行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);孚能科技(688567);亿纬锂能(300014);鹏辉能源(300438);欣旺达(300207)等
本文核心数据:锂电池板块上市公司研发费用;锂电池相关论文发表数量
全文统计口径说明:1)论文发表数量统计以“lithium battery”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。
锂电池技术概况
1、技术原理及类型
(1)锂电池技术原理
锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
(2)锂电池的分类
按照电解质材料、电池外形、外包材料、正极材料、应用领域等不同分类方式,可将锂电池分为以下几类:
2、技术全景图:四大细分技术领域
从锂电池构成来看,锂电池技术主要包括正极材料、负极材料、电解质和隔膜四个主要细分技术领域。其中,正极材料主要包括磷酸铁锂、三元正极、锰酸锂等;负极材料主要包括碳系材料和非碳系材料;电解质主要包括液态电解质、固液复合电解质和固态电解质;隔膜主要包括干法隔膜和湿法隔膜。
锂电池技术发展历程:正负极材料演变拉动技术发展
从20世纪70年代第一个锂电池出现,到如今五十余年的岁月中,锂离子电池不断发展,负极材料从锂金属发展到碳材料,再试图回到锂金属;正极材料也不断丰富,陆续推出钴酸锂、锰酸锂、磷酸铁锂、三元材料等。
锂电池技术政策背景:政策加持技术水平提升
近些年来,我国提出了一系列锂离子电池技术发展相关政策,加速了锂离子电池产业链的发展,同时对锂电池的安全性、技术体系、回收体系做出了规范,使得锂电池技术水平稳步提升。
锂电池技术发展现状
1、锂电池技术科研投入现状
(1)国家重点研发计划项目
据已公开的国家重点研发计划项目,2018-2021年我国锂电池技术相关国家重点研发计划项目共计18项。国家重点研发计划项目的资金来源为中央财政经费,一个项目的财政经费在2亿元以上。
(2)A股上市企业研发费用
锂电池行业经过多年发展,产品相对成熟,但行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国锂电池板块上市公司研发总费用逐年增长,2022年第一季度,锂电池板块上市公司研发总费用约亿元。
2、锂电池技术科研创新成果
(1)论文发表数量
从锂电池相关论文发表数量来看,2010年至今我国锂电池相关论文发表数量呈现逐年递增的趋势,可见锂电池科研热度持续走高。截至2022年8月,我国已有69366篇锂电池相关论文发表。
注:统计时间截至2022年8月。
(2)技术创新热点
通过创新词云可以了解锂电池技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,正极材料、负极材料、电解质、集流体等关键词涉及的专利数量较多,说明锂电池领域近期的研发和创新重点集中于正负极材料、电解质等领域。
(3)专利聚焦领域
从锂电池专利聚焦的领域看,目前锂电池专利聚焦领域较明显,其主要聚焦于锂电池、锂离子电池、正极材料、负极材料、电解液等。
主要锂电池技术对比分析
根据分析磷酸铁锂、三元锂电池的技术特性,可以看出磷酸铁锂电池在安全性、经济性、原材料丰富度和循环寿命方面优势明显,而三元锂电池在能量密度、低温性能和充电效率方面优势明显。因此,磷酸铁锂电池技术更适合用于中短距离用车(中低端车型)、电动自行车、储能等场景;三元锂电池技术更适用于长距离用车(高端车型)、消费电子、医疗等场景。
锂电池技术发展痛点及突破
1、锂电池技术发展痛点
(1)缺乏高能量密度的正负极材料产业化应用
尽管锂离子电池技术和市场快速发展使得电池能量密度已有明显提升,然而缺乏可行的未来正极材料来继续提高锂离子电池的能量密度,给锂离子电池产业持续发展带来了重大挑战。
(2)锂离子电池安全问题亟待解决
另一方面,锂离子电池安全问题也是锂离子电池技术发展的痛点之一。锂离子电池安全问题的根源主要是电池的热失控。主要是由于锂离子电池内部具有很强的燃爆条件,其内部的易燃性材料如低熔点可燃有机脂类化合物、石墨负极材料都会成为相应的“燃料”,在充放电以及运行过程中不当的热管理将成为锂电池安全事故的导火索,最终引发燃爆事故。
2、锂电池技术发展突破
(1)锂电池结构创新设计
锂电池电芯集成方式的革新是锂电池的重要结构创新,例如CTP(Cell To Pack)即跳过标准化模组环节,直接将电芯集成在电池包上,提高能量密度。
(2)固态电池技术
目前,锂离子电池面临着安全性差的问题,固态电池可在安全性、能量密度、温度范围等方面突破锂离子电池的局限。
锂电池技术发展方向及趋势:短期提高电池能量密度、长期技术路线多元化
短期内,提高锂电池能量密度主要通过对现有材料体系的迭代升级和电池结构革新来实现。其中,锂电池材料体系的迭代升级包括正负极材料、电解液和隔膜的迭代升级;电池结构革新又包括电芯、模组、封装方式等的结构改进和精简。
从长期来看,由于磷酸铁锂电池能量密度上限较低,并且为了应对不同应用场景下的不同需求,锂电池技术路线将朝多元化方向发展。除了酸铁锂电池和三元锂电池之外,固态电池、磷酸锰铁锂电池、富锂锰基电池等新型锂电池技术路线的发展趋势向好。
「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。
以上数据参考前瞻产业研究院《锂电池行业技术趋势前瞻及投资价值战略咨询报告》。
锂电池行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);亿纬锂能(300014)等。
本文核心数据:全球锂电池细分市场结构、全球锂电池区域分布、全球锂电池企业市场份额、全球锂电池市场规模
全球锂电池细分市场:动力与储能锂电池的市场份额有望提升
锂电池的细分市场主要为动力锂电池、储能锂电池和消费锂电池,其中,动力电池的下游应用领域主要为新能源汽车,储能电池的下游应用领域主要为电力系统,消费电池的下游应用领域主要为手机等消费电子。
从全球锂电池产量来看,动力锂电池占据了主要的产量份额,达到了,其次是消费锂电池,锂电池产量市场份额为,储能电池的市场份额最小,为7%。随着全球各国“碳达峰”战略的提出,全球各企业纷纷部署动力电池与储能电池产线,新能源汽车与储能市场的蓬勃发展有望推动动力锂电池和储能锂电池的市场份额进一步提升。
全球锂电池区域分布:中国占比达77%,欧洲扩张加速
根据S&P Global Market Intelligence 公布的数据显示,从产能来看,2020 年,中国在主导了全球锂离子制造市场,中国锂离子电池产能占世界产能的约 77%,其次是美国,占比约为9%。
虽然,S&P Global Market Intelligence预计,中国将在 2025 年继续成为锂离子电池制造的领先国家,但随着欧洲对制造设施的计划投资,其产能将大幅扩大,2025年,欧洲有望在成为世界第二大锂离子电池生产国,约占全球产能的25%。
全球锂电池企业竞争格局:LG化学、松下、宁德时代占据70%的市场份额
从企业产量来看,2020年1月至8月, LG化学成为全球领先的锂离子电池制造商,市场份额为;其次是宁德时代,以左右的市场份额位居第二,松下以左右的市场份额紧随其后。
在排名前五的全球锂离子电池制造商中,中国企业达到两家,分别是宁德时代和比亚迪,市场排名为第二和第四,合计市场份额达到32%。
全球锂电池供给情况:电池工厂数量快速增长
2020年,全球处于不同规划建设阶段的锂离子工厂共有181家。在新冠疫情大流行的背景下,2020年全球锂离子工厂的扩建与上一年相比依然增加了50%以上。其中,2020年在建和规划的181家工厂中,有136家位于中国,其中大部分是世界上最大的锂离子工厂。
全球锂电池需求情况:2025年市场规模将翻番
根据Research and Markets调研数据显示,2020年全球锂离子电池市场价值约为405亿美元,预计2026年市场将以的GACR增长,达到近920亿美元的规模,超过2020年市场规模的一倍。
