘤中都可以观察到。研究显示,在结直肠癌(COAD)、子宫内膜肿瘤(UCEC)等肿瘤中MSI较高(后文中也可以看到,这些肿瘤中MSI的水平可以指导免疫治疗用药):

[图片上传失败...(image-474487-1639915746449)]

MSI 检测的临床意义

目前,有关MSI检测的临床意义有如下观点:

一、MSI与Lynch综合征筛查 。如上文所述,MSI是Lynch综合征的特征现象,约90%以上 Lynch综合征表现出MSI-H,目前MSI检测已经成为林奇综合征筛查的标准方案。

二、MSI与结直肠癌的预后 。临床研究证实,MSI与结直肠癌的预后有着密切的关系。 MSI-H 结直肠癌患者相比 MSS 患者具有显著的生存优势,临床表现较差,但预后更好。研究证 实,针对Ⅱ/Ⅲ期结直肠癌患者,MSI-H 患者的总生存期及无病生存期明显延长。美国国家综合癌症网络(NCCN)发布的结直肠癌指南,建议所有有结直肠癌史的病人都应进行 MSI 检测。

三、MSI与指导用药 。研究证实,MSI-H的结直肠癌Ⅱ期患者不能在氟尿嘧啶(5-FU)治 疗中获益。但dMMR会导致动态的超突变状态,从而导致肿瘤细胞新生抗原的持续产生,使其受到免疫监视。研究发现,与pMMR(proficient MMR)相比,dMMR的CRC具有较高的突变量,并对ICIs(免疫检查点抑制剂)治疗具有更高的客观反应率,ICIs单药治疗的反应率在dMMR CRC中为30%~50%。美国FDA先前已经批准PD-1免疫治疗单抗Pembrolizumab、Ipilimumab和Nivolumab用于具有错配修复缺陷dMMR/MSI-H 表型的转移性结直肠癌(mCRC)的末线治疗。除了mCRC 的治疗外,2017年5月,美国FDA批准了PD-1抗体 Pembrolizumab用于治疗成人和儿童具有dMMR/MSI-H 表型的没有其他治疗选择的,不可切除或转移性实体瘤患者。 然而,FDA此次批准未能说明免疫治疗的最佳治疗顺序、最佳的治疗持续时间,以及在Keytruda中是否可以添加其他药物等问题,因此,可将此次批准视为ICIs治疗MSI-H/dMMR肿瘤的一次探索性尝试。2019年,Keytruda又获批治疗MSI-H/dMMR的子宫内膜瘤。除了Keytruda,Y药和O药也在MSI-H/dMMR肿瘤的治疗中占有一席之地:

超星毕业论文检测

一、在学校图书馆查重

学校一般合作或自行开发的论文查重系统,很多学校与知网论文查重系统合作,通常为毕业生提供数量有限的免费论文查重。因此,大学生可以在学校图书馆登录校园网,找到查重入口,自行提交毕业论文,检测重复率。

二、在网上找查重系统

除了知网的论文查重系统,网上还有很多种类的论文查重系统。比如维普和万方,还有paperfree和papertime等论文查重系统,可以通过参与网站活动获得免费查重字数。你可以选择一个适合你论文的定期查重系统来提交你的论文进行测试。

三、在手机上查重

除了登录互联网在电脑上找到查重系统,大家还可以使用手机检测论文的重复率。很多论文查重系统都有微信公众号或者小程序,可以通过公众号和小程序提交论文进行查重。

对于即将进入毕业季节的同学来说,论文查重是非常重要的一环,顺利毕业的前提是毕业论文必须经过学校查重,最大的障碍是论文查重,担心查重结果,但事实上,很多同学都是第一次接触论文查重的,对这种查重的工具很陌生。那么,为什么要进行毕业论文查重呢?cnkitime高校学术不端检测系统支持专本、硕博、职称免费检测,采用动态指纹检测技术,依靠大数据技术深度挖掘,24小时自助检测直连官方,论文安全不泄露不收录。

目前,国内学术界对学术诚信问题的讨论较多,学术诚信也逐渐成为世界关注的焦点。许多刚毕业的大学生的毕业论文全是抄袭别人的论文,抄袭别人的学术成果,通过复制粘贴来拼凑,反映出学术道德的缺失和不良的社会风气。因此,论文查重的初衷就是提醒即将进入学术圈的同学:抵制抄袭,踏实学习。毕业论文查重就是检测毕业论文是否有学术不端行为。虽然现在的论文查重系统还不够完善,但在一定程度上对抵制论文抄袭起到了一定作用,有助于提高当代大学生的诚信意识,在学术界起到了重要作用。

这份论文检测报告的原则是什么?

此后,市场上的查重系统层出不穷,而绝大多数大学都认可了权威查重系统,权威查重系统已经成为90%以上大学指定使用的查重系统。权威查重的基础道理是接纳一种基于数字指纹的多阶段地检测要领,对指定文档进行数字指纹识别,并与资源库中的相关文档进行指纹比对,然后系统将结果以报告的形式通知用户,用户可自行选择报告的形式和类型。

论文可以在哪里查重: 1、可以去中国知网、维普、万方这三个文献资料专业网站上去查找。毕业论文的文献资料,你可以去中国知网、维普、万方这三个文献资料专业网站上去下载,但是这三个网站是付费的,如果你在学校内下应该是免费的,一般学校都会购买这几个网站的文献,在校内网络下是免费的。当然,网上资料也不会完全,还得去图书馆找些东西。 2、可以在万维、知网上进行论文查重。虽然市面上出现了很多第三方查重机构,但在选择的时候首先一定要注意他们的安全机制,即是否能够保障你的论文安全,不被泄露;其次就是看他们的查重算法是否科学合理,数据库是否涵盖广、是否及时更新,因为只有算法科学,数据库范围广且及时更新,它的查重结果才会更准确。

免费的论文查重平台

第一个 超星尔雅,5次机会

第二个 360查重平台1次机会

第三个百度学术查重2次

第四个 writepass 1次

这个时候我就不知道改啥了,而且也要定稿了,就用知网查了,9%,免费的平台也就是知道哪里需要改,终稿还是要用知网查一下

给后来的学弟学妹们一点建议吧,本人刚经历过查重,用了维普,笔杆网,学信网,paperyy,各种免费网站以及有免费机会的付费网站,所有的网站都不如知网,知网虽然有两次机会,但是这个两次机会也不是对个人开放的,个人建议,在最后提交的时候,淘宝上买一次知网查重,知网里有一个论文库叫大学生联合论文对比库,这个是别的任何网站都没有的,这个库里边是什么呢,是你的学长学姐们写出来的论文,只要你的题目是之前有人写过的,或者写给类似的,知网查出来的重复率就会高很多,我同学在维普上查重3%,知网直接50%多,因为他参考了学长的论文,所以别的不多说了,学弟学妹们参考一下

论文查重

相关百科

热门百科

首页
发表服务