关于探究过氧化氢新催化剂的实验报告姓名:xxx班级:xxx日期:yy/dd/nnnn实验名称:探究过氧化氢新催化剂。实验目的:为过氧化氢寻找高效率、低成本且环保的催化剂。用品:试管若干,小烧杯,酒精灯,高锰酸钾,醋酸铅,氧化铁(即“铁锈”),马铃薯,新鲜猪肝,过氧化氢溶液等。准备:往干净的试管内倒入适量过氧化氢溶液(下用“H2O2”代替),准备6份。1.高锰酸钾①取一支装有H2O2的试管,将KMnO4倒入。现象:有大量泡沫生成,并迅速堵塞了试管。泡沫成暗黄色,其中略带紫色(可能是KMnO4)。②将此试管用试管夹夹住,置于酒精灯上加热。并用小烧杯盛接溢出的泡沫。现象:泡沫大量涌出,在烧杯中静置一段时间后渐渐变成黑紫色液体。③将此种液体倒入一支洁净的试管中加热,气化掉里面的液体。现象:液体沸腾时,生成一种淡紫色雾;气化后,剩下一些黑色固状物质。④待这支试管冷却后,往其中倒入H2O2。现象:有气泡冒出,且比通常情况下H2O2中冒出的气泡要多。分析:此种黑色固体可能是K2MnO4和MnO2的混合物,因为MnO2是H2O2的一种催化剂,因此发生催化反应。结论:加热KMnO4的生成物可做H2O2的催化剂。2.醋酸铅①将少量醋酸铅加入盛有H2O2的试管中。现象:有大量白色泡沫生成,泡沫涌出速度比用MnO4时要快,且醋酸铅迅速溶于水中。②将燃着的火柴迅速靠近试管口。现象:火柴依旧燃烧,无特殊反应。分析:火焰无特殊变化,说明生成物中O2较少。结论:醋酸铅不是H2O2的催化剂。3.氧化铁①用钢质刮刀在生锈的铁钉上来回刮磨,并用一张硬纸片在下方收集。收集好后,将氧化铁倒入盛有H2O2的试管中。现象:有大量气泡冒出,比用KMnO4时要快。②将此试管置于酒精灯上加热,气化掉里面的H2O2。现象:试管壁和底部都有氧化铁。③待此试管冷却后,再次倒入H2O2。现象:仍然有大量气泡冒出。分析:Fe2O3加入H2O2后,能加快其反应速率,且在反应前后质量、化学性质基本不变(质量可认为不变,化学性质则是因为两次都能催化H2O2),是H2O2的催化剂。结论:Fe2O3是H2O2的一种催化剂。4.过氧化氢酶①将马铃薯和猪肝切成块状分别投入两支盛有H2O2的试管中。现象:均有大量气泡冒出,均比用Fe2O3时速度快,且猪肝的效果比马铃薯好。分析:通过查阅高中生物教材,得知酶是一种高效的催化剂,而植物、动物的许多组织中(如马铃薯的块根、猪肝、血液等)都有大量过氧化氢酶,这是一种很好的催化剂。结论:有过氧化氢酶的动、植物组织都能作H2O2的催化剂。5.水泥①将适量H2O2倒在水泥地面上。现象:H2O2迅速变白翻腾,有大量气泡生成。②用燃着的木条靠近。现象:火焰旺了一些,但不太明显。分析:生成物中应该有O2,但是因为在室外,风比较大,因此效果不太明显。结论:水泥是H2O2的一种催化剂。对比、分析:催化效率(由高到低):1.猪肝 2.马铃薯 3.氧化铁 4.高锰酸钾 (水泥应为不好测所以没有)价格(由低到高):1.水泥(路边有捡...) 2.氧化铁(随便找颗钉子就可以了...) 3.马铃薯 4.高锰酸钾 5.猪肝 (前两个最好弄,0成本...)环保程度(按污染程度由低到高排列):1.马铃薯 2.水泥 3.氧化铁 4.猪肝 5.高锰酸钾综上所述,最高效、最便宜、最环保的催化剂应该是马铃薯。总结:此次探究活动中,有许多地方值得改进。1.材料、用具准备的不够齐全,导致很多方面不够细致。如因为没有火柴,所以在Fe2O3、KMnO4以及过氧化氢酶的实验中对生成气体并没有进行检验(虽然知道肯定是O2)。2.操作上没有经验。如在第一次做KMnO4的实验时,我是先加热的KMnO4,然后没有待它冷却就迅速倒入了H2O2,导致暗黄色泡沫从试管中喷出,溅到身上,而且试管炸裂成两截了...以后实验,应注意这些细节方面的问题。yy/dd/nnnnxxx
实验探究:MnO2可以作为双氧水的催化剂 假设:二氧化锰可以催化双氧水的分解实验步骤:1.取等量H2O2分别少量于A、B两支试管中2.向A试管中加入适量MnO2,然后向试管中伸入一支带火星的小木条3.向B试管伸入一支带火星的小木条实验现象:试管中小木条复燃试管中小木条不复燃实验现象分析:A试管中的木条复燃,而B中的没有,说明A中氧气浓度更高,所以A中H2O2的分解速率更快结论:二氧化锰可以催化双氧水的分解,使其分解速率加快呵呵~我居然还记得~o(∩_∩)o...这种东西一般就是这么个格式,写多了就自然会了,加油吧~^^
CuO MnO2 KI FeCl3等等步骤太简单了:把等浓度等体积的H2O2溶液向固体上加。我研究过这个项目,发现7种催化剂,论文获得市二等奖。
过氧化氢酶二氧化锰 某些金属离子比如Fe离子
应该进行的是氧化还原反应,使过氧化氢分解。
某些情况下会有关系。多步的化学反应是有决速步的,也就是最慢的一步反应决定了总反应速度。而催化剂是参与反应的,如果催化剂参与的那步反应成为了决速步,那么催化剂量就会影响反应速度。直观来说,催化剂量极少的时候,大部分过氧化氢没机会跟催化剂接触,这时候增加催化剂量就会加快反应。当催化剂量很多的时候,大部分过氧化氢都已经跟催化剂接触了,这时候在增加催化剂量就没作用了。
反应速率与H2O2浓度的一次方成正比,称为一级反应。在一定温度与催化剂浓度下,k1为定值,所以对一级反应而言,Ct/Co的值仅与t有关,而与反应物初始浓度无关。
过氧化氢酶二氧化锰 某些金属离子比如Fe离子
高中生物研究性学习论文尹冬静摘要:当前有关创新精神和实践能力的培养的问题引起了教育界和全社会的广泛关注,如何在生物教学中实施成为当前的要务,而研究性学习顺应了这一历史的客观要求。现存的生物学教学方式具有一定的局限性,以研究性学习的方式建立生物学知识框架具有独特的优势。积极创新情境,让学生体验科学探究过程,学习科学探究的方法,养成科学探究的能力,是生物教学的重要任务之一。因此本文就此问题结合生物课堂教学的实践谈些粗浅看法。关键词:研究性学习 生物教学 必要性 把握 注意事项 一、在高中生物教学中贯穿研究性学习的必要性 新一轮课程改革倡导学生开展自主学习、探究学习、合作学习,倡导建立积极的价值观,倡导“参与式”教学理念,在教学过程中渗透学生的创新精神和创造能力的培养,这些教育改革的新观念已引起了教育界和全社会的广泛关注,并成为当前基础教育改革的一个热点。研究性学习是由学生在一定的生活情境中发现问题,选取专题、设计研究方案,通过主动的探索和研究而求得问题的解决,从而了解和体验科学探索的过程,养成自主探究。 向高中学生传授科学研究的知识和方法,并在活动课程或课外活动中开展一些课题研究活动,是培养创新意识和实践能力的一个重要方面,因而研究性学习顺应了这一历史的客观要求。 研究性学习过程运用于生物教学,具有以下优势:①研究性学习能让学生自主地参与观察生命现象,探索生命本质,从而获得生物学知识,有效地形成生物学概念;②研究性学习的核心在于培养学生对生命科学的探究能力,而探究能力又是形成生物学概念的前提;③研究性学习能培养学生探究生物世界的积极态度,如同交给学生一把开启生命科学宝库的金钥匙.传统的生物课堂教学都是按学科知识的逻辑体系进行教学,以传授课本知识获得间接经验为主。即使是演示实验和学生实验都是教师的控制下按部就班地进行。知识的传授很少有机会与学生的生活以及社会实践相联系。在生物课程中,贯穿研究性学习,正是在这样的背景下提出来的。在生物课堂教学中进行研究性学习,符合研究性学习的特点,可给学生一些真正属于他们自己的学习时间和空间,让学生在实践中得到锻炼和提高,加深对生命科学的理解和热爱,更好地体现生物教学与社会发展的联系。 二、生物教学中研究性学习的把握 生物科学素养作为科学素养的一部分,是现代人一生都需要,并应不断得到发展的。一个人的职业可能与生物学没有直接关系,但任何人的生活和工作都不可能脱离生物圈,况且人就是最重要的生物。生物学素养包括具备基本的生物学知识,相应的技能和能力,对社会中的生物学问题的解决有浓厚兴趣并积极参与,用正确的价值观规范自己的态度、行为和习惯。同时,科学是开放的、发展的,今天被认为是正确的,明天未必仍然完全正确,科学贵在创新,要不断增强创新意识。