以上数据参考前瞻产业研究院《中国锂电池行业市场需求预测与投资战略规划分析报告》
由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行。
但是由于锂电池的很多优点,锂电池被广泛的应用在电子仪表、数码和家电产品上。但是,锂电池多数是二次电池,也有一次性电池。
少数的二次电池的寿命和安全性比较差。 后来,日本发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。
同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。
我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。
Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。 所以Li-ion Batteries又叫摇椅式电池。
。
锂电池
锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生。
由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。
随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池随之进入了大规模的实用阶段。
最早得以应用于心脏起搏器中。由于锂电池的自放电率极低,放电电压平缓。使得起搏器植入人体长期使用成为可能。
锂电池一般有高于伏的标称电压,更适合作集成电路电源。二氧化锰电池,就广泛用于计算机,计算器,照相机、手表中。
为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂电池的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。
1992年Sony成功开发锂离子电池。它的实用化,使人们的移动电话、笔记本电脑等便携式电子设备重量和体积大大减小。使用时间大大延长。由于锂离子电池中不含有重金属铬,与镍铬电池相比,大大减少了对环境的污染。
发展进程 1、1970年代埃克森的M。
S。Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。
2、1980年,J。 Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3、1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R。 R。
Agarwal和J。R。
Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。
首个可用的锂离子石墨电极由贝尔实验室试制成功。 4、1983年M。
Thackeray、J。Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。
其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。 。
在古代,人类有可能已经不断地在研究和测试“电”这种东西了。
一个被认为有数千年历史的粘土瓶在1932年于伊拉克的巴格达附近被发现。它有一根插在铜制圆筒里的铁条-可能是用来储存静电用的,然而瓶子的秘密可能永远无法被揭晓。
不管制造这个粘土瓶的祖先是否知道有关静电的事情,但可以确定的是古希腊人绝对知道。他们晓得如果摩擦一块琥珀,就能吸引轻的物体。
亚里斯多德(Aristotle)也知道有磁石这种东西,它是一种具有强大磁力能吸引铁和金属的矿石。 1780年,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的 *** ,而只用一种金属器械去触动青蛙,却并无此种反就。
伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为“生物电”。伽伐尼于1791年将此实验结果写成论文,公布于学术界。
伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:伽伐尼的“生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。
结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。 1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。
于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流 *** 。
伏特用这种方法成功的制成了世界上第一个电池──“伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。
它成为早期电学实验,电报机的电力来源。 意大利物理学家伏特就多次重复了伽伐尼的实验。
作为物理学家,他的注意点主要集中在那两根金属上,而不在青蛙的神经上。对于伽伐尼发现的蛙腿抽搐的现象,他想这可能与电有关,但是他认为青蛙的肌肉和神经中是不存在电的,他推想电的流动可能是由两种不同的金属相互接触产生的,与金属是否接触活动的或死的动物无关。
实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的(甚至只要是湿和)硬纸、麻布、皮革或其它海绵状的东西(他认为这是使实验成功所必须的),并用金属线把两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。
1836年,英国的丹尼尔对“伏特电堆”进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌─铜电池,又称“丹尼尔电池”。
此后,又陆续有去极化效果更好的“本生电池”和“格罗夫电池”等问世。但是,这些电池都存在电压随使用时间延长而下降的问题。
1860年,法国的普朗泰发明出用铅做电极的电池。这种电池的独特之处是,当电池使用一段使电压下降时,可以给它通以反向电流,使电池电压回升。
因为这种电池能充电,可以反复使用,所以称它为“蓄电池”。 然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。
也是在1860年,法国的雷克兰士(GeeLeclanche)还发明了世界广受使用的电池(碳锌电池)的前身。它的负极是锌和汞的合金棒(锌-伏特原型电池的负极,经证明是作为负极材料的最佳金属之一),而它的正极是以一个多孔的杯子盛装着碾碎的二氧化锰和碳的混合物。
在此混合物中插有一根碳棒作为电流收集器。负极棒和正极杯都被浸在作为电解液的氯化铵溶液中。
此系统被称为“湿电池”。雷克兰士制造的电池虽然简陋但却便宜,所以一直到1880年才被改进的“干电池”取代。
负极被改进成锌罐(即电池的外壳),电解液变为糊状而非液体,基本上这就是现在我们所熟知的碳锌电池。 1887年,英国人赫勒森发明了最早的干电池。
干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。 1890年Thomas Edison 发明可充电的铁镍电池 1896年在美国批量生产干电池 1896年发明D型电池. 1899年Waldmar Jungner 发明镍镉电池. 1910年可充电的铁镍电池商业化生产 1911年我国建厂生产干电池和铅酸蓄电池(上海交通部电池厂) 1914年Thomas Edison 发明碱性电池. 1934年Schlecht and Akermann 发明镍镉电池烧结极板. 1947年Neumann 开发出密封镍镉电池. 1949年Lew Urry (Energizer) 开发出小型碱性电池. 1954年Gerald Pearson, Calvin Fuller and Daryl Chapin 开发出太阳能电池. 1956年Energizer.制造第一个9伏电池 1956年我国建设第一个镍镉电池工厂(风云器材厂(755厂)) 1960前后Union Carbide.商业化生产碱性电池,我国开始研究碱性电池(西安庆华厂等三 家合作研发) 1970前后出现免维护铅酸电池. 1970前后一次锂电池实用化. 1976年Philips Research的科学家发明镍氢电池. 1980前后开发出稳定的用于镍氢电池的合金. 1983年我国开。
