苜蓿种子内生菌的分离开题报告应该包括以下内容:1.研究的背景和意义:介绍苜蓿种子和内生菌的相关背景和意义,包括苜蓿在农业生产中广泛应用以及内生菌的生态作用等。同时概述国内外对苜蓿种子内生菌的研究进展和不足之处,引出本研究的研究目的。2.研究目的:明确本研究的具体研究目的和需解决的问题,即分离、鉴定苜蓿种子内生菌的多样性和数量,并分析其生态功能及其与苜蓿生长发育的关系。3.研究方法:介绍本研究所采用的实验设计、样本采集、实验室操作等详细的研究方法和步骤,并阐述其科学、可靠和有效性。4.预期研究结果和意义:阐述分离、鉴定苜蓿种子内生菌的多样性和数量的预期结果,以及对苜蓿生长发育和生态作用的影响,同时指出研究的理论价值和实际意义。5.研究的进展和计划:对研究进展情况进行概括,并列出接下来的研究计划和工作安排,包括实验进度、数据分析、研究结果的检验与验证、论文的撰写和发表等。6.参考文献:引用在开题报告中涉及到的相关文献和资料。总之,苜蓿种子内生菌的分离开题报告应该全面、具体和条理清晰,让读者能够清晰地了解该研究的研究目的、方法和预期结果,并发现其中的科学价值和意义,有助于顺利进行后续的实验研究和论文撰写。
关于植物内生菌的研究作者:李金旭来源:《中国电子商情》2014年第09期引言:近年来,有关植物内生菌的研究已经成为我国微生物学领域研究的热点,由于植物内生菌具有较高的潜在可开发利用价值,使得其越来越受到人们的重视。植物内生菌作为植物微生态系统中的重要组成部分,在其长时间的协同进化中,和植物等进化为了相互依赖的关系,其具有产生活性物质的功能,因此可以用来作为生物的防治资源和外源基因的载体及新药的原料。本文针对植物内生菌进行了分析,重点突出了植物内生菌的概况、作用和应用。一、植物内生菌概述(一)有关植物内生菌的概念及其种类对于植物内生菌的概念有许多不同的定义,其中被公认的定义是指那些在其生活过程中的一定阶段或者全部阶段生活于活体植物的组织内部的微生物,这些微生物并不会对宿主植物产生显著的病害。植物内生菌普遍存在于低等植物和高等植物中。该定义是一个生态学上的概念,而非分类学单位。植物内生菌主要分为内生真菌、内生放线菌和内生细菌等,其主要寄宿在植物的表皮下的组织之中。植物内生真菌是指那些寄宿在植物的茎和叶之中度过生命周期的一种真菌。该种真菌对其宿主植物的害处非常少,甚至没有害处,它们和宿主植物之间形成共生关系。内生放线菌是一类新的生防微生物资源,其主要生活在健康的植物体内,产生系列活性物质并和宿主植物共同生活,是土壤中重要的一种原核生。内生细菌通常是指能生活在活体的植物组织中,和植物形成和谐关系的一类微生物,该类内生菌能进行生物防治、植物促生和内共生固氮作。内生细菌对于改善农业生态系统,保持植物微生态系统的生物多样性和保护农田的生态平衡等研究中具有重要意义。(二)植物内生菌研究发展概述对于植物内生菌的研究要追溯到19世纪中期,在1876年Pasteur从无菌的葡萄果汁中分离出来了植物内生细菌,开创了研究植物内生菌的先河,1886年De Bary首先提出植物内生菌的概念,他将植物内生菌定义为一类在其部分或者是全部生活史中存活于活体植物中,并不会使宿主表现出显著感染症状的微生物。内生菌的概念从1886年Bary提出来之后,距离今天有100余年的时间,在这100余年的时间里并没引起足够的重视,相关研究的进展较慢。到了20世纪末期,植物内生菌的研究才得到微生物学家、植物学家和微生态学家以及作物学家的重视。今天,对于内生细菌的研究已经成为植物微生态学和微生物学学科交叉的新的生长点,同时其也成为我国目前微生物研究领域的热点。目前,有关植物内生菌的研究不仅从深度上还从广度上都有非常大的进展,尤其是对于植物内生细菌的作用研究更是突出。近年来,有一些研究显示,植物内生菌可以作为外源基因的载体,拥有促进植物生长、增强植物抗逆境、增强植物抗病害、增加宿主植物的他感和对病虫害的防治作用等等。二、植物内生菌的作用(一)能够促进宿主生长经过研究发现,一些被感染内生菌的植物拥有比未经感染植株生长速度快的现象,某些内生菌通过人工接种的方式还能够提高植物的存活率,并促使植物发芽。张集慧等人经研究从兰科药用植物之中提取出了五种植物激素,它们分别是吲哚乙酸、玉米素、脱落酸、赤霉素和玉米核苷,这些激素能促进兰花的生长。沈德龙等人研究出水稻的内生成团泛菌YS19可以产生四种植物激素,它们可以调节水稻的生长情况,可以影响水稻的光合作用。(二)生物固氮作用很多植物在生长过程中其内生菌会从空气中吸取氮气,并将氮气转变为化合态氮,化合态的内生菌可以通过植株产生的能量产生固氮功能并且不形成特化的组织结构,差不多能够在宿主植物的各个器官之中进行固氮。通过对内生菌的不断研究,有人发现在甘蔗的根、叶和茎之中有许多的新型内生固氮菌,该种内生菌拥有较强的抗酸能力,它是重氮营养醋杆菌,其可以在高糖的环境中成长并维持高效的固氮活性,从而与甘蔗形成一种联合固氮的关系,其特征为严格的寄主唯一性。(三)抗逆境和抗病虫害作用内生菌可以增强宿主植物的抗逆性,如:通过用棉花的内生细菌回接棉花的方式,能够减轻人工接种感染的棉花枯萎情况。内生菌还可以提高宿主植物对各种其他生物如线虫、昆虫等害虫的抗性。三、植物内生菌的应用分析(一)内生菌在医药中的应用经过相关研究表明,从植物中提取出来的内生菌可以产生许多活性物质,这些活性物质拥有较大的药用价值。从一些植物中提取出的内生菌可以代谢产生抗肿瘤活性物质,这物质是抗癌物或者是其前体的重要来源,例如紫杉醇是一种提取于短叶红豆杉的二萜类生物碱,可以抑制微管解聚和稳定微管,是从植物之中发现的抗癌药物质之一;植物内生菌微生物类群可以产生许多拥有不同抗菌活性的物质,植物内生菌产生的抗微生物物质可以作为抗生素,例如肽、有机酸等抗生素。