从这意义上讲,生物学科开展研究性学习有一定的学科优势,学生容易选择那些与生活息息相关的比较感兴趣的专题进行研究,具备了研究性学习内容选择的开放性特点,面对着广泛的内容,应该如何选题呢? 1.最好的教学法一—兴趣教学。 兴趣是学生学习的原动力。充分发挥学生的潜能,寓教于学,寓教于乐,从而使学生在轻松的氛围中,掌握了知识的要点。 从教育心理学的角度来看,人的活动都是由一定的动机引起的,学生的学习和研究也是如此。在生物教学中,教学若能紧密结合物理教学内容,提出一些学生欲答不能而又迫切想了解的、与生产生活密切关联的物理问题,并充分利用现代教学手段,积极创设开放的教学情景,将会诱发学生的探索研究动机,从而激发学生对周围有关物理现象的关注,激发对物理的情感倾向。只有在学生产生了兴趣的起点上,才会引发积极的思索和产生探求未知的愿望。他们才会积极主动地学习,不会觉得学习是一种负担,甚至有时废寝忘食。 2.合理质疑——激发学生思考。 教师的作用不仅仅在于“给出知识”,更重要的是能引出活动!要善于设计疑问,激发学生的认识冲突,使其处于积极主动的地位,从而把他们的注意力引向所研究的问题上来。问题应该是整个教学过程的主线,教学活动自始至终均应用围绕着问题展开。让学生在不断提出新问题,认识新问题和解决新问题中提高综合素质。这样才有利于学生自主学习的形成、创新思维的培养。在课程教学的课堂里,学科知识本身的丰富性会带来学生思维的多相性,各种各样不同领域的问题涌向教师,教师不可能接触所有领域的知识,一时回答不出来不足为奇,重要的是教师要善于引导学生进行讨论和探索,保持学生探究的热情和兴趣,并能与共同面对问题进行研究。教师要让自己成为学生活动的参与者。 3.可操作性——学习信心毅力的培养 研究性学习的选题必须考虑是否具备观察、调查、实验等客观条件,包括学校条件、学生条件、社会条件,只有这样,学生的研究才能按部就班、有事可干,有充实感,有成功喜悦感。因此选题必须来源于学生身边周围发生的问题或者通过学生老师共同努力就能得到解决的问题,以做到切实可行。学生参与知识的形成过程,在动口、动手、动脑中,激活学生原有的知识储存,有利于智慧技能的迁移,参与中建构自己的认知结构。让学生在真实而未知的情境中动手去探求真知,亲自去解决实际问题,学习实验技能的方法,认识科学知识的价值,调动学生的积极性,不断产生探究的愿望,有助于学生确立克服困难的意志和信心。 4.设置悬念——延伸教学 我国的章回体小说都做了妙趣夺人的心理设计,每当故事发展到高潮时,矛盾冲突达到白热化程度时,作者往往要来一个急刹车,以“欲知后事如何,且看下回分解”告一段落,使读者产生欲知不得,欲罢不能的心理,这就悬念心理,所以课堂教学中教师要根据学生的这种心理特点和教材具体内容,恰当设置悬念,而且教师应有意识地留问题给学生,使教学延伸到课外,让学生对所学知识“回味无穷”。 三、生物教学中研究性学习的初步实践 1.贴近生活,引入课题,进行推测,提出假设 本教学设计从教师有目的的给出材料——日常生活中的淀粉消化的速度与生产过程中淀粉水解速度比较——直接切入课题,引起学生兴趣的同时,提出问题,引发学生思考——生物体内的催化剂——酶的特点。材料:人每天都需要吃饭,人体消化的速度相当快。人体内每小时可以水解500吨淀粉,相同质量的淀粉,在有足够的酸作为催化剂的条件下,全部水解需要十几天。 这个事实说明了什么问题? 学生回答:酶的催化作用具有高效性。 教师引导:酶是生物催化剂,它和无机催化剂相比,可能具有高效性的特点。怎样才能知道酶具有高效性呢? 2.点拨启发,设计方案,实验探索 教师引导:我们在无机化学当中学过催化剂,怎样能确定哪种催化剂的效率更高呢? 学生讨论得出结论:比较相同化学反应在不同的催化剂的催化作用下,通过化学反应速度可以确定催化剂的催化效率——化学反应速度越快的,催化剂的效率越高;反之,催化效率越低。 教师引导:化学反应速度怎样才能确定呢? 学生思考回答:通过反应物的消耗速度或者产物的生成速度比较可以看出来。 材料:过氧化氢(H2O2)在 Fe3+的催化下,也可分解成H2O和O2,动物新鲜肝脏中含有的过氧化氢酶也能催化这个反应。据测算,每滴氯化铁中的Fe3+数,大约是肝脏研磨液中过氧化氢分子数的25万倍。从数目上看,一滴含有催化剂的容液中,Fe3+数远远大于过氧化氨酶的分子数。如果现在我们想弄清楚Fe3+与过氧化氢酶,哪一种催化剂的催化效率高,那么,我们应该如何设计这个实验? 问题引发了学生的热烈讨论。面对学生的争论、教师不急于点评。先让学生相互点评,最后经教师分析比较,最终筛选出下列设计方案对猜想进行探究——分组实验。 实验设计引导:要比较Fe3+和过氧化氢酶的催化效率,设计实验中的其他条件应该相同,如两个试管中过氧化氢溶液的量应该相同,Fe3+和动物肝脏也应尽可能同时加入两个试管中。然后通过产物——O2的产生速度,即气泡的产生量、带火星的卫生香的复燃速度,或者试管温度的变化——最终确定酶与无机催化剂效率高低。 教师在引导过程中,要注重等量原则,科学性原则,可操作性原则等总要的实验设计原则的渗透。 学生按实验设计步骤分组实验。并思考问题:1.你在实验过程中观察到哪些实验现象?2.通过这个实验你可以得出什么结论? 通过以上的引导,从提问、引导猜想,设计实验进行探究,环环相扣,有的放矢,学生的求知欲望冉冉升起,为下一步探索研究作了良好的铺垫。既能让学生进行自主学习,又在实验的设计过程中,培养学生的创新精神,提高学生的科学素养。 3.实践拓展,深化认识 通过实验探究得出结论,酶的一个特性——高效性。 给出生产实践资料,学生在分析中,深化学生认识,加强学生科学就在身边的探究思想。 资料:人们在生产实践中就是利用了酶的这个特性,比如说在污染物的处理上,废旧塑料的大批量降解利用的就是相关的酶,塑料自然降解需要上百年的时间,甚至需要更长时间,而利用专用酶处理相等量的塑料几天内就可以完成。 四、在实施过程中的注意事项 1.研究性学习应该面向全体学生。离开了全体学生这个层面,研究性学习就完全背离了它的初衷。所以,要让研究性学习避免"贵族化",走向"平民化",就得重研究过程,而淡化研究成果。如果成果不期而遇,自然是个惊喜,但不出成果,只要"学会了研究",也是极大的收获。 2.研究性学习的选择要有的放矢。学生的认知结构能力水平参差不齐,给选题带来了困难。课题的设置首先必须体现学生的自主性,激发学生学习的热情,同时课题必须符合学生现有的知识能力,同时又应有一定的难度与梯度,能开拓学生的思维 ;但在同一学校同一班级学生的认知结构能力水平参差不齐,给选题带来了困难,选题应该面对哪一层次的学生。如果面对尖子生,那么其他学生就产生畏难情绪,没有积极性,无从下手,从而在活动形成依赖心理,如果只获得了别人整理好的有序的知识而没有自己的理解,达不到实践能力和创新精神的培养;如果忽视尖子生,尖子生又得不到培养;如果分组过多,选题过多,老师又没有太多的精力去指导。 3.谨防对生物研究性学习只重形式而不重实质。部分教师为了赶“潮流”或通过压力又不得不向研究性学习靠拢,因此在形式上僵硬地套用“类似研究”的方式和“设问——探究——解答”模式进行课堂教学,把生物课堂搞得“四不像”,不但未能培养学生的探究能力,而且在传授知识这个层面上也未达到预期的教学目标。夸大了研究性学习的功效,盲目追从研究性学习,部分教师不管这节课是否适合用研究性学习方式,每节课,每个知识点都用这种方式去讲解,“千篇一律、生搬硬套”,完全忽视了传统的教学模式的优点,把研究性学习视为“万能产品”。这样的研究性学习取不到应有的教学效果。顺利开展研究性学习的一个关键因素在于教师观念的转变。 五、研究性学习的意义 1.从科学研究的意义上讲,通常发现问题比解决问题更重要,地圆学说的提出是哥伦布航行美洲的认识依据,法拉第的电磁感应原理是电力广泛运用的理论基础。因此,认真选题并进行可行性研究的初步论证是进行研究性学习的起始。科学家们都认为,提出问题是学得真知的关键一步,一个人在学习的过程中,假如提不出问题,那么就很难想像他真正地学到了什么。 2.通过教学中的教学方式的转变,惊喜地发现,无论是对老师的教还是对学生的学,都有很大的促进作用。首先,研究性学习从根本上改变了过去那种传统的教学模式,变老师讲学生听为真正学生自己学、自己发现问题、自己想办法解决。充分激发了学生的热情,体现了学生的主体性、主动性,在一定程度上培养了学生掌握、运用、分析信息材料的能力,开拓了学生的眼界和思维 能力,学到了许多课本上没有学到的知识,大大丰富了学生的思维方法,形成了一系列良好的思维品质。第二,研究性学习给我们的教学方式及老师提出了更新的挑战。研究性学习让我们的学生大胆探索,充分发挥学生的主体性、主动性,学生人多,思维不受限制,老师的引导如何发挥作用,这就给我们老师的教学方式提出了新的要求,因此,随着涉及的面越来越广,这就要求教师必须加强学习,不断拓宽自己的知识面。 有动力就有进步,研究性学习对推动教学改革有着极大的促进作用,实质上,它将带来教法和学法一次新的革命。