锂离子电池 正极材料:可选的正极材料很多,目前主品多采用锂铁盐。
不同的正极材料对照: 发展进程 1 1970年代埃克森的M。S。
Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。 2。
1980年,J。 Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3 1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R。R。
Agarwal和J。R。
Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。 与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。
首个可用的锂离子石墨电极由贝尔实验室试制成功。 4 1983年M。
Thackeray、J。Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。
其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。 。
电池的诞生,基于人们对于获取持续而稳定的电流的需要。
不过,电池的发明,是来源于一次青蛙的解剖实验所产生的灵感,多少有些偶然。 1780年的一天,意大利解剖学家伽伐尼(Luigi Galvani)在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的 *** ,而如果只用一种金属器械去触动青蛙,就无此种反应。
伽伐尼认为,出现这种现像是因为动物躯体内部产生的一种电,他称之为“生物电”。 伽伐尼的发现引起了物理学家们的极大兴趣,他们竞相重复伽伐尼的实验,企图找到一种产生电流的方法。
而意大利物理学家伏特(Alessandro Volta)在多次实验后则认为:青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。
结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。1799年,伏特成功制成了世界上第一个电池“伏特电堆”。
这个“伏特电堆”实际上就是串联的电池组。 1836年,英国的丹尼尔对“伏特电堆”进行了改良,又陆续有效果更好的“本生电池”和“格罗夫电池”等问世。
然而在当时,无论哪种电池都需在两个金属板之间灌装液体,搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。干电池的诞生 干电池的鼻祖在19世纪中期诞生。
1860年,法国的雷克兰士(Gee Leclanche)发明了碳锌电池,这种电池更容易制造,且最初潮湿水性的电解液,逐渐被黏浊状类似糨糊的方式取代,于是装在容器内时,“干”性的电池出现了。 1887年,英国人赫勒森(Wilhelm Hellesen)发明了最早的干电池。
相对于液体电池而言,干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。 如今,干电池已经发展成为一个庞大的家族,种类达100多种。
常见的有普通锌-锰干电池、碱性锌-锰干电池、镁-锰干电池等。不过,最早发明的碳锌电池依然是现代干电池中产量最大的电池。
在干电池技术的不断发展过程中,新的问题又出现了。人们发现,干电池尽管使用方便、价格低廉,但用完即废,无法重新利用。
另外,由于以金属为原料容易造成原材料浪费,废弃电池还会造成环境污染。于是,能够经过多次充电放电循环,反复使用的蓄电池成为新的方向。
事实上,蓄电池的最早发明同样可以追溯到1860年。当年,法国人普朗泰(Gaston Plante)发明出用铅做电极的电池。
这种电池的独特之处是,当电池使用一段时间电压下降时,可以给它通以反向电流,使电池电压回升。因为这种电池能充电,并可反复使用,所以称它为“蓄电池”。
1890年,爱迪生发明可充电的铁镍电池,1910年可充电的铁镍电池商业化生产。如今,充电电池的种类越来越丰富,形式也越来越多样,从最早的铅蓄电池,铅晶蓄电池,到铁镍蓄电池以及银锌蓄电池,发展到铅酸蓄电池、太阳能电池以及锂电池等等。
与此同时,蓄电池的应用领域越来越广,电容越来越大,性能越来越稳定,充电越来越便捷。锂电池的产生 在电池这个领域,锂离子电池和燃料电池成为最令人瞩目的明星。
从上面的故事可以看出,整个电池的发展史也可以说是一个“试试各种金属能不能造电池”的历史。现在电池界最红的金属是“锂”。
锂是所有金属里最轻的,比水还轻,而且特别活泼,需要保存在石蜡里。实际上,当初爱迪生就曾经发明过锂电池,但是由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池长期没有得到应用。
现在,人们对电池“求贤若渴”,这些问题也就不是问题了。恰好锂电池具有能量重量比高、电压高、自放电小、可长时间存放等优点,所以它在近30年中取得了巨大发展。
我们用的计算机、计算器、照相机、手表中的电池都是锂电池。 锂电池组装完成后电池即有电压,不需充电。
这种电池也可以充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来,索尼公司发明了以炭材料为负极,以含锂的化合物做正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
锂离子电池的优势十分明显:工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长。锂离子电池通过锂离子在正负极之间跑来跑去来充电和放电。
这个领域最牛的技术是“层迭电池结构”,也就是把好多个电池做成很薄的层然后迭在一起,这样可以用很小的体积达到很高的效率。所以,锂离子电池被广泛应用于汽车、笔记本、手机等行业。
后来河南鸿宾电池公司对锂电池进行研发,引入了冷注塑工艺技术,产生了冷注塑电电池---鸿宾电池,也就出现了高容量商务锂离子电池。现在高容量商务电池已进入人们的视线,被更多的人所关注。
燃料电池的发展 除了锂离子电池,还有一种电池很有前途,就是“燃料电池”,它是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生。
1、1970年代埃克森的采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。
2、1980年,J. Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3、1982年伊利诺伊理工大学(the Illinois Institute of Technology)的和发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。
4、1983年、等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。
5、1989年,和发现采用聚合阴离子的正极将产生更高的电压。
6、1991年索尼公司发布首个商用锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。
