黄金分割 黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。关于黄金分割的起源传说来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。 线段的黄金分割做法如下: 1.设已知线段为AB,过点B作BC⊥AB,且BC=AB/2; 2.连结AC; 3.以C为圆心,CB为半径作弧,交AC于D; 4.以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。 事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边与一点,过这个点,作一条直线垂直于较长边,这时,生成的新矩形(不是那个正方形)仍然是一个黄金矩形,这个操作可以无限重复,产生无数个黄金矩形。 它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割:古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目。舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。 在很多科学实验中,选取方案常用一种法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。 谢谢采纳
初中数学论文开题报告范文
论文题目: 提高农村初中数学学困生成绩策略的研究开题报告
一、 课题提出的背景及意义:
新课标指出:“人人学有价值的数学”,“人人都能获得必要的数学”,“不同的人在数学上得到不同的发展”,“数学是人们生活、劳动和学习必不可少的工具”,这些都阐明了数学作为基础学科的重要性。而数学后进生就其个人成长来说,由于学科的基础与工具性,及将直接影响到对他们的后继教育、身心健康、全面发展与成才问题;对教育来说,关系到学科教学的平衡性与课程改革的重大战略和基础教育水平的根本大计;对国家来说,关系到劳动者的素质和综合国力的提升。可见,数学学困生的转化问题,成为当前教育常抓不懈的大课题。基础课程改革已经多年了,尽管《课程标准》和教材更新了,教师的教学观念、教学行为也有不同程度的改变,但数学后进生并没有减少,反而有增加的趋势。我所在的学校,近几年来数学成绩50分以下的人数比例逐年增加,很多教师都抱怨现在的学生是越来越难教了。要想改变这种教育质量低下的现状,学困生的转化是关键性问题。由于学困生的形成原因的复杂性,有其自身的原因,也有外部原因:家庭、学校、社会。在转化学困生方面,有许多工作是教师无能为力的、爱莫能助的,如父母离异、学校教育环境、教师素质、应试教育等等,但教师在转化学困生方面起的作用又是不可忽视的,因此我们应着重从教师教育方面来研究如何转化学困生。
二、 国内外关于该课题的研究现状及趋势
对于学困生的成长研究已成为国内外教育专家、理论工作者和实践工作者共同关注的问题。在我国,《中国人民教师》杂志,曾专门阐述学困生的几大困惑,并提供老师及时、有效的辅导案例,同时指出“(1)辅导要与激发兴趣有机结合起来;(2)辅导要新旧结合;(3)辅导要重点突出;(4)辅导中要争取家长配合。”许多优秀的教师结合着自己的教学经验,也提出了新观点,新思想。如:袁妙月(河南省洛阳孟津第一县直中学)发表了新课程标准下初中数学分层教学探究的观点,认为在教学中不能再采用“一刀切”的教学方法,应该面向不同的学生。黄鸿基(福建省晋江市安海镇杏坛学校)谈论了在辅导过程中消除后进生心理上的失败定势,从心理上让学困生不再怕学习,给了很好的指导。李瑞菊老师(上海市闵行区浦江第一中学)从学困生的现状及成因、改善师生关系使学困生进步、教学中多关注学困生,并做好学法指导以及对学困生开展形式多样的辅差工作等方面对数学学困生辅导工作进行了全面的分析。
20世纪70年代,荷兰瓦赫宁根大学发展社会学家创立的角色理论认为,学困生的形成是整个动力系统乃至人格角色偏差造成的,本身无法通过自我调整来改变,这就需要教育者的特定帮助以改变他们的社会角色;前苏联教育学者巴班斯基的同心圆理论认为,影响学生学业成绩的原因有两个:学习的可能性和教学的、发展的、教育的社会条件,前者与后者是内因和外因的关系,这种关系可以用若干同心圆组成的圆表示。20世纪80年代,日本教育学者北尾伦彦的研究表明,造成学习困难的因素可分三个层级,一次性因素是直接相关因素(包括教学内容、教法、学生学习态度与学习习惯等因素),二次性因素、三次性因素是间接相关因素(包括学生的非智力因素及环境因素)。对于学习困难学生,日本教育界往往通过学习困难学生“治疗日”来进行教育帮助,这种方法是大阪的一所中学提出来的,这些材料为我们调查分析作了很好的铺垫。
三、课题研究的理论依据:
1、学生的学习尤其需要情感、意志、求知欲、动机等情意因素的积极参与。其中,动机在情意系统中居于核心地位,它是个体学习动力的主要来源,又是把各种动力因素联系在一起的纽带,直接影响学生的学习行为。就数学学习而言,大部分学习困难的学生都以认知障碍作为起点的,这与数学的特性与某些学生的思维发展水平不适应有关。由于数学语言具有高度的抽象性和概括性,学生学习数学时不能真正理解数学语言和意义,从而引起很多困难。以致在听课、阅读时造成误读、错误,进而成为认知上的障碍。
2、《江苏省中小学数学课程标准》中强调“改革教学过程,促进学生学习方式的改善”,对于学习困难的学生,教师要通过对教学内容的“操作化”组织,将“做”、“想”、“讲”有机结合,帮助“学困生”内化学习内容,帮助学生发现个人的学习成就和意义,指导学生检查和反思学习过程,激励学生更有效的开展学习。
3、美国心理学家布卢姆在掌握学习理论中指出,“许多学生在学习中未取得优异成绩,主要问题不是学生的智慧能力欠缺,而是由于未得到适当的教学条件和合理的帮助造成的”,“如果提供适当的学习条件,大多数学生在学习能力、学习速度、进一步学习动机等多方面变得十分相似”。
4、“低、小、多、快”原则:“低”即“低起点”;“小”即“小步子”;“多”即“多活动”;“快”即“快反馈”。
四、课题研究的内容和方法
(一)主要内容:
1、农村初级中学数学学困生的成因及学困生的心理分析,包括研究导致学困生学习困难的个人、学校、家庭以及社会因素。
2、数学课堂教学如何关注学困生、适应学困生,研究学困生的转化策略。
3、如何开展有效的课外辅导转变学困生。
4、教学日记促进学困生的转化的研究。
(二)研究方法:
借鉴现代教育理论,采取行动研究法,在实践中提升理论,在理论指导下完善实践。采取跟踪调查法、量化分析法等通过制定计划、方案实施、反思总结等阶段完成。
课题研究的目标:通过本课题的研究,探索一套适合农村初中实际情况让学困生喜欢数学、爱学数学的有效途径和方法,尊重和关爱可以唤醒、激励每一个学生。“只有不会教的教师,没有教不好的学生”,只要方法得当,通过教师的不懈努力,就一定能让每个学困生爱学数学,激发他们的学习兴趣,增强他们的求知欲望,使他们由“厌学”到“学有所获”到“乐学”,使他们能主动、积极地学习数学,从而大面积提高了教育教学质量。
五、课题研究的工作步骤
(一)课题研究准备阶段:
1、成立课题组成员,共同学习商讨制定课题实施方案
从2014年3月份开始,经过多次的商讨和修改,小课题《提高农村初中数学学困生成绩策略的研究》作为学校的一项教研课题在校开展,学校领导高度重视,希望能通过该课题的研究,带动学校的信息技术教学发展,提高教师的教科研能力,为教学服务,为提高学校的教学质量而尽力做好。3月份开始,我们开始按照“课题申请”要求成立了课题组,并召开了课题组成员会议,会议上商讨了如何具体分工、借鉴哪些方面的经验成果和教学理念,具体通过哪些步骤进行课题研究。课题组的成员都认真学习关于本课题研究的主要内容,研究并制定了课题方案。
2、有关理论学习
课题具体方案制定后,课题组成员就着手学习整理和课题相关的国内外相关理论和经验,了解国内外相关课题的思想理念、研究成果和研究进展情况,以此作为该课题具体开展的参考和借鉴。
3、课题组实验教师资料准备
实验班、对比班学生基本情况分析;课题研究的教案、论文等原始材料。
4、深入课堂分析
通过以上的学习,在夯实了理论基础的同时深入本校数学课堂,结合课题需要分析在我校课堂教学存在的问题,寻找适合我校课堂教学特点和共同点,明确课题开展的具体方向和实施过程,保证课题研究内容充实,实效性强,使课题研究具有科学性、时代性、指导性、可行性。
5、撰写开题报告
在理论学习的同时,进一步完善了课题的实施方案,撰写了开题报告,在请教过前辈和课题给讨论后,我再次修改了原来的课题实施方案和开题报告。
(二) 课题研究实施阶段
1、课题的确定后,为更深一步进行研究,进行调查是十分重要的。为此,根据几次的学生调查和老师课堂教学情况,了解学生学习数学心理障碍的`主要因素,掌握数据,了解现状,为课题方案的实施和课题的完成打下基础。
2、课题成员对课题的理解撰写有关论文、教学设计、案例、反思等。
3、对学生的课堂气氛进行跟踪了解。在测试中进行了解,及时发现问题,解决问题,看通过课堂训练能使学生达到所定的目标。
六、课题研究的结果:
(一)、初步找到了农村初中数学“学困生”的形成原因,并探索出转化“学困生”的措施方法。
(二)、经过近一年的课题研究,运用以上措施方法对“学困生”实施帮扶、转化,产生的比较好的效果:
1、学生对于数学的兴趣正逐步增强。
2、促进了“学困生”的主动发展。经过一年的实验,学生学习数学的积极性和主动性被充分调动起来,对数学学习表现出极大的热情和兴趣。