在粮食陈化的过程中,过氧化氢酶的活性会降低,呼吸作用就减弱了;植酸酶,蛋白酶和磷脂酶活性等水解酶类都是会增加的。详细如下:粮食陈化中的有关变化1、生理变化粮食陈化的生理变化无论是含胚与不含胚的粮食主要表现为酶的活性和代谢水平的变化。粮食在储藏中,生理变化多是在各种酶的作用下进行的。若粮食中酶的活性减弱或丧失,其生理作用也随之而减弱或停止。随着陈化的进行粮食的生活力逐渐丧失,与呼吸有关的酶类,如过氧化氢酶的活性趋向降低,呼吸作用也随之减弱;而水解酶类,如植酸酶,蛋白酶和磷脂酶活性都增加。粮食在储藏中由于自身代谢的有毒产物积累也导致粮粒衰老和陈化,如吲哚乙酸和阿魏酸的积累和一些脂类氧化产物的积累都将加速粮食的陈化的进程。据报道,一些不饱和脂肪酸分解游离基与其它脂类起反应,能使细胞膜结构破坏。衰老的种子里,高尔基体散开并失水,溶酶体膜破裂,引起细胞的解体,同时细胞膜也丧失完整性而透性增强。对于有胚的粮食储藏中生理变化的指标是,随着陈化加深粮粒生活力与发芽率下降,随着细胞的劣变,细胞膜透性增强,浸出液所含的物质量增加,电导率增高。粮食陈化与酶活性的关系通常可以由一些与品质相关的酶活性变化加以反映。稻谷储藏初期含有活性较高的过氧化氢酶,淀粉酶,随着储藏时间的延长,这些酶的活性就大大减弱,生活力也下降。根据测定.稻谷储藏三年后过氧化氢酶活性降低五倍,淀粉酶等于零。大米在储藏中过氧化酶活性丧失,呼吸也趋于停止。现在人们测定粮食代谢水平,就采用过氧化氢酶的活性作为指标之一。 2、化学成分变化粮食化学成分的变化,无论含胚与不含胚的粮食,一般说多以脂肪变化较快,蛋白质其次,淀粉变化很微弱。脂肪的变化粮食储藏过程中,由于脂肪易于水解,游离脂肪酸在粮食中首先出现。特别是在环境条件适宜时,储粮霉菌开始繁殖,分泌出脂肪酶,参加脂肪水解,使粮食中脂肪酸增多,粮食陈化加深。蛋白质的变化粮食储藏过程中,受外界物理、生物等因素的影响,蛋白质的水解和变性。蛋白质水解后,游离氨基酸上升,酸度增加。蛋白质变性后,空间结构松散,肽键展延,非极性基外露,亲水基内藏,蛋白质由溶胶变为凝胶、溶解度降低,粮食陈化加深。淀粉的变化粮食储藏过程中,淀粉水解成的麦芽糖与糊精继续水解,还原糖增加,糊精相对减少,粘度下降,粮食开始陈化。 3、物理性质的变化粮食陈化时物理性质变化很大,表现为:粮粒组织硬化,柔性与韧性变弱,米质变脆,米粒起筋,身骨收缩,淀粉细胞变硬,细胞膜透性增强,糊化及吸水率降低,持水率亦降低,米饭破碎,粘性较差,口感有“陈味”。
影响酶活性的因素”是高中现行生物学课本中的一个实验内容,也是第1个探究性实验。但是,教材中所介绍的实验药品(α-淀粉酶)价格较贵,实验设计思路为定性实验。能否改进实验设计方案,使其不仅能培养学生的实验技能和实验设计能力,通过实验过程理解影响酶活性的因素的知识内容,而且促使学生积极参与探究活动,养成实事求是的科学态度和一丝不苟的科学探究精神呢?为此,笔者进行了一些有益的尝试。1 实验设计1.1 选用过氧化氢酶作为实验探究对象 过氧化氢是细胞中某些化学反应的副产物,具有强氧化性,如果不及时除去或分解,就会杀死细胞。在动物的肝细胞和血细胞中含有较多的过氧化氢酶,它可以促进过氧化氢分解。由于过氧化氢酶容易获得且催化反应的现象明显,所以选用过氧化氢酶作为实验探究对象。1.2 设备准备 实验用具有:细胞培养瓶(代替反应小室)、刻度吸管、镊子、水槽、25 mL量筒;反应底物为30%H2O2,也可以用原包装双氧水配制的3%H2O2,但反应速度慢,现象不太明显,反应时间长。实验中需要 H2O2酶滤纸片,制作方法是:将 10 g鲜肝剪碎,置于研钵中充分研磨,加入200 mL蒸馏水制成鲜肝液。然后,将滤纸剪成1 cm2的小片,平展在表面皿中,用鲜肝液浸泡l min后使用。配制缓冲液,方法是:将 g Na2HPO4·7H2O在 1 000 mL容量瓶内溶于蒸馏水中,加水至刻度,配制成 mol/L Na2HPO4溶液。将 g KH2PO4在1 000 mL容量瓶内溶于蒸馏水中,加水至刻度,配制成 mol/L KH2PO4溶液。用上述两种溶液配制pH5、pH6、pH7、pH8缓冲液如下: 单位:mLpH 5 6 7 8 mol/L mol/L KH2PO4 9551.3 实验方案 参照美国BSCS教材中的实验方案,经过1个多月的摸索,改进原有实验装置,制定出简单易行且定量效果好的实验步骤如下:l)向水槽中加水至将满为止。2)将大小相同的8片滤纸片在鲜肝液中浸泡l min,然后用镊子夹起滤纸片,靠在培养皿壁上,使多余的酶液流尽。3)用镊子将2片酶滤纸片小心地放入细胞培养瓶(用作反应小室)的一侧内壁上,使酶滤纸片粘在内壁上。注意滤纸片不要碰到反应小室的瓶口。4)将细胞培养瓶立起,贴有酶滤纸片的一侧壁冲上,小心加入 pH=5的缓冲液 2 mL,然后再加入 2 mL 30%的H2O2溶液,切勿使上述混合液接触贴在内壁上的滤纸片。将小室塞紧。5)将25 mL量筒横放于水槽中使之灌满水,若有气泡,将其轻轻倾斜,小心赶出气泡。将量筒倒立,使筒口一直处于水中。6)小心将细胞培养瓶平放在水槽中的水里,注意反应小室贴有滤纸片的内壁应在上面,将量筒移至细胞培养瓶口上伸出的玻璃管上方,实验过程中要一直扶着量筒,保证量筒的位置不动。7)将细胞培养瓶小心旋转180度,使H2O2溶液接触酶滤纸片。同时开始计时,在 30 S时,读取量筒水平面刻度并作出标记后记录。8)反复冲洗反应小室后,重复上述实验过程,测量在 pH6、pH7、pH8时过氧化氢在酶的催化下所释放的气体量。注意:所有的实验中都要严格保证于净,不应该有上一次反应后的剩余溶液,每次试验完后,应充分冲洗,然后用相应的缓冲液再冲洗一遍。2 教学过程2.1 引入新课 由上节课的实验操作引出本节课的实验内容,启发学生思考实验操作要达到的目的,为减少学生实验操作过程的盲目性做好铺垫。学生作出温度和pH影响酶的活性的假设后,教师介绍本节课所用的酶和底物,以及过氧化氢酶在生物体内的分布情况。然后播放自制录像《pH过氧化氢酶活性的影响》,边看录像边讲解实验用具,但是不强调实验操作过程中的注意事项,意在训练学生的观察能力、对问题的敏感能力、综合分析能力。如果某一学生只是在被动地看录像而不是边看边思考,在自己具体实验过程中会遇到很多问题,使实验进程不顺利。而在看录像过程中积极思考的学生,实验每一步的操作应该注意的问题都会关注到,实验速度快且实验结果准确。2.2 学生分组实验 学生模仿录像中的操作进行自主实验,既需要分工合作,更需要在操作中发现问题并及时解决问题。这个过程中教师巡视学生的操作情况并适时地参与讨论,针对不同组的情况,提出一些小问题,引导学生进行深层次的思考。实验中教师巡视,既可以了解学生实验的速度、实验过程中出现哪些不可预计的问题,使自己很好地驾驭课堂教学,又作为学习者参与讨论过程,营造宽松和谐的学习氛围。2.3 交流和讨论 实验结束后,教师请各组学生代表汇报实验结果,确定过氧化氢酶的最适pH,在交流过程中学生会发现不同组得出的实验结论可能有所不同。综合全班的实验结果,还是可以看出过氧化酶的最适宜pH是7。然后教师告诉学生,科学家研究得出:肝脏中过氧化酶的最适pH是,接近于7。但是大家的实验结果各不相同,由此引出实验讨论的问题:实验过程中有哪些因素可能造成实验误差?学生针对自己的实验操作过程进行充分的讨论,总结出影响实验结果的一些因素。