7、1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸锂铁(LiFePO4),比传统的正极材料更具优越性,因此已成为当前主流的正极材料。
随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在逐步向其他产品应用领域发展。1998年,天津电源研究所开始商业化生产锂离子电池。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。锂离子电池已经成为了主流。
行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);孚能科技(688567);亿纬锂能(300014);鹏辉能源(300438);欣旺达(300207)等
本文核心数据:锂电池板块上市公司研发费用;锂电池相关论文发表数量
全文统计口径说明:1)论文发表数量统计以“lithium battery”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。
锂电池技术概况
1、技术原理及类型
(1)锂电池技术原理
锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
(2)锂电池的分类
按照电解质材料、电池外形、外包材料、正极材料、应用领域等不同分类方式,可将锂电池分为以下几类:
2、技术全景图:四大细分技术领域
从锂电池构成来看,锂电池技术主要包括正极材料、负极材料、电解质和隔膜四个主要细分技术领域。其中,正极材料主要包括磷酸铁锂、三元正极、锰酸锂等;负极材料主要包括碳系材料和非碳系材料;电解质主要包括液态电解质、固液复合电解质和固态电解质;隔膜主要包括干法隔膜和湿法隔膜。
锂电池技术发展历程:正负极材料演变拉动技术发展
从20世纪70年代第一个锂电池出现,到如今五十余年的岁月中,锂离子电池不断发展,负极材料从锂金属发展到碳材料,再试图回到锂金属;正极材料也不断丰富,陆续推出钴酸锂、锰酸锂、磷酸铁锂、三元材料等。
锂电池技术政策背景:政策加持技术水平提升
近些年来,我国提出了一系列锂离子电池技术发展相关政策,加速了锂离子电池产业链的发展,同时对锂电池的安全性、技术体系、回收体系做出了规范,使得锂电池技术水平稳步提升。
锂电池技术发展现状
1、锂电池技术科研投入现状
(1)国家重点研发计划项目
据已公开的国家重点研发计划项目,2018-2021年我国锂电池技术相关国家重点研发计划项目共计18项。国家重点研发计划项目的资金来源为中央财政经费,一个项目的财政经费在2亿元以上。
(2)A股上市企业研发费用
锂电池行业经过多年发展,产品相对成熟,但行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国锂电池板块上市公司研发总费用逐年增长,2022年第一季度,锂电池板块上市公司研发总费用约亿元。
2、锂电池技术科研创新成果
(1)论文发表数量
从锂电池相关论文发表数量来看,2010年至今我国锂电池相关论文发表数量呈现逐年递增的趋势,可见锂电池科研热度持续走高。截至2022年8月,我国已有69366篇锂电池相关论文发表。
注:统计时间截至2022年8月。
(2)技术创新热点
通过创新词云可以了解锂电池技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,正极材料、负极材料、电解质、集流体等关键词涉及的专利数量较多,说明锂电池领域近期的研发和创新重点集中于正负极材料、电解质等领域。
(3)专利聚焦领域
从锂电池专利聚焦的领域看,目前锂电池专利聚焦领域较明显,其主要聚焦于锂电池、锂离子电池、正极材料、负极材料、电解液等。
主要锂电池技术对比分析
根据分析磷酸铁锂、三元锂电池的技术特性,可以看出磷酸铁锂电池在安全性、经济性、原材料丰富度和循环寿命方面优势明显,而三元锂电池在能量密度、低温性能和充电效率方面优势明显。因此,磷酸铁锂电池技术更适合用于中短距离用车(中低端车型)、电动自行车、储能等场景;三元锂电池技术更适用于长距离用车(高端车型)、消费电子、医疗等场景。
锂电池技术发展痛点及突破
1、锂电池技术发展痛点
(1)缺乏高能量密度的正负极材料产业化应用
尽管锂离子电池技术和市场快速发展使得电池能量密度已有明显提升,然而缺乏可行的未来正极材料来继续提高锂离子电池的能量密度,给锂离子电池产业持续发展带来了重大挑战。
(2)锂离子电池安全问题亟待解决
另一方面,锂离子电池安全问题也是锂离子电池技术发展的痛点之一。锂离子电池安全问题的根源主要是电池的热失控。主要是由于锂离子电池内部具有很强的燃爆条件,其内部的易燃性材料如低熔点可燃有机脂类化合物、石墨负极材料都会成为相应的“燃料”,在充放电以及运行过程中不当的热管理将成为锂电池安全事故的导火索,最终引发燃爆事故。
2、锂电池技术发展突破
(1)锂电池结构创新设计
锂电池电芯集成方式的革新是锂电池的重要结构创新,例如CTP(Cell To Pack)即跳过标准化模组环节,直接将电芯集成在电池包上,提高能量密度。
(2)固态电池技术
目前,锂离子电池面临着安全性差的问题,固态电池可在安全性、能量密度、温度范围等方面突破锂离子电池的局限。
锂电池技术发展方向及趋势:短期提高电池能量密度、长期技术路线多元化
短期内,提高锂电池能量密度主要通过对现有材料体系的迭代升级和电池结构革新来实现。其中,锂电池材料体系的迭代升级包括正负极材料、电解液和隔膜的迭代升级;电池结构革新又包括电芯、模组、封装方式等的结构改进和精简。
从长期来看,由于磷酸铁锂电池能量密度上限较低,并且为了应对不同应用场景下的不同需求,锂电池技术路线将朝多元化方向发展。除了酸铁锂电池和三元锂电池之外,固态电池、磷酸锰铁锂电池、富锂锰基电池等新型锂电池技术路线的发展趋势向好。
「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。
以上数据参考前瞻产业研究院《锂电池行业技术趋势前瞻及投资价值战略咨询报告》。。
锂电池大致可分为两类:锂金属电池和锂离子电池。锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。可充电电池的第五代产品锂金属电池在1996年诞生,其安全性、比容量、自放电率和性能价格比均优于锂离子电池。锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。锂离子电池不含有金属态的锂,并且是可以充电的。手机和笔记本电脑使用的都是锂离子电池。
锂电池行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);亿纬锂能(300014)等。
本文核心数据:全球锂电池细分市场结构、全球锂电池区域分布、全球锂电池企业市场份额、全球锂电池市场规模
全球锂电池细分市场:动力与储能锂电池的市场份额有望提升
锂电池的细分市场主要为动力锂电池、储能锂电池和消费锂电池,其中,动力电池的下游应用领域主要为新能源汽车,储能电池的下游应用领域主要为电力系统,消费电池的下游应用领域主要为手机等消费电子。
从全球锂电池产量来看,动力锂电池占据了主要的产量份额,达到了,其次是消费锂电池,锂电池产量市场份额为,储能电池的市场份额最小,为7%。随着全球各国“碳达峰”战略的提出,全球各企业纷纷部署动力电池与储能电池产线,新能源汽车与储能市场的蓬勃发展有望推动动力锂电池和储能锂电池的市场份额进一步提升。
全球锂电池区域分布:中国占比达77%,欧洲扩张加速
根据S&P Global Market Intelligence 公布的数据显示,从产能来看,2020 年,中国在主导了全球锂离子制造市场,中国锂离子电池产能占世界产能的约 77%,其次是美国,占比约为9%。
虽然,S&P Global Market Intelligence预计,中国将在 2025 年继续成为锂离子电池制造的领先国家,但随着欧洲对制造设施的计划投资,其产能将大幅扩大,2025年,欧洲有望在成为世界第二大锂离子电池生产国,约占全球产能的25%。