(二)内生菌在农业中的应用相关研究显示,植物内的内生菌和病原菌拥有同样的生态位,通过在植物体内的争夺空间和营养,迫使病原菌没有正常的营养而死亡,进而提高宿主植物的抵制病虫害的能力。同时,内生菌能够产生抗生素、毒素等激素,这些激素可以诱导植物产生系统抗性,来提高植物的抗逆性和抗害虫性等能力,例如:有机胺类、吲哚双萜、双吡咯烷类和吡咯里西啶类等生物碱可以对线虫等产生毒性,达到生物防治的作用。内生菌能够发生次生代谢产物,这些产物也能够消灭害虫。总之,植物内生菌的特性决定了其具有非常广泛的研究前景,拥有巨大的应用潜力,是一个潜力巨大的微生物新资源。伴随着我国生物化学、分子生物学和微生态学相关学科的发展,植物内生菌的研究将会更加广泛,其在医药和农业等领域的应用也会更加深入。参考文献[1]姜怡,杨颖,陈华红,等.植物内生细菌资源[J].微生物学通报,2005.[2]赫荣乔.植物内生细菌成为我国当前微生物研究领域的热点[J].微生物学通报,2009.[3]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学报:自然科学版,2001.(作者单位:哈尔滨师范大学)¥百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取关于植物内生菌的研究龙源期刊网关于植物内生菌的研究作者:李金旭来源:《中国电子商情》2014年第09期引言:近年来,有关植物内生菌的研究已经成为我国微生物学领域研究的热点,由于植物内生菌具有较高的潜在可开发利用价值,使得其越来越受到人们的重视。植物内生菌作为植物微生态系统中的重要组成部分,在其长时间的协同进化中,和植物等进化为了相互依赖的关系,其具有产生活性物质的功能,因此可以用来作为生物的防治资源和外源基因的载体及新药的原料。本文针对植物内生菌进行了分析,重点突出了植物内生菌的概况、作用和应用。第 1 页一、植物内生菌概述(一)有关植物内生菌的概念及其种类对于植物内生菌的概念有许多不同的定义,其中被公认的定义是指那些在其生活过程中的一定阶段或者全部阶段生活于活体植物的组织内部的微生物,这些微生物并不会对宿主植物产生显著的病害。植物内生菌普遍存在于低等植物和高等植物中。该定义是一个生态学上的概念,而非分类学单位。植物内生菌主要分为内生真菌、内生放线菌和内生细菌等,其主要寄宿在植物的表皮下的组织之中。植物内生真菌是指那些寄宿在植物的茎和叶之中度过生命周期的一种真菌。该种真菌对其宿主植物的害处非常少,甚至没有害处,它们和宿主植物之间形成共生关系。内生放线菌是一类新的生防微生物资源,其主要生活在健康的植物体内,产生系列活性物质并和宿主植物共同生活,是土壤中重要的一种原核生。内生细菌通常是指能生活在活体的植物组织中,和植物形成和谐关系的一类微生物,该类内生菌能进行生物防治、植物促生和内共生固氮作。内生细菌对于改善农业生态系统,保持植物微生态系统的生物多样性和保护农田的生态平衡等研究中具有重要意义。第 2 页(二)植物内生菌研究发展概述对于植物内生菌的研究要追溯到19世纪中期,在1876年Pasteur从无菌的葡萄果汁中分离出来了植物内生细菌,开创了研究植物内生菌的先河,1886年De Bary首先提出植物内生菌的概念,他将植物内生菌定义为一类在其部分或者是全部生活史中存活于活体植物中,并不会使宿主表现出显著感染症状的微生物。内生菌的概念从1886年Bary提出来之后,距离今天有100余年的时间,在这100余年的时间里并没引起足够的重视,相关研究的进展较慢。到了20世纪末期,植物内生菌的研究才得到微生物学家、植物学家和微生态学家以及作物学家的重视。今天,对于内生细菌的研究已经成为植物微生态学和微生物学学科交叉的新的生长点,同时其也成为我国目前微生物研究领域的热点。目前,有关植物内生菌的研究不仅从深度上还从广度上都有非常大的进展,尤其是对于植物内生细菌的作用研究更是突出。近年来,有一些研究显示,植物内生菌可以作为外源基因的载体,拥有促进植物生长、增强植物抗逆境、增强植物抗病害、增加宿主植物的他感和对病虫害的防治作用等等
没啥效果哦,我宝宝用了二合了,还不见有大便,不起作用哦
对近年来关于贝母属Fritillaria药用植物的分类学研究进行了综述。贝母属药用植物的分类学主要从3个方面进行研究:根据传统的形态学特征进行分类,根据植物中的特征性化学成分进行分类,分子水平上的DNA芯片技术在基因分型和种类鉴别上的应用。通过比较发现,DNA芯片技术可为贝母属植物种属的验证与质量控制提供一种快速、高通量的检测工具,是最有发展前景的用于植物种类鉴别的方法。DNA芯片技术在植物种类鉴别上的应用为分子水平上的植物分类学研究提供了理论依据。
: 1、4PU-30对杂交水稻后期叶片衰老及再 生芽萌发的影响研究. 中国生态农业学报,、水稻精量节肥防治面源污染高产栽培模式研究. 中国生态农业学报,、玉米精量节肥防治面源污染高产栽培模式研究. 中国生态农业学报,、水稻温敏不育系育性与温度的关系初探.中国农业气象,2004(2)5、赤霉素对杂交水稻后期衰老和再生芽的影响.西南农业大学学报,、马铃薯种植密度对产量产值的影响. 西南农业大学学报,、药用植物何首乌的研究进展. 西南农业大学学报,、何首乌生根培养因子优选研究. 西南农业大学学报,、浓度配比对何首乌不定芽增殖影响.中国农学通报,2006.