这是学生回忆实验操作进行自我反省和相互评价的过程,但是很少有学生对教师提供的实验方案表示质疑,为此教师又提出另外一个讨论题:你认为该实验设计中有哪些不完善的地方?应如何改进实验装置或方案,使实验结果更准确?一个小小的问题点燃了学生质疑的火花,大家各抒己见,提出改进实验方案的建议,学生的发散思维和创新思维在此体现得淋漓尽致。教师对学生的发言进行了充分的肯定,激发了学生的学习热情和积极性。因为实验步骤中只设计了pH为5-8的实验,所以教师又提出一个简单的问题:如果想得出不同的pH与酶活性关系的变化曲线,应该如何设计?由此引导学生思考实验目的不同,实验设计的步骤和方案可能有所不同,实验设计需要有针对性。2.4 实验设计思路的迁移──设计并交流温度对酶活性影响的实验方案 进行充分的讨论后,教师又提出问题:知道了不同的pH与酶活性的关系,现在请同学们设计“探究温度如何影响酶的活性”的实验方案。提醒学生注意底物和相应的实验装置的选择。给学生一段时间思考后,教师请学生交流实验方案。有的学生在教师提供的实验用具的基础上设计,有的学生利用化学中制备氢气的启普发生器作为反应体系,这样实验结果更加准确。但有的学生考虑得更加全面,想到H2O2在高温的情况下也会加速分解,用过氧化氢酶和H2O2探究温度的影响不太适合,所以改用淀粉作底物,唾液淀粉酶作催化剂。在这个交流过程中,学生相互评价实验的可行性,并且给予每组学生一些合理的建议。该过程充分体现了学生深入研究问题的能力。3 教学小结和反思生物科学实验中可以对学生进行探究过程的训练。包括观察、提出问题、进行假设、设计方案并进行实施、收集分析解读数据、得出合理结论、表达结果等。是学习者运用判断思维、逻辑思维进行学习的过程。在这个过程中,要很好地把握教师的主导作用和学生的主体作用,保证课堂教学的高效优质。避免出现盲目而无序,热闹而无获的情况。探究教学对教师驾驭课堂和教学内容的能力都提出了更高的要求。因此在授课前教师必须精心准备,要预见到可能发生的所有情况,尤其是实验安全性问题。对实验结果的分析讨论和自主设计实验是本节课的重点,在这个过程中培养了学生多方面的能力:与他人的合作意识、分析综合的思维能力、表达与交流的能力、实事求是的科学态度、自我评价与评价他人的能力、创新能力等。但是能力的培养不是一朝一夕的事情,应该渗透到每堂课的教学中.渗透到教学的点点滴滴,朱意曾说过“读书无疑,需教有疑,有疑者无疑,至此方是长进”,在教学过程中,精心设问,周密安排,每堂课要给学生提供施展自己才华的舞台,长此以往,学生的各种能力会逐步得到提高乃至升华。探究过程中教师应该注意自己扮演的是和学生平等的学习者而不是高高在上的知识的传授者,和学生共同探讨,可能从学生那里会获得更多的灵感和信息,反过来促进自己的教学。如果时间允许,可以用2节课的时间,给学生提供必需的实验器材和用品,分组实施自己设计的“温度对酶活性的影响”方案,检验自己方案的可行性。这是一个自我价值的实现过程,相信在这一过程中更能激发学生学习生物学的热情,是培养学生学习生物学兴趣不可多得的契机。
1、可作生产碳酸钙的原料。 2、氢氧化钙属碱性,因而可以用于降低土壤的酸性,从而起到改良土壤结构的作用。农药中的波尔多液正是利用石灰乳(溶于水的氢氧化钙)和硫酸铜水溶液按照一定的比例配制而出的。 3、优质品主要用于生产环氧氯丙烷、环氧丙烷。 4、可用在橡胶、石油化工添加剂中,如石油工业加在润滑油中,可防止结焦、油泥沉积、中和防腐。 5、用于制取漂白粉、漂粉精、消毒剂、制酸剂、收敛剂、硬水软化剂、土壤酸性防止剂、脱毛剂、缓冲剂、中和剂、固化剂等。
该类药物包括纯酚及其含有卤素和烷基的替代物,为表面活性物质, 作用特点主要损害菌体细胞膜、蛋白变性、抑制细菌脱氢酶和氧化酶。蛋白变性和一般原浆毒(杀菌),抑制酶活性(抑菌)。对多数无芽胞的繁殖性细菌和真菌有杀灭作用,对芽胞、病毒作用不强,可用于消毒排泄物,用于环境及用具消毒。该类性质稳定,不与卤素类、碱性、过氧化物合用。1.酚:别名苯酚、石炭酸,主要由煤焦油中分溜而得,或用合成法制成,为白色或淡红色细长的针状结晶或结晶块,有特臭,溶于水(1:15),易溶于乙醇、醚、甘油、脂肪油等有机溶媒中,露置日光下或空气中色渐变深,有潮解性,须避光、密闭保存。将九份酚和一份蒸馏水混合,可制成液化酚,为无色或淡红色的澄明液体。该药能抑制和杀死多种细菌,对芽胞和病毒无效。但它也能破坏组织细胞的蛋白质,故主要用于环境的消毒,因本品对蛋白质的穿透性很强,受环境中有机物的影响较小,因此适用于排泄物、分泌物的消毒。低浓度对组织有麻痹感觉神经末梢的作用,高浓度则呈腐蚀作用。3%~5%溶液可作畜舍、场地、用具等的消毒;纯品可作腐蚀药,用于蹄炎和皮肤赘生物。2.煤酚皂溶液:别名来苏儿,煤酚(甲酚)为酚的衍生物,是从煤焦油中得到的几种甲酚异构体的混合物。为几乎无色或淡棕黄色的澄明液体,有类似酚的臭气,并微带焦臭,久贮或与日光接触,则色渐变深,略溶于水而成混浊的溶液,可溶于乙醇、乙醚和氢氧化钠溶液。临床上常用其制剂煤酚皂溶液,实为煤酚与豆油、氢氧化钠、蒸馏水混合制成的黄棕色至红棕色的粘稠液体,含煤酚47%~53%,与皮肤接触时,润滑如肥皂,可与水任意混合,须遮光密封保存。该品抗菌作用强,并有抗病毒、抗疥癣虫作用,但对芽胞无效。高浓度对组织有刺激性,大量内服或大面积外用时可吸收而中毒。1%~3%溶液用于手、器械、皮肤、创伤的消毒;3%~5%溶液用作畜舍、用具、排泄物等的消毒药。1%~4%溶液可用以治疗疥癣,内服作胃肠的防腐制酵药(稀释到1%以下)。3.克辽林,别名臭药水、煤焦油皂溶液,为不纯的煤酚中加入树脂、肥皂和氢氧化钠等制得的暗褐色油状液体,易溶于温水,加水稀释后呈乳白色浊液。该品的抗菌作用、应用范围及浓度,均和来苏儿相同。其防腐力大,毒性较小,多内服作胃肠防腐制酵药,用于肠膨胀、肠痉挛、腹泻、便秘等。外用尚有防蝇、驱蛆、除臭等功效。 该类特点是易挥发,又称挥发性烷化剂,他可发生烷基化反应,使菌体蛋白变性,酶和核酸功能发生改变。对芽胞、真菌、结核杆菌、病毒均有杀灭作用。主要药物有甲醛溶液:福尔马林.;聚甲醛:加热熔融产生大量甲醛气体;戊二醛:价格较贵,用于器具消毒。常用2%的浓度。戊二醛:本品为灭菌剂具有广谱、强效、速效、低毒等特点。能杀灭耐酸菌、芽胞、真菌和病毒等。以pH 的水溶液效力最强,是甲醛的10~20倍。消毒效果受有机物影响小,对金属基本无腐蚀性。细菌繁殖体对戊二醛高度敏感,一般只需1~2min即可杀灭,在酸性条件下戊二醛无杀灭芽胞作用,当pH增至时杀芽胞作用明显。强化酸性戊二醛提高了戊二醛的稳定性,加强了药物表面活性作用,其杀菌作用同碱性戊二醛。制剂:①浓溶液:25%;②稀溶液:、2%溶液;③2%碱性戊二醛:2%戊二醛+碳酸氢钠使pH调至;④中性强化戊二醛:2%戊二醛+聚氧乙烯脂肪醇醚,用前以碳酸氢钠将pH调至,可连用4周;⑤强化酸性戊二醛:2%戊二醛+聚氧乙烯脂肪醇醚,以保持其稳定性并提高杀菌作用;⑥2%酸性戊二醛:2%戊二醛+蒸馏水(pH近于4在60℃ 20 min即可杀灭芽胞)。 对细菌、病毒的杀灭作用均强,高浓度杀死芽胞。取决于解离的OH-浓度,在pH>9时可杀灭病毒、细菌和芽胞。对铝制品、纤维织物有损坏作用。用于厩舍的地面、饲槽、车船等消毒。氢氧化钠:氢氧化钠的粗制品称为火碱。消毒用一般都含钠约94%的工业用液碱或固体碱,其纯品是无色透明的晶体,易镕于水,溶解时会强烈放热。固体烧碱吸湿性很强,放在空气中,最后会完全溶解成溶液。氢氧化钠易从空气中吸收二氧化碳而渐渐变成碳酸钠,故必须注意贮存在陶瓮、破瓶中。氢氧化钠是一种高效消毒药。2%~4%的溶液可杀死病毒和细菌;高浓度溶液亦可杀死芽胞,如30%溶液10min可杀死芽胞,4%溶液45min杀死芽胞,加入10%食盐可增强杀灭芽胞能力。实际常用2%~4%氢氧化钠溶液用于口蹄疫、猪瘟、猪流感、水泡病和传染性胃肠炎等病毒性感染的消毒;也常用于猪丹毒、布鲁氏杆菌病、仔猪副伤寒、禽出败、鸡白痢等细菌性感染的消毒;5%溶液用于炭疽和畜禽养殖场门口消毒池对进出车辆的消毒。主要适合于消毒畜舍、肉联厂、食品厂车间的地面、台板、饲槽等。