全球锂电池企业竞争格局:LG化学、松下、宁德时代占据70%的市场份额
从企业产量来看,2020年1月至8月, LG化学成为全球领先的锂离子电池制造商,市场份额为;其次是宁德时代,以左右的市场份额位居第二,松下以左右的市场份额紧随其后。
在排名前五的全球锂离子电池制造商中,中国企业达到两家,分别是宁德时代和比亚迪,市场排名为第二和第四,合计市场份额达到32%。
全球锂电池供给情况:电池工厂数量快速增长
2020年,全球处于不同规划建设阶段的锂离子工厂共有181家。在新冠疫情大流行的背景下,2020年全球锂离子工厂的扩建与上一年相比依然增加了50%以上。其中,2020年在建和规划的181家工厂中,有136家位于中国,其中大部分是世界上最大的锂离子工厂。
全球锂电池需求情况:2025年市场规模将翻番
根据Research and Markets调研数据显示,2020年全球锂离子电池市场价值约为405亿美元,预计2026年市场将以的GACR增长,达到近920亿美元的规模,超过2020年市场规模的一倍。
以上数据参考前瞻产业研究院《中国锂电池行业市场需求预测与投资战略规划分析报告》
四个钠离子的反应,电压平台很多也是意料之中的事情。从电池管理(BMS)的角度,可以想象,一个充放电过程中电压不断变化的电池会有多难搞。这个材料的电压不是很高,平均电压不到2V的样子,所以总的能量密度不会特别高。另外为什么循环过程中容量会上升,怀疑是不是副反应。如果要真正用在电池里,那压实密度如何?面积比容量如何?当然,基础研究中无法实现面面俱到;但是要谈产业化,遇到的问题只会更多。发了高水平的文章,写个宣传稿、吹一下子实在无可厚非,内容也自然八股套路:先吹吹钠电多么有前景,再吹这个工作有多牛逼,最后就是前方问题重重、任重道远、前景无限这种话。不过“历史性突破”这个卫星放的未免过分了。最重要的是,这个宣传稿竟然能把玫瑰红酸钠说成“肌醇”,那就只能说某些所谓科技媒体的确缺乏科学素养。
研究下去不排出异军突起的可能性一一一一一一一一一一一一一个人
回收废锂电池,废正极片,电话
1,适合的负极材料是什么?做实验可以用钠金属或别的什么示范一下,但实际应用呢?作者也提到了,在没找到高效、不稀缺、低成本、易加工负极材料之前,实际应用还只是个希望。
2,适合的电解液/电解质是什么?作者依然使用了常用的钠离子、锂离子电池所用的电解液体系。从电化学数据来看,可能存在着电解液副反应,电池的循环稳定性和寿命都很差。是否是由于电解液还是其他原因,不详。
3,如此一个多相反应,先天就不利于电池材料。电池材料反应时结构变化越小越好,固溶体反应是第一选择(比如现在普遍采用的钴酸锂、三元等),结构变化不大的两相反应是第二选择(LFP有点另类,但有研究表明其实纳米LFP的“两相”反应其实仍是一种类固溶体反应)。多相反应是最不理想的选择。多相反应电压平台多,不稳定,材料结构变化大,多次循环后会更加恶化。因此,能够反应三四个锂离子的材料有的是,比如钒氧钒酸锂系列,但为什么没有广泛应用?就是因为存在着各种问题。
4,低电压。这又是一个致命的问题。假如电压低伏,那能量密度就减少倍(假设容量一致)。由于是羰基C-O体系,电压先天低。而钠离子体系中早有日本人Yamada利用硫酸铁/亚铁系统可以得到高达的电压。虽然那个体系的容量低一些,但能量密度也不比这个体系差太多。(这篇文章声称正极可以达到726wh/kg, 呵呵,就看怎么理解这个数字)
5,金属有机化合物密度低,这是一个致命的缺陷。密度低导致体积容量/能量密度低,电池体积就要变大。这对于更轻薄、更小巧的电池方向而言背道而驰。无论装在手机还是汽车里,电池体积变大都是不可接受的缺陷。这个钠离子电池的最大卖点是廉价。但因为其性能还有太多槽点,这个廉价所能带来的真正价值也要打个问号。锂资源其实不是一种极度稀缺的资源。目前的高价主要是市场因素和开发不够,还有地缘因素等。廉价高质量的盐湖大部分在南美,开发周期比较长;锂矿石路线成本较高,但技术的进步的空间还很大;更重要的是,锂是可以回收利用的一种材料,只是目前的技术、投入都没达到规模。相信未来这方面如果更好地整合,锂离子的优势还是远远大于钠离子。况且锂离子领域还有众多值得突破的领域,比如直接使用锂金属作为负极。如果这一点块得到突破,锂电池的性能会极大地提升一个台阶。锂硫等更便宜、高能的体系也会解锁。
是锂离子电池吧?锂电池的负极材料就是金属锂。 市面上的锂离子电池负极材料基本就是碳材料,各种碳。具体内容如下: 已研究开发的锂离子电池负极材料主要有:石墨、石焦油、碳纤维、热解炭、炭黑、玻璃炭等,其中石墨和石油最有应用价值。 石墨类碳材料的插锂特性是:①插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压;②插锂容量高,LiC6的理论容量为372mAh•g-1③与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。 石焦油类碳材料的插、脱锂的特性是:①起始插锂电位高,电位曲线抖斜。一般在以下开始插锂,整个插锂过程没有明显的电位平台出现;②插层化合物LixC6的组成中,x=左右,插锂容量与热处理温度和表面状态有关;③与溶剂相容性、循环性能好。碳负极材料的物理性能碳材料 天然石墨 人造石墨 石油焦炭 沥青焦炭 热解炭 乙炔墨热处理 2800 2500 2200 1900 1400 1200温度∕℃ 结晶度 ∕nm 晶格常数 ∕nm 密度 •cm-3 比表面积 •g-1 以上资料,希望对你有用
动力电池是电动汽车的关键技术之一.1881年特鲁夫(Gustave Trouve)制造出世界上第一辆电动三轮车时,使用的是铅酸电池.目前,仍有不少混合动力汽车和纯电动汽车采用新一代铅酸电池.近十多年来,锂离子动力电池在电动汽车生产中得到应用,越来越显示出其优越性.美国学者麦斯J.A.Mas通过大量实验提出电池充电可接受的电流定理:1)对于任何给定的放电电流,电池的充电接受电流与放出容量的平方根成正比;2)对于任何放电深度,一个电池的充电接受比与放电电流的对数成正比,可以通过提高放电电流来增大充电接受比;3)一个电池经几种放电率放电,其接受电流是各放电率接受电流之总和.也就是说,可以通过放电来提高蓄电池的充电可接受电流.在蓄电池充电接受能力下降时,可以在充电的过程中加入放电来提高接受能力.汽车动力电池的性能和寿命与很多因素有关,除了其自身的参数,如电池的极板质量、电解质的浓度等外;还有外部因素,如电池的充放电参数,包括充电方式、充电结束电压、充放电的电流、放电深度等等.这给电池管理系统BMS估计蓄电池的实际容量和SOC带来很多困难,需要考虑到很多的变量.WG6120HD~合动力电动汽车的电池管理系统是建立在SOC数值的管理上.SOC(state ofcharge)指的是电池内部参加反应的电荷参数的变化状态,反映蓄电池的剩余容量状况.这在国内外都已经形成统一认识.