3、从最近两年中考、期中、期末调研考试成绩分析看,数学平均成绩在稳步提高,全市中考数学平均分列全市中游。特别是低分率下降幅度较大,说明“学困生”转化工作成绩较为显著。
七、可行性分析
九年制义务教育的目的是普及基础教育,合格率是检验一所学校办学是否成功的标准之一。我校地处三县交界,生源情况参差不齐,学困生所占的比例很大,严重影响了整个班级、整个年级的共同进步,严重影响了学校的声誉。这些学生刚入初中就已经学数学很困难,随着难度的逐渐加大,情况会越来越糟,初中学习生涯无疑是一种痛苦折磨。所以改善这类学生数学学习的信心、求知欲、学习动机、学习速度、思维发展水平等学习状况,不仅对学校来讲意义重大,而且对学生的一生的影响尤为重要。鉴于此,我申报了小课题,希望在专家的指导下,与数学组的同行一道,通过努力能够改善我校初中数学学困生的学习状况。
本课题研究中的“数学学困生”是指:智力与感官正常,但由于在数学学习中,学习方法或学习习惯不恰当,导致学习效果低下的学生。通过教师有针对性地帮助,这部分学生的数学成绩是可以提高的。
初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。
数学教学论文篇一
一、引进有效的教学方法
科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。
而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。
二、进行激励性教育
在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。
每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。
三、寓教于乐的教学
在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。
游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。
四、总结
总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。
数学教学论文篇二
一、差别性教学的作用
(一)通过差别性教学,学生更好地成长
由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。
(二)使学生更加自信
推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。
二、初中数学教学中差别性教学的实施办法
(一)从学生的水平出发,有序地分组
通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。
(二)依据分组后学生的情况,采取不同的教学方式
我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。
(三)依据分组后学生的情况,安排的任务有所不同
安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。
(四)依据分组后学生的情况,评估的方面有所不同
因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。
三、总结
差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。
数学教学论文篇三
一、课堂上进行有针对性的有效提问
1.问题必须要有思维容量。
不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。
2.锻炼提问的技巧。
问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。
二、让学生“想学”,教学语言风趣
美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。
三、对学生进行正确的思维训练
对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。
四、总结
总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。
噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
生活中的数学数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。……由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
...汗.写什么?