消毒时习惯应用加热的溶液,加热虽然不增强氢氧化钠的消毒力,但可溶解油脂,加强去污能力,而且热本身就是消毒因素,不仅能杀菌,也能杀死寄生虫虫卵。氢氧化钠具有原浆毒,消毒人员用时应注意防护,配制和使用时应戴橡胶手套,戴防护眼镜,避免被灼伤。消毒畜舍地面后6~12h,应注意再用清水冲洗干净,以免家畜蹄部和皮肤受伤害。 具有强大杀菌作用。氯的杀菌力最强,破坏菌体或改变细胞膜的通透性,抑制酶的活性。卤素和易释放卤素的化合物具有强大的杀菌力,氯最强。对菌体原浆蛋白高度亲和力,可使菌体蛋白卤化(氯化),改变膜通透性,还可氧化巯基酶。1.漂白粉(含氯石灰) :该品是目前应用最广泛的含氯消毒剂。其主要成分为次氯酸钙、氧化钙和氢氧化钙,灰白色或淡黄色粉末,有氯臭,较难溶于水,溶液呈浑浊,并产生沉淀。一般含有效氯35%,不得低于25%。其稳定性差,遇日光、热、湿即可吸收空气中的水分与二氧化碳而缓慢分解,丧失有效氯,故应保存在密闭、干燥的容器内,置通风、干燥、阴凉处。即使在妥善保存的情况下,有效氯每月约散失1%~3%。由于杀菌作用与有效氯的含量有关,当有效氯低于16%时即不宜用于消毒,因此在使用储存的漂白粉前,应测定其有效氯含量。该品的杀菌作用快而强。其有效成分是次氯酸钙。其加入水中与加氯一样生成次氯酸。次氯酸可放出活性氯和初生态氧,对细菌原浆蛋白产生氯化和氧化反应而呈杀菌作用。1%溶液作用1min可抑制炭疽芽胞、沙门氏杆菌、巴氏杆菌、猪丹毒杆菌等繁殖型微生物的生长。对葡萄球菌和链球菌的作用也只需1~5min;但对结核杆菌、鼻疽杆菌效果较差,消毒不可靠。在实际消毒时,漂白粉与被消毒物的接触至少要15~20min,对高度污染的物体则需要1h之久。漂白粉中的氯可与氨及硫化氢发生反应,故有除臭作用。总之漂白粉杀菌谱广,对细菌繁殖体、病毒,真菌孢子及芽胞都有一定的杀灭作用。该品一般应用其混悬乳、澄清液或干粉。饮水消毒可在每立方米水中加漂白粉6~10g,30min后即可饮用,水消毒后有轻度臭味,但对畜禽健康无害。泥池、砖地及路面的消毒可撤于粉,继而洒水;粪便和污水的消毒可按1:5的用量,一面搅拌,一面加入漂白粉。泥土的消毒可浇以10%~20%漂白粉乳,再将泥土上层锄松,与漂白粉乳混合处理。用5%澄清液消毒畜禽舍的墙壁、饲槽及饲养用具等。澄清液的配制方法:一般都用l0%漂白粉乳放置暗处过夜,沉淀后的上清液即为10%澄清液,然后按需要进行稀释。1%一2%澄清液常用来消毒食具、玻璃器皿和非金属用具。由于次氯酸的杀菌作用快,残留氯可迅速散失,不留气味,故食品厂、肉联厂、屠宰场(点)常用它在操作前或日常消毒中用来消毒设备。澄清液可浸泡消毒无色衣物。因其有漂白颜色作用,不能消毒有色衣物。漂白粉对动物皮肤有刺激性,浓度高时可引起炎症和坏死,用时应注意。漂白粉对金属有腐蚀作用,故也不宜用作金属物品的消毒。2.次氯酸钠:工业制备的次氯酸钠可含有效氯10%~20%。其纯品为白色或灰绿色结晶;工业产品为淡黄色或乳状液,pH值高达10~12,有氯臭,无残渣,易溶于水,次氯酸钠为强氧化剂,有较强的漂白作用,对金属器械有一定的腐蚀作用。次氯酸钠发生器电解氯化钠溶液(食盐水),快速生成次氯酸钠消毒原液,含有效氯1%一5%左右。这种方法弥补了由于含氯消毒液随时间推移,杀菌作用会逐渐下降,以及氯气泄漏易造成中毒等不足,保留了含氯消毒液的优点。3.二氧化氯(超氯):最新一代高效、广谱、安全的消毒杀菌剂,是氯制剂最理想的替代品,二元复配型高效消毒剂。用于食品、食品加工、制药、医院、公共环境等的消毒、防霉和食品的防腐保鲜等,发达国家已广泛应用二氧化氯替代氯气进行饮用水的消毒,发达国家已广泛应用二氧化氯替代氯气进行饮用水的消毒。4.二氯异氰脲酸钠(优氯净):本品为白色晶粉,含有效氯为60%~64%。性质稳定,水溶液:呈酸性,稳定性差。本品杀菌谱广、作用受有机物影响小,可杀灭细菌繁殖体、芽胞、病毒、真菌胞子;用于水、食品加工场地及器具、车辆、厩舍、蚕室、鱼塘的消毒。浓度用于杀灭细菌和病毒;5%~10%浓度用于杀灭细菌芽胞。鱼塘消毒用,饮水用,其他消毒用50~100g/m3,此外,尚有三氯异氰脲酸钠(含有效氯为85%)可选用。 通过化学合成可得到表面活性剂,又称作人工合成洗净剂。这是一类带有亲水基与疏水基的化合物,它可降低水的表面张力,促进液体的渗透、增溶,使物体表面的油脂乳化,乳化后的油垢易除去,故能去垢。这类药物能吸附于细菌细胞的表面,引起细胞壁损伤,灭活细胞内氧化酶等酶活性,发挥杀菌消毒作用。表面活性剂的杀菌和洗净作用,可以分为三种类型。第一类是阳离子表面活性剂,又称作季铵盐类化合物,溶于水时,与其疏水基相连的亲水基是阳离子,对革兰氏阳性与阴性菌都能杀死,显效快,但洗净作用较差。该类化合物对皮肤和粘膜无刺激性,对器械无腐蚀性,常用的有新洁尔灭、杜灭芬等。第二类为阴离子和非离子表面活性剂,具有良好的洗净作用,但杀菌作用较差。阴离子表面活性剂溶于水时,与其疏水基相连的亲水基是阴离子,只有轻度抑菌作用,如十二烷基苯磺酸钠等。非离子表面活性剂溶于水中不电离,无离子产生,有一定抑菌作用,如吐温等化合物。第三类为两性离子表面活性剂,溶于水后,因其具备疏水基和亲水基,使其同时具有阴、阳两类离子性质,因此既具有阴离子化合物的洗净性能,又具有阳离子化合物的良好杀菌作用。由于细菌常带阴电荷,故阳离子表面活性剂的杀菌作用更强。实际当中也常用季铵盐类阳离子表面活性剂作为消毒剂。尤其季铵盐类:可杀灭大多数种类的细菌、真菌及部分病毒,但不能杀死芽胞、结核杆菌和绿脓杆菌。对革兰氏阳性菌作用强,杀菌迅速、刺激性小、毒性低、不腐蚀金属橡胶;杀菌效果受有机物影响大。苯扎溴铵(或苯扎氯铵):又名新洁尔灭,溴苄烷胺(或洁尔灭,氯苄烷胺),本品为阳离子表面活性剂。具广谱杀菌作用和去垢效力。其作用部位在细胞膜,可改变细菌细胞膜的通透性。使菌体胞浆物质外渗,阻碍其代谢而起杀菌作用。可杀灭细菌繁殖体以及某些病毒和真菌,不能杀灭细菌芽抱。对人体组织刺激性小,作用发挥迅速,能湿润和穿透组织表面,并具有除垢、溶解角质及乳化作用。用于皮肤、粘膜和伤口消毒。皮肤及粘膜消毒,用溶液;创面消毒,用溶液。 有强大的杀菌作用,能杀死细菌、芽胞、霉菌、病毒、原虫。碘与碘化物的水溶液或醇溶液用于皮肤消毒或创面消毒。忌与重金属配伍。主要药物:碘、聚维酮碘、碘仿。碘:为灰黑色有金属光泽的片状结晶或颗粒,质重、脆,有特臭,难溶于水(1:2950),能溶于乙醇(1:13)和甘油(1:80),在碘化物的水溶液中易溶解,在常温中能挥发,应置玻璃塞瓶中密封,于阴暗处保存。碘能引起蛋白质变性(形成碘化蛋白质)而具有极强的杀菌力,能杀死细菌、霉菌、芽胞和病毒。其稀溶液对组织的毒性小,浓溶液有刺激性和腐蚀性。本品忌与氨溶液、碱性物质、重金属盐类、生物碱、挥发油、龙胆紫等混合应用。本品通常配戊制剂应用。2%~5%碘溶液可作注射部及术部皮肤、手指、器械的消毒以及创伤的防腐等。高浓度的碘溶液(10%~20%可作皮肤刺激药,对慢性腰炎、腰鞘炎、关节炎、骨膜炎等有消炎作用,也可用作化脓创的消毒。其制剂碘酊(碘酒),为碘的乙醇溶液,深褐色。兽医上常用5%的碘酊,系由碘、碘化钾、75%乙醇加至制成。碘甘油:由碘、碘化钾、甘油、蒸馏水加至制成。为收敛性消毒药,刺激性较小,作用时间长,多用于口粘膜,治疗口炎、溃疡等。 与有机物相遇时释放出新生态氧,使菌体内活性基团氧化而杀菌。主要药物过氧化氢(双氧水):清洗化脓性创伤、除臭、止血,也可用于食品浸泡或喷雾消毒。高锰酸钾:具有杀菌、除臭、解毒、收敛作用,临床用于腔道冲洗及洗胃或创面冲洗。过氧乙酸:无色液体,有很强的醋酸味,易溶于水、酒精和醋酸。性质不稳定,稀浓度时在45%以上时容易爆炸。在低温下分解缓慢故常采用低温保存。本品是一种强氧化剂。能杀死细菌、芽胞、真菌和病毒。过醋酸能分解为醋酸、水和氧,这些产物对动物无害,所以可以长期使用。过醋酸消毒过程中就开始挥发,在消毒后不留气味和痕迹,故可用于畜舍、食品工厂和食品(鸡蛋、肉、水果等)的消毒;也可用于外科手木器械和废水等的消毒,还可用于治疗家畜真菌病。用法:用4份冰醋酸加1份过氧化氢(浓度30%),再按总体积加1%浓硫酸。以玻璃棒搅匀,在室温下放置48-72h,可生成30%~40%的过醋酸原液。过醋酸,经1min能杀死大肠杆菌和皮肤癣菌,过醋酸,10min能杀死所有芽胞菌;溶液,可杀死脊髓灰质炎病毒、腺病毒、疱疹病毒;浓度溶液,20min可杀死口蹄疫病毒(组织毒)。