对于一篇完整的毕业论文来说,参考文献是不可或缺的,是其中的必备要素。对于高质量的论文更是如此。引用参考文献是为了更好的论证文章的论点,也是提高文章真实性和科学性的必要手段。在这之前我们要知道怎么筛选高质量参考文献,只有这样才能更好的完成参考文献部分,起到该有的作用。下面笔者来具体讲解,大家继续往下看。毕业论文如何筛选高质量参考文献怎样检索到与你预期学术产出最为相关的,同时又是高质量的专业文献呢?这就是现在这篇文章要回答的问题。先给出几个电子文献数据库和学术资源网站名称供大家使用。中国社会科学网子网站集群国家哲学社会科学学术期刊数据库中国知网万方数据知识服务平台人大复印报刊资料全文数据库中国国家图书馆·中国国家数字图书馆现在,让我们具体看看怎样检索到与你预期学术产出最为相关的高质量学术论文(我会不断强调检索和阅读学术论文的重要性。关于这个问题,我会在后面的推文中详细介绍)。以中国知网为例:通过对于“主题/篇名/关键词”、“并含/或含/不含”、“核心期刊/CSSCI”、起止时间等多重检索条件的组合限定,一般能够检索到与你预期学术产出最为相关的,同时也是拥有高质量保证的学术论文。之后,善用“主题排序”“发表时间”“被引”等不同排序方式,找到对你最具价值的论文。为了更好地展示这个过程,假定我们的预期学术产出是一篇含有“意识形态”和“国家”这两个关键词的学术论文,让我们实操一下——建议点击视频,以全屏方式观赏。怎么样,看到了吧?与你预期学术产出最为相关的高质量专业文献,基本就被找到了。然后,你还可以去“人大复印报刊资料全文数据库”进行查缺补漏,一些发表在非核心期刊和非CSSCI的高质量论文,也将被我们找到,为我所用。需要提示的是,上述电子文献数据库和学术资源网站之中,中国社会科学网子网站集群还在建设之中,它的目标定位是要打造全球最大的学术门户网站的,发展前景不容小觑;而在这些数据库里,貌似只有国家哲学社会科学学术期刊数据库是提供免费下载服务的,一个账号一天之内可以免费下载50篇文献。其他的,很遗憾,都是收费的。我们以为2016年是互联网知识付费元年,其实,这个时代早已来临。如果你所在的高校或科研院所购买了这些数据库,那自然没有任何问题了,如果单位没有购买,你又确有需要,那么,只能付费。文章的最后,让我尝试总结一下自己的观点:1.高质量学术论文的阅读对于学术产出至关重要,这是时间精力投入最小化,学术产出最大化的捷径。2.在你用着最为顺手的数据库里,通过期刊——高级检索——篇名/关键词+CSSCI+被引……等多重检索条件的限定组合,容易找到与你预期学术产出最为相关的高质量学术论文。3.而在你检索到的学术论文的参考文献中,出现频次最高的那些文献,就是你进行专业文献延展阅读的最好材料。毕业论文如何快速生成参考文献在百度里面搜索“中国知网”,点击“中国知网”官网进入“中国知网”主页。点击“中国知网”搜索栏前面的向下箭头,会出现一个下拉框,可以选择全文、篇名、作者、主题、单位等。一般我们知道论文的篇名和作者,就可随意选择“全文”、“篇名”、“作者”一个即可。这里我们以“马克思主义”为例,在“中国知网”搜索栏输入“马克思主义”,点击搜索,可以看到出来许多文献。假如,前面几个论文正是我们需要的,那么用鼠标点击论文前面的小正方形,点击后会出现打勾状态,然后点击“导出参考文献”(橙色字体)。
先说现在锂离子电池的应用和优点,然后说你这个项目用的什么正极材料,和其他锂离子电池相比有什么优势。比如现在类似的锂离子电池阻抗是多少我们用新的正极材料阻抗可以降低到多少
废旧电池的回收利用论文2010年6月20日摘要:我国作为世界上最大的电池生产国和消费国,2001年生产电池180亿只,主要有干电池、碱性锌锰电池、锌汞电池、镍镉电池、氧化银电池、氢镍电池、锂离子电池等,占世界总产量的30%。2001年消耗电池80亿只,折合约40万吨。可想而知,其污染程度是多么巨大。这么多电池排放到环境中,直接影响环境而且间接通过各种途径对人身体产生有害影响。所以,废旧电池的回收势在必行。主题词:概况,回收,调查一、电池概述随着科学技术、社会经济的发展以及人们物质生活水平的不断提高,人们对能源的需求量越来越大,因此电池的使用量越来越大,相应世界电池的产量也正以每年20%的速度增长。据统计,2001年我国各类电池的生产总量达180亿只,2003年就猛增到262亿只,其中除少量出口发达国家的为高档无汞电池以外,大部分为低档有汞电池。电池的品种结构也已发展到目前的14个系列250多个品种,形成了较为完整的电池工业体系。但与此同时,大量的废旧电池也正通过各种渠道流入到环境中,对环境造成严重的污染,也必然通过直接或间接的渠道影响到人们的健康。在国家环境保护“十五”计划中,特别提到要建立废旧电池回收体系。2003年五部委发布了《废旧电池污染防治技术政策》。都表明了我国对废旧电池问题进行治理的迫切性。电池的品种繁多,按其用途可分为民用电池和工业电池两大类。目前工业电池以铅蓄电池为主,其主要污染物为铅和硫酸。民用电池按其是否可以充电又可分为一次性电池和可充电电池,一次性电池主要包括锌锰电池、锌汞电池、锌银电池及锂电池等,其中最主要的一次性电池为锌锰电池,2003年我国锌锰电池产量高大246亿只,占电池总产量的90%以上,其废弃物中除了汞以外,还含有锌、锰、铜等重金属。可充电电池使用较多的有镍镉电池、氢镍电池、锂电池等,镍镉电池中的镉是环保部门严格控制的重金属元素,锂电池中的有机电解质,镍镉电池、氢镍电池中的碱和制造电池的辅助材料铜等重金属,都会对环境造成严重的污染。(一)国内外电池的发展动态联想集团和中科院物理研究所强强联合,正在共同组建苏州星恒电源有限公司,该公司采用了中科院物理所的锂离子动力电源技术成果,在苏州组建锂离子动力电池生产基地。此外,中南大学在湖南晶鑫科技股份有限公司的资助下已将其研究出的锂离子动力电池中试技术产业化。另外,为推动我国光伏技术及其产业的发展,国家发展改革委员会和科技部制定出未来5年太阳能资源开发利用计划,国家“光明工程”将筹资百亿元用于太阳能光伏发电技术的应用。热光伏系统的主要优点有效率较高、噪声低、可便携、可靠性高、高体积比功率、可将热能利用与发电结合在一起等。近日,美国能源部与日本经贸部官员签署了合作研制氢燃料电池的协议。氢燃料电池不经过热功转化过程,按电化学方式直接将化学能转化为电能。它具有清洁、高效、灵活等优点。氢燃料电池若能研制成功将使人类不再依赖石油和煤炭,因此可以减少污染。目前,欧洲和美日等国家已有多家研究单位和企业在从事小型燃料电池的研究,为手机、笔记本电脑提供稳定的电力供应。另外还有很多厂家和科研单位正在开发电动车用燃料电池,也有一些科研单位正在从事镁燃料电池的研究。(二)废旧电池的污染与危害随着电池的生产、使用量越来越大,电池的应用遍及我们生活和工作的每一个方面。据调查,仅2001年,我国电池消费量就高达80亿节。每年产生如此多的废旧电池,如果处理不当将使之对环境的污染和人类的危害成为一个不容忽视的问题。从电池的化学组成可以看到,电池中含有多种重金属,酸,碱等物质。电池的危害主要集中在所含的少量重金属上,如铅,汞,镉等,这些有毒物质通过各种途径进入人体,长期积累难以排出体外,就会损害人的神经系统、造血功能和骨骼,甚至可以致癌。废电池经过长期机械磨损和腐蚀,使得内部的重金属和酸、碱等物质泄露出来,进入土壤和水源,就会通过各种途径进入人的食物链,当进入水体的重金属被水生生物摄取并经过食物链的放大作用而在生物中成千上万倍的富积后经过食物进入人体,在某些器官中积累造成慢性中毒。如40年前在日本发生的“村庄集体发疯事件”就是由于电池的污染造成的。因为废旧电池中的锌、镉、二氧化锰等成分长期埋在地下会与土壤中的化学物质发生作用,生成锌锰酸式盐等并渗入地下,污染该地区的饮用水,造成周围居民蓄积性中毒。据专家测试,一节小小的钮扣电池就能污染60万升水,相当于一个人一生的饮水量;一节一号电池烂在地里,它的溶出物能使出1平方米的土地失去利用价值,而我国每年要消耗钮扣电池400000粒;2002年全国干电池的产量达到了近160亿节,我们有多少水源、土地供其污染呢!因此,对废旧电池无污染的处理刻不容缓。二、废旧电池的回收(一)国内外电池的回收状况。我国作为世界上最大的电池生产国和消费国,2001年生产电池180亿只,主要有干电池、碱性锌锰电池、锌汞电池、镍镉电池、氧化银电池、氢镍电池、锂离子电池等,占世界总产量的30%。2001年消耗电池80亿只,折合约40万吨。可想而知,其污染程度是多么巨大。这么多电池排放到环境中,直接影响环境而且间接通过各种途径对人身体产生有害影响。所以,废旧电池的回收势在必行。而现在收还是不收——电池行业的激烈交锋针对电池回收,我国电池行业有两派观点正在激烈争论。一派认为集中回收一次性电池意义不大,在没有条件处理的情况下,集中回收会造成集中污染。一些专家认为,目前回收量最大的干电池,其主要成分是铁、锌、锰,还有微量的汞。这种电池汞含量不高,没有必要集中回收。铅酸蓄电池和对人体健康危害非常大的镍镉电池应该回收。高汞电池中的汞含量只有电池总量的千分之一,随垃圾填埋后,电池里的重金属进入填埋场渗液数量非常小,并不构成污染。