简介:随着城市的发展,城市用地越来越紧张,作为新型的绿化技术,花卉立体装饰越来越受到重视,因为它不受土地使用的限制,将绿化从平面引向立体,增加绿化量的同时,也给人营造耳目一新的景观效果。本文详细介绍了花卉立体装饰的应用实例,分析了现状,并提出所存在的不足以及以后的发展前景。关键字:花卉,立体装饰,园林应用,发展前景,花卉立体装饰近年来,由于城市人口的增加,建筑密度随之高度集中,可利用的土地越来越少,城市环境日益恶化,为改善城市环境,增加城市绿量,植树造林、兴建绿地被提上日程,但这种二维的绿化方式对土地的占用,使得它在一些“寸土寸金”的区域受到了限制。如何在不增加土地占用面积的情况下,有效增加绿化量成为人们思索的问题,在这种情况下,花卉立体装饰应运而生。由于花卉立体装饰能快速成景、组合成景,适应量大地小的城市绿化要求, 在现代城市的园林绿化中越来越受到人们的高度重视,而且有可能成为我国未来城市绿化的主旋律。1.花卉立体装饰的涵义、特点及应用原则花卉立体装饰的涵义花卉立体装饰是相对于一般平面花卉装饰而言的一种园林装饰手法,即通过适当的载体(各种形式的容器及组合架),结合园林色彩美学及装饰绿化原理,经过合理的植物配置,将植物的装饰功能从平面延伸到空间,形成立面或三维立体的装饰效果,是一门集园林、工程、环境艺术等学科为一体的绿化手法【1】。花卉立体装饰的前身主要是有着悠久历史的盆栽花卉。盆栽花卉起源于我国,在东汉年间就已经作为一种庭园和居室的美化手段进入了人们的生活,在明清时期已达到相当成熟的阶段。一些花卉立体装饰形式,如花钵依然保留着盆栽花卉的特点。花卉立体装饰的主要特点:充分利用各种空间,应用范围广 在同等的地平面上,立体装饰要比平面绿化的绿化量大,不仅充分强化了绿化效果,而且还能在平面绿化难以达到良好效果或无法进行平面绿化的地方发挥作用,例如窗台、阳台、门厅、楼梯、拐角等小空间内,也可在墙壁、街道护栏、围墙、隔离带等形成立面美化装饰效果。也可对已有的平面绿化进行点缀装饰,增强空间的色彩美感,丰富视觉效果。例如,对于居住空间狭窄,建筑拥挤的居民小区而言,立体装饰无须占用额外的平面空间,就能极大地改善小区环境,提高小区的绿化档次。充分体现创造的灵活性 立体装饰多以各种个性形式的载体构成基本骨架,然后配以各种花材而完成特定的景观塑造,在追求个性造景的今天,备受园艺设计师的青睐。这种形式摆脱了土地的限制,以可移动性,在置景方式上具有更大的自由度。能迅速成景,符合现代化城市发展的需求和效率 很多立体装饰都可移动、能快速组装成形,在节假日期间或平时各种庆典场合中,在短时间内就能形成较好的景观效果。有效地柔化、绿化建筑物,塑造人性化的生活空间 现代城市的高速发展造成绿地减少,人们的生存环境遭到破坏。鳞次栉比的钢筋水泥建筑和现代快节奏的生活方式使人的生理、心理上都会产生不适的感觉,迫切地需要色彩丰富的花卉植物来进行调和。立体装饰能充分绿化、美化高大的建筑物或桥梁的立面,削弱建筑物给人们带来的压迫感和空间上的单调感【7】【11】。充分展示植物材料的绿化美感 立体装饰突破了传统的植物平面栽植概念,将植物的美感予以空间立体化,既能突出植物植物自身的自然美感,又能以群体的空间美化效果形成更具观赏价值,更具艺术冲击力的组合立体绿化方式。日常维护非常便捷 大部分立体装饰产品都配有成套的滴灌系统,大大降低了日常维护强度,使得日常维护简化为举手之劳【2】【12】。 花卉立体装饰的应用原则因地、因时、因材制宜原则 环境条件与气候条件是植物生长的限制因素,所以在进行花卉立体装饰时应考虑植物的适应性以及环境特点。不同的地区,不同季节有各自独特的生态条件,适合不同植物材料的生长。
园艺方面的毕业论文轻风论文网很多啊,可以看下
[1] 藏淑英.刘更喜,丁香[M].北京:中国林业出版社.1990:1.[2] 孙振雷,刘海学,雷虹,等.丁香属种、变种过氧化物酶同工酶分析[J].哲里木畜牧学院学报,1998,8(3):16~19.[3] 陈新露,赵祥云,Bradley N,等.应用RAPD技术评价丁香品种间遗传关系[J].园艺学报,1995,22(2):171~175.[4] 陈新露,陈振峰,韩劲.随机扩增多态DNA(RAPD)标记用于丁香品种遗传分析及品种分类[J].西北植物学报,1999,19(2):169~176.