一、液氯消毒原理和二氧化氯消毒原理 (一)、液氯消毒 氯气加入水中产生一系列化学变化。不同的水质其化学反应的过程也不一样,但最终起消毒作用的产物为次氯酸和次氯酸根离子。 1. 当水中无氨氮存在时 CL2+HO2→HOCL+H++CL– …………………….(1) 次氯酸是一种弱电介质 HOCL→H++OCL– ………………………………(2) 次氯酸与次氯酸根在水里所占的比例主要取决于水的pH值,HOCL和OCL–都具有氧化能力,但HOCL是中性分子,可以扩散到带负电荷细菌的表面,并渗入细菌体内,氯原子氧化作用破坏细菌体内的酶,使细菌死亡;而OCL–带负电,难于靠近带负电荷的细菌,所以虽有氧化能力也难起消毒作用。 从图Ⅰ可以看出,在pH值范围内,水的pH值越低,HOCL的百分含量越大,因而消毒效果越好。 2. 当水中存在氨氮时,(1)式产生的HOCL就会和氨化合,产生一类叫胺的化合物,其成份视水的pH值及CL2和NH3含量的比值而定。 NH3+HOCL →NH2CL+H2O………………….(3) NH3+2HOCL→NHCL2+2H2O…………………(4) NH3+3HOCL →NCL3+3H2O………………….(5) 当水的PH值在之间时,NH2CL和NHCL2同时存在,但PH值低时,NHCL2较多,NHCL2的杀菌能力NH2CL强,所以水的PH值低一些,也是有利于消毒作用的。NCL3要在PH值低 于时才产生,在一般的饮用水中不大可能形成。 所以,无论水中是否存在氨氮,在使用液氯消毒时,在pH值范围内,pH值越低,消毒效果比PH值高的消毒效果好。 (二)、二氧化氯消毒 二氧化氯化学性质活泼,易溶于水,在20℃下溶解度为,是氯气的溶解度的5倍。氧化能力为氯气的2倍。CLO2是中性分子,在水中几乎100%以分子状态存在,所以极易穿透细胞膜,渗入细菌细胞内,将其核酸(DNA或RNA)氧化后,从而阻止细菌的合成代谢,并使细菌死亡。在饮用水中 CLO2灭菌反应如下式.(6)、(7)所示。 CLO2+ e→CLO2–…………………………………………(6) CLO2+2H2O+4e→CL–+4OH–……………………………(7) 实验测知,式(6)式的电极电位 ,式(7) 式的电极电位。所以使用二氧化氯消毒还可以氧化水中的一些还原性金属离子(如Fe2+ Mn2+等),即对水中的铁、锰有着不错的去处效果。CLO2的氧化能力与溶液的酸碱性有关,溶液酸性越强,CLO2的氧化能力越强。但在PH值6-10范围内的杀菌效果几乎不受PH值影响。 综上,在净水工艺条件下,用液氯消毒,起杀菌作用的主要是HOCL,其杀菌效果比OCL–高近80倍。由图表Ⅰ可以看出pH值越高,HOCL离解的越多,当pH值大于8时即达到75%的OCL–,消毒效果就愈发降低。经过众多试验结果得出,CLO2可以在范围内杀灭细菌,液氯只有在近中性条件下才能有效地杀灭细菌。 二、两种消毒剂杀灭饮用水中细菌的情况 在饮用水中投加消毒剂的目的主要是杀灭对人体有害的病原菌、病菌,及其它致病的病原微生物。经过消毒处理的水,不是将水中所有的细菌杀灭,可以允许含有少量的对人体健康无害的细菌,但一定要达到《生活饮用水卫生标准》的要求。 (一)、消毒剂投加量对消毒效果的影响 为了研究消毒剂投加两对消毒效果的影响,对我公司的沉淀水(未加消毒剂)、滤前水(预加 mg/L消毒剂)、滤后水(又加 mg/L消毒剂)进行了细菌学指标的检测,检测结果见图表Ⅱ。 从试验结果可以得出: 1. 二氧化氯和液氯对大肠杆菌均有较好的灭菌效果,且随着投加量增大杀菌率增大;二氧化氯的灭菌效果稍优于液氯。投加量为时,液氯的杀菌率是,二氧化氯的杀菌率则达。 2.二氧化氯杀灭细菌的效果明显优于液氯。 (二)、水温对消毒剂杀菌效果的影响 消毒剂的杀菌能力随着温度的上升而增强,温度低时每上升10℃,细菌死亡率成倍增加。图表Ⅲ为Benarde等试验的不同温度下二氧化氯接触时间与大肠杆菌存活率的关系。由图可见,温度升高,灭菌时间相对缩短,杀菌效果相对增强。 三、两种消毒剂对饮用水中有机卤代物 形成的影响 随着人们对用液氯消毒饮用水所产生的有机卤代物致癌作用的研究,国家自然科学基金资助了对比液氯消毒与二氧化氯消毒处理水中有机物情况的项目。对用液氯消毒和用二氧化氯消毒的四种同一自来水厂饮用水的富集水样进行GC/MS分析,其试验结果见图表Ⅳ。 由试验结果表明,凡是投加液氯消毒,不仅有机物种类多,含量大,且均形成较多的有机卤代物(如CHCl3、CHBr3等)。如投加 mg/L液氯的水样检出2种氯代物和7种溴代物,含量为;而用二氧化氯消毒的水样,未检出有机卤代物。二氧化氯消毒一般只起氧化作用,不起氯化作用,这是二氧化氯消毒几乎不形成有机卤代物的根本原因。可见,源水严重污染或水体中有机物含量高时,二氧化氯是最好的选择。 四、我厂对饮用水消毒剂的合理应用 我厂引进的高效复合二氧化氯发生器,其制备消毒剂的原理是利用氯酸钠水溶液与盐酸溶液在一定温度和负压下充分反应,产生以二氧化氯为主、氯气为辅的消毒气体,来进行饮用水消毒的。 该设备在投入使用初期,由于管垢中的锈蚀物要消耗一些二氧化氯,二氧化氯消耗量较大,运行成本较高。运行一个月左右后,二氧化氯的投加量趋于稳定。统计生产实践所耗用的成本,进行经济技术分析,我们得出,在达到同样的消毒效果时,消耗二氧化氯的量要比液氯的消耗量低一些,但制备二氧化氯的原料成本要比液氯成本高元/吨。为了保证水质,同时兼顾节约成本,我厂在冬季水源污染少、浊度低时,使用液氯消毒;到了夏季,水源污染较重或者水源中有机物含量偏高时,使用二氧化氯消毒。 五、结论 液氯作为经典的饮用水消毒方式,消毒能力强,货源充足,价格低廉,投加设备较为简单,有着价廉物美的优势。但当水中有机物含量高时,会产生有致癌作用的卤化有机物。 二氧化氯作为后发展起来的消毒方式,杀菌能力比液氯消毒强,杀菌效果不受水的pH值影响,只发生氧化作用不发生氯化作用达到消毒效果,避免了有机卤代物的问题。但是二氧化氯制取出来即须应用,不能贮存,制取原料价格较贵。 无论是液氯消毒还是二氧化氯消毒,都有各自的优点和缺点。我应该根据生产实践中的实际情况,因水制宜,合理选用饮用水消毒剂,力争得到最好的性价比 一、兽用消毒剂的种类及机理 消毒剂的种类有多种,常用的兽用消毒药主要是:酚、醛、醇、酸、碱、氯制剂、碘制剂、重金属盐类、表面活性剂等类型消毒剂。 酚类 这类消毒剂能使病原微生物的蛋白变性、沉淀而起杀菌作用,能杀死一般细菌。复合酚能杀灭芽胞、病毒和真菌。主要有苯酚、复合酚、煤酚等。 醛类 醛类的杀菌作用也是较强的,其中以甲醛的效果较好,也最常用。随着生产技术的进步和养殖业的需求,戊二醛、邻苯二甲醛等高效消毒剂也被广泛应用。 酸类 酸类消毒剂的杀菌原理是高浓度的氢离子能使菌体蛋白变性和水解,而低浓度的氢离子可以改变细菌体表蛋白两性物质的离解度,抑制细胞膜的通透性,影响细菌的吸收、排泄、代谢和生长。氢离子还可与其它阳离子在菌体表面竞争性吸附,妨碍细菌的正常活动。 碱类 用于畜禽消毒的碱类消毒药主要有苛性钠、苛性钾、石灰、草木灰、苏打等。碱类消毒作用的机理是阴性氢氧根离子能水解蛋白质和核酸,使细菌酶系统和细胞结构受损害,同时碱还能抑制细菌的正常代谢机能,分解菌体中的糖类,使菌体复活。它对病毒有强大的杀灭作用,可用于许多病毒性传染病的消毒,高浓度碱液亦可杀灭芽胞。碱类消毒剂最常用于畜禽饲养过程中场区及圈舍地面、污染设备(防腐)及各种物品以及含有病原体的排泄物、废弃物的消毒。 醇类 醇类主要用于皮肤、器械以及注射针头、体温计等的消毒,如:75%的酒精。 表面活性剂类 这类消毒药又称除污剂或清洁剂,可降低菌体的表面张力,有利于油的乳化而除去油污,产生一定的清洁作用。另外,表面活性剂还能吸附于细菌表面,改变菌体细胞膜的通透性,使菌体内的酶、辅酶和中间代谢产物选出,阻碍了细菌的呼吸和糖酵解的过程,使菌体蛋白变性,而出现杀菌作用。常用的有新洁尔灭、洗必泰、杜米芬等。 