而回收处理废旧电池成本过高,从经济角度看无利可图,何况在回收过程中还可能产生二次污染。中国电池协会有关负责人说,目前我国的一次性干电池已经基本做到低汞化,正在迈向无汞化,随垃圾分散处理不会对环境产生威胁。更应该做的是从生产龙头上消灭污染,即实现无汞化。由于回收一性电池的费用很高,没有经济杠杆刺激企业来回收利用一次性电池,事情很难办。需要回收的是那些对环境污染大的充电电池及铅酸电池。一些专家还举例说目前一些发达国家也不集中回收一次性电池。环保部门有关负责人认为,既然要达到无汞化,那么对一次性电池的回收不支持也不反对。这种观点,似乎是对目前我国民间回收电池巨大热情颇有意味的嘲讽。另一种观点认为,无论哪类电池,都必须坚持回收。这派观点的专家认为,虽然1997年我国轻工总会、国家经贸委等九部委联合发出《关于限制电池汞含量的规定》,要求电池制造企业逐步做到降低电池汞含量,2002年达到低汞水平,2005年达到无汞化。但我国的现状是,绝大部分民用电池是一次性电池,而且电池的无汞化进程并不乐观。据调查,目前我国1000多家电池生产企业中,在中国电池协会注册的仅300多家。虽然大电池企业生产的电池目前都做到了低汞化或无汞化,但大量小企业生产的电池还存在高汞现象。河北省干电池检验站高级工程师张虎说,目前我国电池含汞量参差不齐,有的质量非常好,小于百万分之一;有的极差,高于低汞电池标准的20倍,高于无汞电池标准一万倍。我们了解到,我国目前能批量生产低汞无汞的大电池厂家还不到15%。不久前国家工商局对电池的一项调查显示,我国市场上的电池有20%达不到标准。所以,用已实现电池无汞化的发达国家不回收一次性电池的经验来套我国现实,还不合国情。有关专家认为电池中不仅汞会造成污染,锌、锰、镉、铅等随生活垃圾腐烂渗入地下,超过一定的限值,也会造成污染。这些有害物质随着食物链进入人体,极大威胁着人的健康。目前我国垃圾处理方式水平较低,九五期间,我国垃圾年产生量为万吨,处理率为63%,但真正做到无害化处理的不到10%。我国大中城市的近千座垃圾填埋场中,90%仍是简易堆放,这种原始的处理方式极容易造成大面积污染。把废旧电池与生活垃圾一同处理后患无穷。专家认为,大量旧电池都随着垃圾到垃圾场,也是一种集中,怎么就不可能产生污染?北京市政管委会有关负责人郑先生说,把废旧电池集中起来,等有了条件再处理,这样比分散更安全。从资源利用的角度上,电池回收也得到许多专家的肯定。北京科技大学的曾平荣教授说,目前国内生产的电池中90%以上是干电池,不可能对环境无污染。而且,对这些电池不回收利用也是巨大的资源浪费。3000吨废旧电池可以回收杂锌锭141吨、冶金二氧化锰300吨、铁皮260吨、电解锌181吨、电解二氧化锰340吨、铁皮500吨,价值相当于国家开发两个中型矿山的费用,更何况这些都是不可再生的一次性资源。我国目前年消费电池80亿只左右,平均回收效率还不到2%,99%都随生活垃圾一起进入了垃圾填埋厂。就是这2%,已经让管理部门处于尴尬处境。 企业不愿干处理废旧电池的赔本事既然许多环保部门都认为应该谁污染谁治理,那么,从法理上应该承担废旧电池处理的企业怎么想呢?北京金普电池有限公司有关负责人曾经说,回收处理废旧电池,是赔本的事儿,因为技术设备都不配套,收回来不及时处理,也都烂了。而且,国家对回收处理电池也没有补贴,回收成本太高,现在是市场经济,企业怎么能干无效益的事儿?天津力神电池企业有关负责人说:“我们只卖电池,收电池不是我们的事。”大电池企业大都持以上观点,有的人甚至不知电池回收之事。当大电池企业都对处理废旧电池不感兴趣时,民营的北京东华鑫馨劳务服务有限公司却建立起了我国第一个,目前也是惟一的一个废旧电池处理厂。其董事长王自新有“环保狂人”之称。之所以“狂”,就是敢做别人不做之事。王自新在北京建立起了几百个废旧电池回收点,建立了废旧电池回收电话,以至于我们把电话一打到北京市环保局,人家立即就把王自新的电池回收热线电话告诉我们。王自新对我们说,为了对后人负责,他要在废旧电池的产业化上做一番事业,为此现在已经把自己的几百万财产全部投入进去。他说,只有建立废旧电池回收利用的产业链,才能把这个事业进行下去。王自新说:“大量一次性电池不回收,污染环境不说,还浪费了大量资源。每节电池中含有22%的锌、26%的锰、17%的铁,如果不处理就扔了,等于每年白白把几千万吨的有用原料都扔了,这可是从几万吨矿石中提炼出来的呀!这绝对是个朝阳产业,国营企业不做的事,我们民营企业要做!”王自新以前学医,深入研究过废旧电池对人体的伤害,后来改做化工企业,又研究过废电池的利用。1999年,他开始了废旧电池回收利用的事业。王自新走着一条布满荆棘的道路。他的废旧电池回收企业建立在河北易县,虽然技术设备都已经到位,却迟迟开不了工,原因是当地有关部门反对。当地有关部门认为,废旧电池处理企业肯定会产生污染。尽管这个企业的排放条件完全合乎国家标准,也不让生产。王自新曾想迁址,但到哪个地方,一说是废旧电池处理企业,人家就都不让进门了。王自新无奈地说:“不知道我的家到底能落在哪儿!”不过,他没有灰心,正在努力用最新的工艺让企业达到最严格的排放标准,然后争取得到国家环保部门的认证。他说要探索一条中国独特的处理废旧电池之路。有税务部门问王自新:“民营企业,没利的事能干长吗?”王自新说:“我把回收处理废旧电池当成事业。”他充满激情说:“我现在就是当代的唐吉诃德,举着长矛冲刺。”他所挑战的,除了复杂的社会环境,还有观念的壁垒。王自新对废旧电池产业链的每一个链条,都有详细的方案,力图做到让利益机制来运转电池的回收网络。他给北京市长写信说,到2008年,北京市的废旧电池回收率要达到50%。国外一些发达国家情况则相对较好。它们对失效电池的收集和处理大都制定了相当严格的法律法规。如日本规定生产商、销售商和消费者均必须交纳一定比例的回收处理费用,并联合多家公司成立了遍布全国的收集分支机构和网点,以方便废旧电池的收集,同时由政府资助建成了数个废旧电池的回收处理工厂,并享受很多优惠政策。这些措施对于废旧电池的回收都是相当有效的。目前对于废旧电池的处理,西方国家也存在一些问题,他们的处理方法大多采用岩洞封存待处理或用防渗水泥固化后填海造地的方法,绝大多数尚未无害化回收。只有日、德、美、韩等少数国家开发出了较成熟的处理工艺和技术设备。如:日本Sumitomo重工发明的高温挥发和还原熔炼工艺;瑞士Batrec公司建立了较为先进的生产线,年处理能力达3千吨;此外,德国Ald公司也开发出了真空冶金的办法处理废旧电池的应用技术。而我国北京矿治研究院提出的“一步法”处理废旧干电池的方法也是十分有效的。(二)废电池的回收工艺与技术。由于废旧电池的种类繁多,因此对它们的处理方法也各异。目前的处理方法有单类别废旧电池综合利用技术和混合废旧电池综合利用技术,但由于混合废旧电池综合利用技术尚未成熟,所以目前废旧电池的处理技术主要为单类别废旧电池综合利用技术。它包括湿法和火法两种处理方法。1湿法冶金处理方法。湿法冶金回收过程的原理是基于废旧电池中的金属及其化合物溶于酸的性质,先将废旧电池溶解,溶液经净化后电解生成锌、二氧化锰或生产其它化工产品(如:立德粉、氧化锌等)。其优点是设备投资少、操作费用低;缺点是产品纯度低、工艺流程长、可能会产生二次污染等。荷兰、德国等使用此法处理废旧电池。2火法冶金处理过程。火法冶金处理废干电池的原理是将废干电池破碎后在高温下将其中的金属及化合物氧化、还原、分解、挥发和冷凝的过程。火法又包括常压和真空两种方法常压冶金法所有作业均在大气中进行,而真空法则是在密闭的真空环境下进行。多数学者认为,真空法冶金是处理废电池的最佳方法,尤其对汞的处理回收最为有效。其优点是过程中不引进新的杂质、再生产品纯度较高、处汞效果较好等;缺点是耗能大、设备费用高等。目前,瑞士、日本、美国等国家采用此法处理废旧电池。目前,传统的处理废电池的方法一是在较低的温度下加热废电池,先使汞挥发,然后在较高的温度下回收少量烯和其他金属。二是将废旧电池在高温下培烧,使其中易挥发的金属及其氧化物挥发,残留物作为冶金中间产物或另行处理。