我先前也是对论文的写作非常非常头大,还好后来找闻闻论文网的老师帮忙才搞定。论文里面的核心部分,分析和数据处理是最难的,包括我身边的一些同学写到一半写不下去了,我都介绍的闻闻论文网给他们,非常专业,有的甚至把整篇都找帮忙的。
微生物在农业上的作用已逐渐被人们所认识。现国际上已有70多个国家生产、应用和推广微生物肥料,我国目前也有250家企业年产约数十万吨微生物肥料应用于生产。这虽与同期化肥产量和用量不能相比,但确已开始在农业生产中发挥作用,取得了一定的经济效益和社会效应,已初步形成正规工业化生产阶段。随着研究的深入和应用的需要不断扩大新品种的开发,微生物肥料现已形成(1)由豆科作物接种剂向非豆科作物肥料转化;(2)由单一接种剂向复合生物肥转化;(3)由单一菌种向复合菌种转化;(4)由单一功能向多功能转化;(5)由用无芽胞菌种生产向用有芽胞菌种生产转化等趋势。不仅如此,近20年来,许多国家更认识到微生物肥料作为活的微生物制剂,其有益微生物的数量和生命活动旺盛与否是质量的关键,是应用效果好坏的关键之一。为此,现已有许多国家建立了行业或国家标准及相应机构以检查产品质量。我国也制定了农业部标准和成立微生物质量检测中心,并已于1996年正式对微生物肥料制品进行产品登记、检测及发放生产许可证等工作。
综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。 关键词:微生物 生物降解 农药降解 农药 20世纪60年代出现的第一 次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。但自然环境复杂多变,影响着农药生物降解的可否和效率。近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。本文整理出了近年来对农药生物降解的研究进展,提出存在的问题,建议有效的研究途径,旨在为加强农药的生物降解研究、解决农药对环境及食物的污染问题提供依据。 1 农业生产上主要使用的农药类型 当前农 业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表[7]类 型 农 药 品 种有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等 有机氯:六六六、滴滴涕、毒杀芬等杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等 生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。 降解农药的微生物类群 土壤中的微生物,包括细菌、真菌、放线菌和藻类等[8,9],它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位[8]。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质[10,11]。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。 微生物降解农药的机理 目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。 表2 常见农药的降解微生物[11,12] 农 药降 解 微 生 物 甲胺磷芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母 阿特拉津(AT)烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌 幼脲3号真菌 敌杀死产碱杆菌 2,4-D假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、 DDT无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等 丙体六六六白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等 对硫磷大肠杆菌、芽孢杆菌 七 氯芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌 敌百虫曲霉菌、镰孢霉菌 敌敌畏假单胞菌 狄氏剂芽孢杆菌、假单胞菌 艾氏剂镰孢霉菌、青霉菌 乐 果假单胞菌 2,4,5-T无色杆菌、枝动杆菌 细菌降解农药的本质是酶促反应[13~15],即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3[16]。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分[5];有的是诱导酶系,如王永杰等 [17]得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差[8],这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制[18]。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。 微生物在农药转化中的作用 (1)矿化作用 有许多化学农药是天然化合物的类似物,某些微生物具有降解它们的酶系。它们可以作为微生物的营养源而被微生物分解利用,生成无机物、二氧化碳和水。矿化作用是最理想的降解方式,因为农药被完全降解成无毒的无机物,如石利利等 [19]研究了假单胞菌DLL-1在水溶液介质中降解甲基对硫磷的性能及降解机理后指出,DLL-1菌可以将甲基对硫磷完全降解为NO2-和NO3-。 (2)共代谢作用 有些合成的化合物不能被微生物降解,但若有另一种可供碳源和能源的辅助基质存在时,它们则可被部分降解,这个作用称为共代谢作用,这一作用最初是由Foster等[12]提出来的。如门多萨假单胞菌DR-8菌株降解甲单脒产物为2,4-二甲基苯胺和NH3,而DR-8菌株不能以甲单脒作为碳源和能源而生长,只能在添加其他有机营养基质作为碳源的条件下降解甲单脒,且降解产物未完全矿化,属于共代谢作用类型[5]。关于共代谢的机理,现在还存在争论。由于共代谢作用而推动的顽固性人工合成化合物的降解一般进行的较慢,而且降解程度很有限,参与共代谢作用的微生物不能从中获得碳源和能源,但是自然界中还是广泛存在着大量的具有共代谢功能的微生物,它们可以降解多种类型的化合物。共代谢作用在农药的微生物降解过程中发挥着主要的作用[5,17,20]。 微生物降解农药的生化反应[10,12] 氧化反应 微生物体内的氧化反应包括:羟化反应(芳香族羟化、脂肪族羟化、N-羟化);环氧化;N-氧化;P-氧化;S-氧化;氧化性脱烷基、脱卤、脱胺。 还原反应 还原反应包括硝基还原、还原性脱卤、醌类还原等。 水解反应 一些酯、酰胺和硫酸酯类农药都有可以被微生物水解的酯键,如对硫磷、苯胺类除草剂等。 缩合和共轭形成 缩合包括将有毒分子或一部分与另一有机化合物相结合,从而使农药或其衍生物物失去活性。 应该指出,在微生物降解农药时,其体内并不只是进行单一的反应,多数情况下是多个反应协同作用来完成对农药的降解过程,如好氧条件下卤代芳烃的生物降解,其卤素取代基的去除主要通过两个途径发生:在降解初期通过还原、水解或氧化去除卤素;生产芳香结构产物后通过自发水解脱卤或β-消去卤化烃[6]。 影响微生物降解农药的因素 微生物自身的影响 微生物的种类、代谢活性、适应性等都直接影响到对农药的降解与转化[21,22]。很多试验都已经证明,不同的微生物种类或同一种类的不同菌株对同一有机底物或有毒金属的反应都不同[5,17,23,24]。另外,微生物具有较强的适应和被驯化的能力,通过一定的适应过程,新的化合物能诱导微生物产生相应的酶系来降解它,或通过基因突变等建立新的酶系来降解它[10]。微生物降解本身的功能特性和变化也是最重要的因素。 农药结构的影响 农药化合物的分子量、空间结构、取代基的种类及数量等都影响到微生物对其降解的难易程度[25~28]。一般情况下,高分子化合物比低分子量化合物难降解,聚合物、复合物更能抗生物降解[10];空间结构简单的比结构复杂的容易降解[24]。陈亚丽等 [22]在试验中发现,凡是苯环上有-OH或-NH2的化合物都比较容易被假单胞菌WBC-3所降解,这与苯环的降解通常先羟化再开环的原理一致。Potter等 [29]在小规模堆肥条件下研究了多环芳烃的降解后指出,2-4环的芳烃比5-6环的芳烃容易降解。 自然界中的微生物通常可以降解天然产生的有机化合物,如木质素、纤维素物质等,从而促进地球的物质循环和平衡。但目前的环境污染物大多是人工合成的自然界中本身不存在的生物异源有机物质,其中一些是对人类具有致畸、致突变和致癌作用,往往对微生物的降解表现出很强的抗性,其原因可能是这些化合物进入自然界的时间比较短,单一的微生物还未进化出降解此类化合物的代谢机制。尽管某些危险性化合物在自然界中可能会经自然形成的微生物群体的协同作用而缓慢降解,但这对微生物世界来说仍然是一个新的挑战。微生物通过改变自身的信息获得降解某一化合物的能力的过程是缓慢的,与目前大量使用的人工合成的生物异源物质相比,依靠微生物的自然进化过程显然不能满足要求,因此长期以往将会造成整个生态系统的失衡[6]。因此,研究一些可以使微生物群体在较短的时间内获得最大降解生物异源物质能力的方法非常重要和迫切。 环境因素的影响 环境因素包括温度、酸碱度、营养、氧、底物浓度、表面活性剂等[10,30~33]。刘志培等 [34]研究了甲单脒降解菌的分离筛选;程国锋等 [23]研究了微生物降解蔬菜残留农药;钞亚鹏等 [15]研究了甲基营养菌WB-1甲胺磷降解酶的产生和部分纯化及性质。他们所研究的微生物或其产生的酶系都有一个适宜的降解农药的温度、pH及底物浓度,这与Thomas 等 [31]、Donna Chaw 等[26]的研究结果一致。莫测辉等 [24]指出,堆肥中微生物降解多环芳烃的活性与氧的浓度和水分含量密切相关,当堆肥中氧的含量小于18%、水分含量大于75%时,堆肥就从好氧条件转化为厌氧条件,进而影响多环芳烃的降解效果。Hundt 等 [30]调查了biaryl化合物在土壤中和堆肥中被细菌Ralstonia和Pickettii的降解和矿化情况。在土壤水分适宜的条件下,非离子型表面活性剂吐温80可增强微生物对biaryl类化合物的利用率,如联苯、4-氯联苯。Kastner等 [35]认为,在堆肥与被多环芳烃污染的土壤混合的情况下,堆肥中有机基质含量对于农药降解的作用要大于堆肥中生物的含量对于农药降解的作用;营养对于以共代谢作用降解农药的微生物更加重要,因为微生物在以共代谢的方式降解农药时,并不产生能量,须其他的碳源和能源物质补充能量[12]。对于好氧微生物来说,在好氧条件下可以降解农药,而在厌氧条件下降解效果不好;而对于厌氧微生物来说,情况可能正相反。也有研究指出在好氧条件下,有的厌氧细菌也可以代谢一些化合物[6]。 农药微生物降解的新技术和新方法 转基因技术的应用 20世纪后半叶是分子生物学、分子遗传学等学科迅速发展的时期,各种不同的生物学技术不断涌现;同时在21世纪初,生物信息学、基因组学、蛋白质组学等新的学科迅速兴起。这一切都为人工创造“超级农药降解菌”提供了必要的条件。因此,利用转基因技术进行目的性的人工组装“工程菌”成为有魅力的发展目标。同时,因为微生物降解农药的本质是酶促反应,所以,有人直接提取微生物合成的酶系来离体进行农药等有机化合物污染物的降解研究[15]。 