氧化剂类 这是一类含不稳定的结合态氧的化合物,遇到有机物或酶即可放出初生态氧,而后破坏菌体的活性基因,发挥消毒作用。常用的氧化剂消毒剂有高锰酸钾、过氧乙酸等。 卤素类 卤素(包括氯、碘等)对细菌原生质及其它结构成分有高度的亲和力,易渗入细胞,之后和菌体原浆蛋白的氨基或其它基团相结合,使其菌体有机物分解或丧失功能呈现杀菌作用。在卤素中氟、氯的杀菌力最强,依次为溴、碘,但氟和溴一般消毒时不用。常用的该类消毒剂包括:漂白粉精、次氯酸钠溶液、优氯净、强力消毒王、碘酊、复方络合碘等。 二、消毒剂对微生物杀灭效果评价试验现状 评价消毒产品的消毒效果,应以中华人民共和国卫生部2002年颁布的《消毒技术规范》为依据。但是该规范中规定的某些实验方法和操作技术还存在诸多问题。评价消毒效果主要是评价对微生物(细菌、病毒、真菌、芽胞等)的杀灭作用以及有机物、PH值、温度等因素对其效果的影响。 《消毒技术规范》(2006征求意见版)中指出检验消毒产品对细菌、真菌的灭活效果时所选用的基础实验菌种包括:金黄色葡萄球菌ATCC 6538、铜绿假单胞菌ATCC 15442、大肠杆菌 8099、枯草杆菌黑色变种ATCC 9372、龟分枝杆菌脓肿亚种ATCC19977、白色葡萄球菌 8032、白色念珠菌ATCC 10231、黑曲霉菌ATCC 16404。在上述规定的菌株基础上,根据消毒剂特定用途或试验特殊需要,还可增选其他菌株。病毒灭活试验所用试验病毒株为脊髓灰质炎病毒1型(poliovirus-Ⅰ,PV-Ⅰ)疫苗株和艾滋病病毒1型(human immunodeficiency virus,HIV-1)美国株。 评价消毒剂消毒效果的检测方法主要包括中和试验、消毒剂定性消毒试验、消毒剂定量消毒试验、消毒剂杀菌能量试验、乙型肝炎表面抗原抗原性破坏试验。具体试验步骤可参见卫生部提出的《消毒与灭菌效果的评价方法与标准》。 三、兽用消毒药的应用现状 当前我国生产、经营和使用最广泛的兽用消毒药品主要为复合酚类、碘类、季胺盐类和氯制剂四大类。当前养殖单位广泛应用的效果确实的消毒药主要有: 安灭杀 先灵葆雅公司生产,主要成分为15%的戊二醛和10%的COCO季胺盐; 拜净 拜耳动保生产,主要成分为十二烷氧化胺三碘氧化合物; 百胜-30/15 辉瑞动保生产,主要包含碘、磷酸、硫酸等成分; 农福 杜邦化工生产,主要成分为高效复合酚。 兽用消毒药在实际应用中仍存在很多问题,如,忽略清除畜禽舍内的粪便、饲料残渣、体表脱落物等有机物;认为饮水消毒剂对畜禽无害而随意加大浓度,造成损失;认为使用温开水做溶剂能增加所有消毒剂的消毒效果;不能做到交叉应用多种类型消毒剂,造成耐药性的产生;认为消毒剂气味越浓越好,造成畜禽黏膜损伤,影响效益。 四、展望 随着经济贸易的全球化,动物疾病流行也呈现全球化,一些新的疾病的流行给畜禽养殖业造成了巨大损失。由于新型传染病疫苗的研究需要较长周期,因此预防控制新型传染病只能通过加强饲养管理和注重消毒等预防措施来实现。这种形势下,研究一种或多种新型、高效、广谱、安全的消毒药显得十分必要。 理想的兽用消毒药应具有高效、广谱、作用迅速、活性长效、性质稳定、便于储运、抗有机物干扰、高度的安全性、成本适中等几个特点。新型高效复合型消毒剂以及兽用消毒剂专用表面活性剂将成为未来研究的趋势,在此基础上,宠物手术(器械)专用消毒剂、奶牛乳头专用消毒剂、种蛋专用消毒剂、SPF动物屏障设施专用消毒剂、生物安全实验室专用消毒剂、疫苗灭活专用消毒剂等更加细化的专业实用型消毒剂的研究也会逐渐受到人们的关注。 延伸阅读 兽用消毒药监管过程中存在的问题 消毒药品名称繁杂 我国专业和兼产兽用消毒药品的厂家较多,兽药市场销售的消毒剂品种更是繁多。除国产制品外,还有部分进口药品。动物消毒药品品种多而杂,同一个功能的消毒药品,有几十个甚至上百个不同批准文号的产品,给用户在使用消毒药品的选择上造成了一定困难。 生产厂家刻意夸大消毒效果 部分厂家为了迎合消费者消费心理、促进产品销量,刻意的在产品外包装说明中夸大产品的消毒效果,以点盖面,使用绝对化语言,甚至将自己的产品说成“万能药”。 产品质量良莠不齐 由于相关监管体制的不完善,部分经营者利用监管机构的疏忽大意,使大量的劣质消毒药流入兽药市场,既破坏了原有的市场秩序,又给相关养殖单位造成了巨大的经济损失。同时劣质消毒药生产者还利用兽药销售吃回扣的不良心理进入市场,这些受利益驱动的消毒药价格回扣现象,给消毒药品的管理带来消极影响。 缺乏相关药品的科学研究 兽用消毒药的研究涉及消毒学、兽医流行病学、环境卫生学和兽医微生物学等相关方面的知识,研究起来费时费力。同时一个消毒药的问世要经过实验室研究、中试放大和临床等几个步骤,转化为产品的周期较长。目前应用的许多消毒药都是公共卫生部门、防检疫部门研究的,缺乏专门针对兽用消毒药的试验研究。
第一作者:焦龙博士 ;通讯作者:江海龙教授 通讯单位:中国科学技术大学
论文DOI:
在该工作中,我们构筑了一系列同构的卟啉基MOF材料,通过调变卟啉中心的金属物种,从而衍生得到了一系列含有不同金属物种(Fe, Co, Ni, Cu)的单原子催化剂材料,这些催化剂除了金属物种不同,金属负载量、配位环境、比表面积、孔尺寸等特性均保持一致,从而实现了有效的变量控制。在该模型体系构筑的基础上,我们研究了不同单原子材料电催化CO2还原性能, 其中单原子Ni催化剂(Ni1-N-C)表现出了最高的CO选择性,并且在CO2浓度降低至15%的含量时,最优的CO选择性依然可以超过80%,展示了单原子催化剂在实际CO2催化转化中巨大的应用前景。
单原子催化剂(SACs)在诸多反应中表现出了极大的优越性,并且已经成为了多相催化的前沿领域。通常情况下,SACs的催化性能不仅依赖于金属活性位点的本征活性,同时也会受到活性位周围的微环境以及载体的物理化学特性的调控。然而,由于不同金属物种的单原子催化剂合成方法的不同,得到的单原子催化剂除了金属物种外,许多理化特性例如单原子金属的负载量、孔结构等等都不尽相同。由于变量的复杂性,给对比不同单原子活性位的本征活性带来很大的挑战。单原子金属修饰N掺杂碳(M1-N-C)材料,作为重要的一类单原子催化剂,在电催化CO2还原反应(CO2RR)表现出的优异的性能。然而,文献报道的M1-N-C材料的碳载体往往表现出不同的特征(孔隙结构、表面积、形貌等),使得即使相同的金属中心,M1-N-C的活性也会有较大的差异。有鉴于此,我们希望发展一种通用的单原子合成策略同时可以实现微环境和载体性质的严格控制,从而来判别单原子不同金属物种的活性位点的内在活性。
我们在调研单原子催化剂相关文献的过程中发现,例如在CO2电催化还原反应中,即使相同金属中心,不同文献中报道的催化活性有时候差异会非常大。我们发现这些催化剂的载体性质、金属载量、活性位微环境等通常差异较大,很难去对活性位的本征活性做出客观的评价。我们基于一种卟啉基的多变量MOF,MOF的卟啉配体中心金属种类可以任意调变而不影响MOF的拓扑结构和形貌,进一步借助MOF和它的衍生材料结构上的继承关系,可以严格控制MOF衍生不同单原子材料的理化性质,从而为对比不同金属中心的催化活性提供了良好的模型体系。
除了活性位点的识别,CO2利用的另一个关键问题是高能耗的CO2捕获和净化过程。具体来说,为了达到高选择性,目前报道的CO2RR通常在纯CO2中进行。然而,实际工业过程中可用的CO2原料的实际浓度相对较低,例如燃煤电厂和钢铁/石化行业排放的CO2气体浓度分别在5-15%和14-33%左右。考虑到CO2 中C=O键键能大约在 806 kJ/mol,热力学比较稳定性,活化较为困难。另外其在水溶液中有限的溶解度,低的CO2浓度会显著影响其催化转化的活性,为CO2的直接利用设置了很大的障碍。因此,开发高效的低压下二氧化碳直接转化电催化剂非常重要,但目前很少能实现。
Scheme 1. Illustration showing the general fabrication of single-atom M1-N-C catalysts based on MTV-MOFs for electrocatalytic CO2 reduction.