由于常压冶金在空气中作业有污染重,流程长,高消耗和成本高等缺点。人们又研究出了真空法。真空法是基于组成废旧电池各组分在同一温度下不同的蒸汽压,通过在真空中蒸发与冷凝,使其分别在不同的温度下相互分离,从而实现综合回收利用。其处理过程为:蒸汽压高的组分进入蒸汽,蒸汽压低的组分则留在残液或残渣内;冷凝时蒸汽在温度较低处凝结为液体或固体。真空法的流程短,污染小,回收利用率高,具有较大的优越性,值得广泛地推广。(三)我国废电池的管理现状。针对废电池带来的一系列危害,我国颁布了《中华人民共和国固体废物污染环境防治法》。其中规定:对于危险废物应遵循分类管理,收集、储存、转移和处置等重点环节重点控制,集中处置的原则进行管理,但此法没有专门对电池管理作具体的规定。废电池的管理工作的具体开展还缺乏可操作的具体管理规定及实施细则。在电池行业管理中。1997年12月31日,中国轻工总会、国家经济贸易委员会等九部委联合发出《关于限制电池汞含量的规定》,要求自2000年1月1日起,禁止在国内生产各种汞含量大于的电池(实行电池低汞化),自2001年1月1日起,禁止在国内销售各种汞含量大于的电池,同时,进入市场销售的国内外电池产品均需标明汞含量。自2005年1月1日起,禁止在国内生产汞含量大于的碱性锌锰电池(实行电池无汞化),自2006年1月1日起,禁止在国内销售汞含量大于的碱性锌锰电池。在此文件中具体对各种类电池中的汞含量、具体控制办法、办法的监督执行等事项均作了较为详细的规定。但此法规对于其他类别废电池中的有害物质,如:镉、铅等还没有具体规定。在废电池生产,回收利用与环境无害化处置管理过程中,由于人们对于环境保护的有关知识缺乏了解,对废电池会对环境造成的危害认识不足,管理体系尚未健全,使得管理过程中遇到许多问题。我国废电池管理中存在的问题主要包括:1电池的生产者、使用者没有很好地履行在电池管理中的义务。2缺乏具体的管理法规。3管理体系不健全。4缺乏合理可行的管理运行机制。5缺乏先进的废旧电池再生利用,处理处置技术。6公众缺乏对废旧电池管理知识的正确了解。这些问题在今后的经济发展和环保方面急需有关部门来解决。(四)废旧电池回收中存在的问题我国废旧电池在回收过程中还存在着诸多问题:1由于公众对废旧电池的危害还缺乏足够的了解,大多数公众对废旧电池的处理方式为同生活垃圾一起丢弃,绝大部分废旧电池未实现回收。2由于我国没有建成完整的废旧电池回收网点,有些公众想把废旧电池交回电池回收站,可是却找不到一个电池回收站,迫于无奈只能将其丢弃。3由于我国没有对电池生产销售征收环境税,废旧电池回收、处理资金来源不足,严重的影响废旧电池的回收。4以前主要以锌锰电池为主的处理问题变成多种废旧电池共存,而现有的回收处理方法是建立在对电池分类的基础上的,所以我们要改进现有的废旧电池处理工艺及设备。(五)关于废旧电池回收的建议鉴于以上分析,结合实际情况,我们提出以下建议:1加强环境保护的宣传与教育,以便提高全民环境保护意识。2建立完整的电池回收、处理体系,使人们能方便的把废旧电池交到回收站。3对于毒性较大的铅蓄电池、含汞电池、镍镉电池等必须标有相应的再生利用标志。4强制淘汰部分厂家落后的电池生产工艺及其产品。5鼓励开展再生利用技术研究。对废旧电池再生利用技术的研究与开发,在政策及经济应有所倾向,以确保再生利用技术的经济技术指标及工艺水平达到国际先进水平,实现废旧电池有价成分的综合回收和无二次污染。6对电池生产商、销售商、进口商以及消费者等环节采取买新交旧、收取处理费和环境税等方法筹集资金,建立完整的废旧电池回收、处理体系,以确保废旧电池能够完全回收并得到妥善的处理。三、关于废旧电池的调查报告(一)本调查的主要目的1了解消费者使用电池的主要类型、数量、以及使用后废旧电池的处理方式。2了解消费者对目前市场所销售电池的建议与意见。3了解公众对废旧电池污染环境的认识程度。4加强环境保护宣传,提高全民的环境保护意识及资源危机意识。(二)本调查的主要对象1山东农业大学部分学生2泰安市部分市民(三)本调查问卷的设计方案本调查问卷共分4个方面10个问题。由于各种类型废旧电池所含主要危害成分及其对环境的危害程度不同,因此本调查问卷的第一个方面(包括问题1~4)主要是为了了解目前消费者使用电池的主要类型。由于本调查对象众多,每个人的文化层次及知识结构不同,因此本调查问卷中的问题3~4主要是为了对问题1~2的补充。南孚电池、双鹿电池、白象电池等主要为碱性电池,大公电池、牡丹电池、中华电池等主要为酸性电池。价格在1元以内的主要为酸性电池、在1元至元的主要为有汞碱性电池、在3元至5元的主要为无汞碱性电池、价格在5元以上的主要为可充电电池。目前市场上销售的电池在消费者心目中必然存在着某些方面的不足,这也就决定了未来电池的发展方向,因此本调查问卷的第二个方面(包括问题5~6)主要是为了了解消费者对目前市场销售的电池的不满。由于目前世界性的资源问题、能源问题、污染问题正阻碍着社会的发展与进步,因此加强环境保护及合理利用资源与能源的宣传迫在眉睫。本调查问卷的第三个方面(包括问题7~8)的主要目的是为了了解普通公众对废旧电池污染的认识及对废旧电池污染环境加以宣传。据有关资料表明,目前中国每年产生的废旧电池总量大约为80~90亿只,平均每人每年产生7只废旧电池,本调查问卷的第四个方面(包括问题9~10)主要是为了了解本调查范围内每人每月产生的废旧电池量以及其对废旧电池的主要处理方式。(四)本调查问卷的调查结果通过我们一周时间对西北大学部分学生及西安市部分市民的调查结果如下:(本调查过程中共发放调查问卷600份,收回有效问卷504份)略(五)问卷调查结果的讨论由于本调查的范围有限,所以其中的某些结果可能与总体情况略有出入,但是本调查必定反映了总体中一个地区的情况,因此还是有一定的参考价值。本调查从某种程度上反映了我国电池的消费量使用后对其处理方式以及存在的问题。(六)调查问卷的结论由以上调查问卷结果我们可以得到如下结论:1目前消费者使用的电池主要为一次性碱性电池。这种电池的各方面性能优于一次性酸性电池,但是由于无汞碱性电池的生产工艺尚不成熟及其造价要高于有汞碱性电池,因此目前市场上销售的碱性电池主要为有汞碱性电池,所以废旧电池如果同生活垃圾一同掩埋、焚烧、堆肥等仍然会对环境造成严重的污染。另外,由于碱性电池的外壳是由钢制成,因此废旧电池同生活垃圾一同处理更是对资源的严重浪费。2由问卷的调查结果我们看到消费者对目前市场上销售的电池仍然存在着很多的不满,比如电池的质量太差、不够环保、价格太高等。因此电池生产厂家及科研单位必须加强对电池生产工艺的研究,以便能尽快生产出高质量、低污染、低造价的新型环保电池。3由问卷的调查结果我们还可以发现,目前绝大部分公众对废旧电池若不妥善处理会污染环境已有一定的了解,但是缺乏更近一步的认识及实际行动,因此我们要加强环境保护的宣传与教育,以便提高全民的环保意识及资源危机意识。4由问卷的调查结果我们还可以发现,目前消费者每月使用的电池为两节左右,而绝大部分消费者对废旧电池处理方式为随生活垃圾一起丢弃,这样不仅会对环境造成严重的危害更是对资源的严重浪费。据有关资料表明,如果全国废旧电池全部得以回收利用,每年就可以回收1万吨锌、18~20万吨二氧化锰、2~万吨铜,这是多么大的一笔财富呀!(七)调查过程中发现的问题目前,我国部分消费者已具有一定的环保意识及资源危机意识,认识到废旧电池同生活垃圾一同丢弃不仅污染环境还是对资源的严重浪费。可是我们在调查过程中了解到,有些消费者把用完的电池收集在一起,并且有的收集了很多,可是苦于找不到废旧电池回收站,最终迫于无奈只能将辛辛苦苦积累下的废旧电池随生活垃圾一起丢了。另外,我们在《中国资源综合利用》中了解到北京某废旧电池处理厂却因原料供应不足而被迫破产。由此可见我国在废旧电池回收管理中存在很大的问题。望能引起有关部门的重视使问题得以解决。四结束语我国作为世界上最大的电池生产国和消费国,废旧电池的收集和处理还存在很多问题有待于解决。虽然2003年五部委发布了《废旧电池污染防治技术政策》,但是政策还有待于落实,公众的环保意识还有待于加强。另外,废旧电池的处理工艺及设备也有待于改进