多菌株复合系的构建及应用 以往研究农药的生物降解偏重于用单一微生物菌株的纯培养[17,23],现在已经证明,单一菌株的纯培养效果不如混合培养。因为单个微生物不具备生物降解所需的全部酶的遗传合成信息,而且它们在难降解化合物中驯化的时间不足以进化出完整的代谢途径,同时许多纯培养的研究发现,在生物降解过程中会有毒性中间物质积累,因此彻底矿化通常需要一个或一个以上的营养菌群(如发酵-水解菌群、产硫菌群、产乙酸菌群及产甲烷菌群等)。一种微生物降解一部分,经过数种微生物的接力作用和协同作用,经过多步反应将有毒化合物完全矿化,微生物的群体作用更能抵抗生物降解中产生的有毒物质[6]。笔者等利用菌种间协同关系构建的复合系不仅高效率分解木质纤维素,而且菌种组成长期稳定,不易被杂菌污染[36,37],在此基础上赋予农药分解功能的复合系对多种农药具有强烈的分解能力,其作用机理有待作进一步的细致工作。关于混合培养中的微生物群落的代谢协同作用,至少可以将微生物群落分为7种:(1)提供特殊营养物;(2)去除生长抑制物质;(3)改善单个微生物的基本生长参数(条件);(4)对底物协调利用;(5)共代谢;(6)氢(电子)转移;(7)提供一种以上初级底物利用者[6]。另外,分子生态学技术的应用证明,目前人类能够分离纯化的微生物种类及其有限,甚至自然界中99%的微生物目前无法纯培养[38],因而只有培育复合系才能包含这些重要而无法纯培养的微生物种类。2 研究中存在的问题 虽然农药残留的微生物降解研究已经取得了很大的进展,而且也有了一些应用的实例,但研究大多局限在实验室中,农药降解菌完全走出实验室到实际应用中还有一段路要走。农药微生物降解的问题主要有以下几方面。 单一菌株的纯培养问题 以往的研究主要集中在单一菌株的纯培养上,在实验室内获得纯培养的菌株,然后研究它的特性、降解机理等。然而这一方法完全不符合实际情况,自然状态下,是多种微生物共存,通过微生物之间的共同作用把农药降解。农药残留往往存在于土壤、农副产品、废弃物等复杂环境中,即使在实验室内一株菌的降解活性再大,到了这种复杂条件下可能无法生存或起不到期望的作用。 环境条件对微生物降解农药的影响 外部环境对微生物生长和对农药的降解影响很大,如环境的温度、水分含量、pH、氧含量等,而自然环境中这些因素变化很大,这直接影响到微生物对农药的降解。如何克服环境的影响从而充分发挥目标微生物的作用是需要解决的重大问题。 微生物降解目标化合物对降解的影响 目标化合物的浓度是否能使微生物生长,另外,农药污染环境的化合物组分很不稳定,波动很大,这给以工程措施微生物降解农药化合物带来困难。 微生物与被降解物接触的难易程度 被农药污染的环境有土壤、空气、水体及蔬菜瓜果等,对于土壤和水体的污染,微生物很容易与污染物接触,从而发挥它们的降解功能。但是,对于被农药污染的食品来说,利用微生物降解残留的农药很难,因为微生物无法与存在于物体内部的残留农药接触,无法发挥它们的作用,而只能降解残留在物体表面的部分。这种限制需要人们尽快解决,从而扩大微生物降解农药的应用范围。 微生物的适应性问题 所接种的微生物能否适应污染的环境,这不仅包括上述提到的物理环境,还涉及到生物之间的关系。接种到环境中的微生物受到抑制物的影响,或者受到包括捕食者在内的土著微生物的影响,甚至受到拮抗作用而不能生长等,这些都可以造成接种的微生物不能成为优势菌从而失去对农药的降解作用。构建多菌株复合系,具有稳定性和抗污染性强的优点,但即使是多菌混合培养的复合系也同样存在能否成为优势群体的问题。 3 堆肥法消除污染物 现代城市生活垃圾、有机固体废弃物、污泥中含有大量的有机污染物及重金属,农业有机固体废弃物中也含有大量的残留农药及其由于利用污水灌溉等可能导致的其他污染物。而堆肥法是消除这些污染,使有机固体废弃物无害化、资源化和产业化的有效途径之一。在堆肥过程中,通过堆肥体系中微生物的降解作用和挥发、沥滤、光解、螯合和络合等非生物方法消除污染物。堆肥法消除污染物主要有:(1)将被污染的物质或污染物与堆肥原料一起堆制处理;(2)将污染物质与堆制过的材料混合后进行二次堆制;(3)在被污染的土壤中添加堆肥产品,利用堆肥中的微生物消除土壤污染[39]。所以,堆肥法既可以消除污染,又可得到高质量的堆肥产品,对环境污染治理和农业的可持续发展意义重大。20世纪90年代以来,国内外有很多学者在此方面做了大量研究且取得了一定的进展[26,40~43]。 将人工构建微生物的复合体系,接种到农药污染土壤中,或利用活性的农业有机废弃物堆肥来改良已经被污染的土壤是一个好办法,因为活性堆肥内含有复合的微生物体系,在污染的土壤环境中更容易成为优势菌群。这就涉及到复合系的构建,微生物复合系的构建需要传统的和现代的方法相结合。从已有的堆肥体系中和已经污染了的土壤环境中分别富集培养微生物,得到土著微生物的复合系和堆肥菌复合系,然后进行复合微生物体系内部各个组分的特性、功能和多样性研究。菌株的抗药性鉴定,再把各个有功能的组分重新复合,组成一个新的复合体系,这一复合系不仅具有强有力的功能,又更能适应土著环境。直接应用复合系治理土壤污染,或者利用复合系生产农业有机废弃物堆肥来改良土壤。 4 结 语 很多研究已经证明,在农药污染的一些环境中诱导出天然的降解农药的微生物,那么是否可以采取一些条件控制措施,充分调动这些土著微生物的作用,尽量采用原位生物修复,而不用人为地接种微生物,这值得进一步探讨和研究。
生物肥料行业主要上市公司:根力多(831067)、航天恒丰(839664)、史丹利(002588)、鲁北化工(600727)等
本文核心数据:发展历程、政策、产量、登记数量、销量、销售收入
我国生物肥料处于创新发展阶段