我们基于混合配体策略,通过改变金属卟啉配体中心金属的种类,构筑了一系列同构的卟啉MOF,通过衍生之后获得了一系列具有不同金属中心(Fe, Co, Ni, Cu)的碳基单原子催化剂材料 (Scheme 1)。卟啉中心金属的改变并未影响MOF的结构和形貌,借助于MOF前驱体和它的衍生材料结构上的继承性,获得的一系列单原子催化剂材料。除单原子金属种类之外,其他理化性质(形貌,成分,孔结构等)同样可以保持高度的一致,从而实现了变量的控制。
Figure 1. Electrochemical performances in pure CO2. a) LSV curves of Ni1-N-C in pure Ar- and CO2-saturated M KHCO3. b) FEs and c) TOFs of M1-N-C for CO in pure CO2-saturated M KHCO3. d) Tafel plots of M1-N-C for CO2RR. e) Durability test of Ni1-N-C at a constant potential of V vs RHE in pure CO2.
基于得到的一系列单原子催化剂材料,我们首先研究了他们在纯的CO2氛围下的电催化性能。通过实验可以发现,Ni1-N-C材料在众多单原子催化剂材料中,表现出了最高的CO选择性、TOF值以及Tafel斜率,并且具有良好的催化稳定性(Figure 1)。
Figure 2. DFT calculations. a) Reaction paths and b) Free energy diagrams of CO2 reduction to CO and c) The values of UL(CO2)-UL(H2) for all M1-N-C catalysts.
理论计算表明,在CO2电催化还原生成CO的多步基元反应中,Ni1-N-C相较于其他单原子催化剂,具有最为优化的COOH*形成和CO脱附的能垒,有效的促进了CO2的转化和产物的脱附,预示着其具有最高的CO2电催化还原的活性。另外,通过对比不同材料CO2还原和析氢反应的决速步电势差(UL(CO2)-UL(H2)),可以看出Ni1-N-C可以更有效的抑制析氢竞争反应,从而表现出最优的CO2还原的选择性 (Figure 2)。
Figure 3. Electrochemical performances of CO2 at low pressures. a) LSV curves and b) CO FE of Ni1-N-C in M KHCO3 saturated with 30% and 15% CO2. c) Durability tests of Ni1-N-C at constant potential of V under 30% CO2 concentration and V under 15% CO2 concentration, respectively.
鉴于在纯CO2中的实验结果和理论计算的结论,我们进一步 探索 了Ni1-N-C在低浓度的CO2还原反应的测试中的性能。可以看到,Ni1-N-C在30%和15%的CO2浓度下依然有明显的电流响应,进一步通过不同电位下的选择性测试可以看出,在15%的CO2浓度下其最优选择性依然可以超过80%,并表现出了良好的催化稳定性 (Figure 3)。
该工作基于同构的卟啉基MTV-MOFs,构建了一系列单原子催化剂 (M1-N-C, M = Fe, Co, Ni和Cu),除单原子金属的种类不同之外,其孔结构和化学成分以及活性位微环境都保持一致,因而可以作为研究不同单原子金属物种本征活性差异的理想模型。在纯CO2条件下, Ni1-N-C表现出了最优的CO选择性。进一步,Ni1-N-C在更具有挑战性的低浓度CO2还原中,甚至可以在30%和15%的CO2浓度下保持其高的CO选择性,表明了Ni1-N-C在电催化CO2RR的独特优势。这项工作不仅提供了一种SACs的普适性合成方案,同时本文的结果展示了单原子催化剂在低浓度二氧化碳直接电催化转化方面的巨大潜力。
江海龙,中国科学技术大学教授、博士生导师、英国皇家化学会会士(FRSC),获得国家杰出青年基金资助,入选国家万人计划领军人才等。长期从事配位化学、材料化学和催化化学的交叉性研究工作,特别在基于金属有机框架(MOFs)的晶态多孔功能材料的设计、合成与催化功能 探索 等方面开展了系统的研究工作,并取得了一些重要的研究结果。已在国际重要SCI期刊上发表论文150余篇,其中以第一和通讯作者身份发表J. Am. Chem. Soc.(13篇),Angew. Chem.(12篇),Chem(3篇),Nat. Commun.(2篇),Adv. Mater.(6篇),Natl. Sci. Rev.(2篇),Acc. Chem. Res.(1篇),Chem. Soc. Rev.(2篇),Coord. Chem. Rev.(4篇), Mater. Today(1篇)等高水平论文。论文被引用20,000次以上(H指数:71),有50篇论文入选ESI高被引论文(Highly Cited Papers, Top 1%)。在《Nanoporous Materials: Synthesis and Applications》中撰写书章一章。担任中国化学会晶体化学专业委员会委员、中国感光学会光催化专业委员会委员等;担任EnergyChem(Elsevier)、Materials(MDPI)、中国化学快报、化学学报、Scientific Reports(NPG)、无机化学学报、Sci(MDPI)等期刊编委和顾问委员会委员。主持国家杰出青年科学基金、重大科学研究计划课题、基金委面上基金、青年基金等科研项目。
主要研究方向 本课题组以配位化学为基础,致力于多孔金属有机骨架材料(Metal-Organic Frameworks, MOFs)及其纳米复合材料与衍生材料的设计合成与功能应用研究。本课题组的研究属于交叉学科,内容涉及无机配位化学、晶体工程学、材料化学、纳米 科技 以及催化化学等多个领域。主要研究方向包括: (1)催化功能导向的稳定MOFs:设计、合成、修饰及催化性能研究; (2) MOFs基纳米复合材料:理性构筑及其催化功能 探索 ,特别是在有机反应多相催化及光、电催化中的应用研究; (3) CO2的选择性捕集与转化。
课题组主页:
催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为触媒。初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。均相催化剂和它们催化的反应物处于同一种物态(固态、液态、或者气态)。例如:如果反应物是气体,那么催化剂也会是一种气体。笑气(一氧化二氮)是一种惰性气体,被用来作为麻醉剂。然而,当它与氯气和日光发生反应时,就会分解成氮气和氧气。这时,氯气就是一种均相催化剂,它把本来很稳定的笑气分解成了组成元素。多相催化剂和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态镍(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。酶是生物催化剂。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。催化剂分均相催化剂与非均相催化剂。非均相催化剂呈现在不同相(Phase)的反应中(例如:固态催化剂在液态混合反应),而均相催化剂则是呈现在同一相的反应(例如:液态催化剂在液态混合反应)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位置。仅仅由于本身的存在就能加快或减慢化学反应速率,而本身的组成和质量并不改变的物质就叫催化剂。催化剂跟反应物同处于均匀的气相或液相时,叫做单相催化作用;催化剂跟反应物属不同相时,叫做多相催化作用。人们利用催化剂,可以提高化学反应的速度,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入~没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。
纳米催化剂具有比常规催化剂更佳的催化效果,具有广泛的应用领域.本文提出并研究了两种具有前景的新型纳米催化剂.首先是中国博士后基金资助项目-环保型纳米农药的研制与开发,采用了包覆的方法将纳米金属氧化物与农药制剂结合,制成纳米农药,可以利用自然光将有机物农药降解为水和CO<,2>,既能保证药效,又可以降低农药的残留量,实现环保的功能.本研究针对纳米农药的制备性能提出了详细的实验方案,并讨论了其表面反应的模型.其次,是国家"985"基金资助项目——制氢过程中碳纳米管负载金属催化剂的开发与研究,利用碳纳米管的催化特性和负载特性,通过甲烷热解过程产生氢气,同时生成碳纳米管.该工艺过程可以实现催化剂的自生长过程,同时碳纳米管还具有储氢功能,可以实现产氢和储氢的统一.本研究针对此催化剂和氢气制备过程提出了详尽的实验方案,设计并制作了实验装置.完成了铅池制氢的实验研究,获得了有价值的实验结果.根据此研究思路,已经申请了发明专利"铅冷快堆热解甲烷制氢新工艺".计划申请两项发明专利"新型环保型纳米农药"和"新型制氢碳纳米管催化剂".