我国生物肥料行业发展大体经历了四个阶段:1940年代起,我国开启了对生物肥料的研究;1980年代至1990年代初期,行业标准尚未出台;1996年农业部将生物肥料纳入生产资料登记管理,2000年《肥料登记管理办法》进一步规范了肥料登记管理,随着行业规范有序地发展,生物肥料应用效果逐步得到认可。2006年至今,行业进入创新发展阶段,研究中心为开发具有“营养、调理、植保”三效合一的“肥药兼效型”复合微生物肥料。
政策推动助力生物肥料行业发展态势
随着《2020年化肥使用量继续负增长行动方案》、《2020年农药使用量负增长行动方案》、《2020年扩大有机肥替代化肥应用面积由果菜茶向粮油作物扩展》等政策的实施,预计我国生物肥料研发进程、登记量、推广率将进一步提升。据预计,未来微生物肥料应用推广面积在4亿亩以上。
预计行业呈现稳定发展态势
——产量呈上升趋势
生物肥料能实现减少化肥用量、粮食增产的直观效果,同时能够减少农民投入、减少环境污染等经济效益和生态效益。目前,生物肥料用量占化肥的比例较少,近几年,在政策等多重利好下,我国生物肥料产业持续快速稳定发展。
根据农村农业部微生物肥料与食用菌菌种质量监督检验测试中心披露的数据,2012年,全国微生物肥料企业年产量超过900万吨;2017年,根力多生物科技股份有限公司于年度报告披露,全国微生物肥料生产企业年产量为1200万吨;同时根据农业农村局于2020年3月披露的数据,我国微生物肥料企业年产量为2000万吨。按历史产量增速初步估算,2020年,全国微生物肥料企业年产量为2400万吨。
——2018年新增登记数量井喷式增长
对农业农村部微生物肥料和食用菌菌种质量监督检验测试披露的我国微生物肥料登记情况数据进行汇总,2001-2018年,我国微生物肥料登记数量呈上升趋势,之后数量有所下降,2018年登记数据量井喷式增长,达到3486个。2020年,中国微生物肥料新增登记数量达到1591个。截至2021年8月,我国微生物肥料新增登记数量达1108个。
注:数据截止至2021年8月。
——销量呈上升趋势
微生物菌可以活化土壤有机和无机养分,提供肥料利用率,改善土壤团粒结构,降解重金属残留,抑制土传病害的发生,微生物的代谢物中含有多种天然的植物激素和氨基酸等有益物质可促进植物健康生长。生物肥料的有效性从生物肥料的销售情况中也可以得到验证。
根据上述我国生物肥料的产量以及海关总署生物肥料的进出口数据,2017-2020年,我国生物肥料销量呈上升趋势:
注:销量根据产量+进口-出口估算得出。
——规模以上企业销售收入呈波动趋势
据《工业统计年鉴》与农村农业部数据估算,我国规模以上企业中,微生物肥料占有机肥料及微生物肥料制造行业营收比例的64%。根据该比例计算,2018-2019年,我国规模以上有机肥料及微生物肥料制造行业销售收入下滑,与参与统计的规模以上企业数量下降有关。根据销量增速测算,2020年,我国规模以上微生物肥料销售收入达325亿元。
注:《工业统计年鉴》尚未发布2020年数据。
在行业进入创新发展阶段、政策加持、产品登记量正增长的情形下,预计生物肥料的成本将进一步降低,生物肥料行业呈现稳定发展态势。
以上数据参考前瞻产业研究院《中国生物肥料行业发展前景预测与投资战略规划分析报告》
微生物肥料俗称细菌肥料,简称菌肥。它是从土壤中分离出的有益微生物,经过人工选育与繁殖后制成的菌剂,是一种辅助性肥料,应用于农业生产,统称为农用微生物菌剂。施用后通过菌肥中微生物的生命活动,借助其代谢过程或代谢产物,以改善植物生长条件和农产品品质,尤其是营养环境。如固定空气中的游离氮素,参与土壤中养分的转化,增加有效养分,分泌激素刺激植物根系发育,抑制有害微生物活动等。制品中活微生物起关键作用。
截至2020年5月底,前瞻在农业农村部微生物肥料和食用菌菌种质量监督检验测试中心查询到的微生物微生物肥料产品登记证为7246个。其中微生物菌剂产品登记数量3315个,占比;生物有机肥产品登记数量2205个,占比;复合微生物肥料产品登记数量1399个,占比。
产品登记数量快速上涨 前景可期
根据农村农业部的调查,2015年底,累计批准颁发微生物肥料产品登记证2398个。截至2020年5月底,前瞻在农业农村部微生物肥料和食用菌菌种质量监督检验测试中心查询到的微生物微生物肥料产品登记证为7246个。四年半的时间我国微生物化肥的产品登记数量快速上升,年均复合增长率达到。
截至2019年底,已有15个省(区、市)宣布辖区实现化肥使用量负增长。与化肥使用零增长、负增长相关的政策接二连三。2019年,《土壤污染防治法》实施,化肥过量和不合理使用导致土壤退化的行为被纳入法律层面受到监管。
我国微生物肥料产业已跨入科技创新最为迫切的时期,选育新功能菌种、研发新产品、拓展新功能是未来产业发展目标。确立以微生物肥料产业发展目标和国家需求为导向,以源头创新与重点新产品创制为核心内容,以重点龙头企业为创新主体、产学研相结合交融为平台的科技创新发展思路。在技术产品的研发上,应集中力量突破微生物和生物功能物质筛选与评价、高密度高含量发酵与智能控制、新材料配套增效应用、功能菌与微生态因子互作机制及其调控、障碍因子生物修复等关键技术,研发应用高效稳定的绿色新产品。预计到2020年,年总产量比现在翻一番,可望达到3000万吨,产业发展前景广阔。
——更多数据来请参考前瞻产业研究院《中国化肥行业市场需求预测与投资战略规划分析报告》。
作用:微生物菌肥能够起到提高土壤肥力,增加土壤有益微生物数量、活性,改善土壤活化性状,防止土壤板结,增强作物抗旱、抗寒、抗倒伏能力,促进农作物生长,提高农作物产量的作用。
使用方法:每亩地使用1-2kg微生物菌肥和农家肥或化肥、细土混匀,沟施或撒施、穴施。
一、作用
1、微生物菌肥可以大幅度提高土壤中的中微量元素含量,减少氮、磷、钾以及其他中微量元素的施加量,同时还能够增加土壤有机质,提高有机质降解转化速度,大幅提高土壤肥力。
2、微生物菌肥能够起到增产的作用,增产效果大约为20-60%(具体增产情况和作物种类有关)。除此之外,微生物菌肥还可以改善作物以及农产品的品质。
3、微生物菌肥能够改善土壤活化性状,激发土壤活力,防止土壤板结,提高土壤保水保肥能力,同时还能促使作物根系发达,增强作物的根系吸收能力以及作物的免疫力和抵抗力。
4、微生物菌肥能够抑制土壤中的真菌以及线虫,降低作物根部病虫害发生概率。
5、在果树上使用微生物菌肥时,具有促进开花整齐、保花保果、防治早衰,增强作物抗重茬、抗倒伏、抗旱、抗寒能力的作用。
6、使用微生物菌肥不会出现前期旺长,后期脱肥的情况。
二、使用方法
1、底施:每亩地使用1-2kg的微生物菌肥和农家肥、化肥或细土混合均匀,沟施、撒施、穴施均可。
2、沟施:如果是幼树,每棵树使用200g微生物菌肥环状沟施。如果是成年树,每棵树使用微生物菌肥放射状沟施。
3、蘸根、灌根:每亩地使用1-2kg微生物菌肥兑水稀释3-4倍,在移栽前蘸根或在移栽后灌根。
4、拌苗床土:每平方米苗床使用200-300g微生物菌肥与苗床土混匀后播种。
5、园林盆栽:每kg盆栽土使用10-15g微生物菌肥进行追肥或作为底肥。
6、冲施:每亩地使用1-2kg微生物菌肥和化肥混合(具体用量根据作物进行调整),兑适量水稀释后冲施。
微生物在农业上的作用已逐渐被人们所认识。现国际上已有70多个国家生产、应用和推广微生物肥料,我国目前也有250家企业年产约数十万吨微生物肥料应用于生产。这虽与同期化肥产量和用量不能相比,但确已开始在农业生产中发挥作用,取得了一定的经济效益和社会效应,已初步形成正规工业化生产阶段。随着研究的深入和应用的需要不断扩大新品种的开发,微生物肥料现已形成(1)由豆科作物接种剂向非豆科作物肥料转化;(2)由单一接种剂向复合生物肥转化;(3)由单一菌种向复合菌种转化;(4)由单一功能向多功能转化;(5)由用无芽胞菌种生产向用有芽胞菌种生产转化等趋势。不仅如此,近20年来,许多国家更认识到微生物肥料作为活的微生物制剂,其有益微生物的数量和生命活动旺盛与否是质量的关键,是应用效果好坏的关键之一。为此,现已有许多国家建立了行业或国家标准及相应机构以检查产品质量。我国也制定了农业部标准和成立微生物质量检测中心,并已于1996年正式对微生物肥料制品进行产品登记、检测及发放生产许可证等工作。
生物肥料行业主要上市公司:根力多(831067)、航天恒丰(839664)、史丹利(002588)、鲁北化工(600727)等
本文核心数据:发展历程、政策、产量、登记数量、销量、销售收入
我国生物肥料处于创新发展阶段
我国生物肥料行业发展大体经历了四个阶段:1940年代起,我国开启了对生物肥料的研究;1980年代至1990年代初期,行业标准尚未出台;1996年农业部将生物肥料纳入生产资料登记管理,2000年《肥料登记管理办法》进一步规范了肥料登记管理,随着行业规范有序地发展,生物肥料应用效果逐步得到认可。2006年至今,行业进入创新发展阶段,研究中心为开发具有“营养、调理、植保”三效合一的“肥药兼效型”复合微生物肥料。
政策推动助力生物肥料行业发展态势
随着《2020年化肥使用量继续负增长行动方案》、《2020年农药使用量负增长行动方案》、《2020年扩大有机肥替代化肥应用面积由果菜茶向粮油作物扩展》等政策的实施,预计我国生物肥料研发进程、登记量、推广率将进一步提升。据预计,未来微生物肥料应用推广面积在4亿亩以上。
预计行业呈现稳定发展态势
——产量呈上升趋势
生物肥料能实现减少化肥用量、粮食增产的直观效果,同时能够减少农民投入、减少环境污染等经济效益和生态效益。目前,生物肥料用量占化肥的比例较少,近几年,在政策等多重利好下,我国生物肥料产业持续快速稳定发展。
根据农村农业部微生物肥料与食用菌菌种质量监督检验测试中心披露的数据,2012年,全国微生物肥料企业年产量超过900万吨;2017年,根力多生物科技股份有限公司于年度报告披露,全国微生物肥料生产企业年产量为1200万吨;同时根据农业农村局于2020年3月披露的数据,我国微生物肥料企业年产量为2000万吨。按历史产量增速初步估算,2020年,全国微生物肥料企业年产量为2400万吨。
——2018年新增登记数量井喷式增长
对农业农村部微生物肥料和食用菌菌种质量监督检验测试披露的我国微生物肥料登记情况数据进行汇总,2001-2018年,我国微生物肥料登记数量呈上升趋势,之后数量有所下降,2018年登记数据量井喷式增长,达到3486个。2020年,中国微生物肥料新增登记数量达到1591个。截至2021年8月,我国微生物肥料新增登记数量达1108个。
注:数据截止至2021年8月。
——销量呈上升趋势
微生物菌可以活化土壤有机和无机养分,提供肥料利用率,改善土壤团粒结构,降解重金属残留,抑制土传病害的发生,微生物的代谢物中含有多种天然的植物激素和氨基酸等有益物质可促进植物健康生长。生物肥料的有效性从生物肥料的销售情况中也可以得到验证。
根据上述我国生物肥料的产量以及海关总署生物肥料的进出口数据,2017-2020年,我国生物肥料销量呈上升趋势:
注:销量根据产量+进口-出口估算得出。
——规模以上企业销售收入呈波动趋势
据《工业统计年鉴》与农村农业部数据估算,我国规模以上企业中,微生物肥料占有机肥料及微生物肥料制造行业营收比例的64%。根据该比例计算,2018-2019年,我国规模以上有机肥料及微生物肥料制造行业销售收入下滑,与参与统计的规模以上企业数量下降有关。根据销量增速测算,2020年,我国规模以上微生物肥料销售收入达325亿元。
注:《工业统计年鉴》尚未发布2020年数据。
在行业进入创新发展阶段、政策加持、产品登记量正增长的情形下,预计生物肥料的成本将进一步降低,生物肥料行业呈现稳定发展态势。
以上数据参考前瞻产业研究院《中国生物肥料行业发展前景预测与投资战略规划分析报告》