《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂天啊,那么多的字啊。
有什么其他的具体要求??比如题目啦 字数啦什么的
自己去百度找
浅谈数学的文化价值一、数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G. Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴( @①ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。对计算机的发展做出过重大贡献的冯·诺依曼( )认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,……它已愈来愈成为衡量成就的主要标志。” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。 马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。 二、数学:科学的语言 有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔()就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克( )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦()则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。) 一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。 数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。 随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。 三、数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。 其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 第三,数学也是辩证的辅助工具和表现方式。这是恩格斯()对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。 最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力
1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。 算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。 算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢? 那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。 按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。 中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。 二进制思想的开创国 著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。 元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。 《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 分数和小数的最早运用 分数的应用 最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。 九九表的使用 作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。 根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。 除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。 乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。 负数的使用 人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。 负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。 在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。 圆周率的计算 圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。 我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为,也有人认为他得到了更好的结果:。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。3.人类认识0早,还是认识1早。1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。4.数学中的符号+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。 在中学数学中,常见的数学符号有以下六种:一、数量符号 如,圆周率;a,x等。二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。四、结合符号 如小括号( ),中括号[ ],大括号{ }。五、性质符号 如正号(+)、负号(-),绝对值符号(||)。六、简写符号 如三角形(△),圆(⊙),幂()等。这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。
1.汉字研究报告400字五年级作文范文
汉字,像一个个充满灵气的小精灵。在纸上跳着欢快的舞蹈,姿态是那么的优美,那么的迷人。为了更深刻地了解中华文化博大精神,我做了这份研究报告。
二、研究方法
1、通过上网查阅,了解汉字的起源,了解汉字的演变过程。
2、其它方法。
三、资料整理
汉字的起源:传说,仓颉从绳结记录的史书给黄帝提供的史实出了差错,致使黄帝在和炎帝的边境谈判中失利。事后,仓颉愧而辞官云游天下,遍访录史记事的好办法。三年后他回到故乡白水杨武村,独居深沟“观奎星圜曲之式,察鸟兽蹄爪之好”整理得到各种素材,创造出了代表世间万物的各种符号,他给这些符号起了个名字,叫汉字。
汉字的演变过程:甲骨文、金文、小篆、隶书、楷书、草书、行书。
汉字的谐音:外甥打灯笼——照旧(舅)
孔夫子搬家——净是输(书)
梁山泊的军师——无(吴)用
四、研究结论
汉字真有趣,我们要好好保护它。
2.汉字研究报告400字五年级作文范文
在现实生活中,我们都离不开汉语言文化,可在使用汉字时有些人却容易在书写上出现问题,比如写错别字,为了帮助人们规范用字,我展开了此次调查研究。
二、研究方法
我调查了街边的广告牌,还分析了同学们作业本中的错别字。
三、资料整理
错别字的类型多样,出现的错误也让人啼笑皆非,现归类如下:
1、同音致误
有些店铺为了推销,用同音字代替原来的字,如“桃之夭夭”、“老婆食代”,这一类店名,利用读音相似,把原来词语中的字用其他同音字代替。这样的手段在现实生活中十分常见。虽然这样起到了推销作用,但是却误导了正在学习的人,让他们误以为那些词语本来就是那样写的。
2、形近致误
我们在作业中经常因为字形相近而出现错误。比如一个同学把“自己”写成了“自已”,就闹出了一个小笑话。之所以大家经常写错,是因为字形太像,无法分辨。有一次老师说在看作业时发现了一位同学把“陡峭”写成了“徒削”,顿时教室里就笑声一片。
四、研究结论
汉字的知识十分丰富,历史悠久。汉字的演变从甲骨文、金文、小篆、隶书才到我们今天所用的楷书。所以我们要学好汉字,做好汉字小医生。我提议大家要正确使用汉字,把我们中国的汉字艺术发扬光大。
3.汉字研究报告400字五年级作文范文
汉字是我们的国粹,散发着艺术的魅力。但是作为小学生,我们对它却知之甚少。为此我专门做了一次调查。
二、调查方法
1.查阅有“川”字的书籍和报刊。
2.上网浏览,了解“川”字有哪些写法,各有什么特点。
三、资料整理
在我努力的调查之中,我发现了“川”字也有很长的一段演变过程。首先由甲骨文“川”字出场,它的身形和流动的水一样。接下来出场的是金文的“川”字,它的样子和甲骨文差不多,只是变粗了些而已,其他没有什么变化。到了小篆,它变得有些像现在的“川了”,它不再是以前的波浪线了,它慢慢的变成了直线,也已经不怎么像水流了,像三条马路,有长有短。到了现在“川”字已经变成了一个个直线笔直端正。以前的“川”字像流动的水,现在反而不像了。不过现在的“川”不光能指水,还能指山了。
四、研究结论
“川”字的演变过程也能这么精彩,它经过了那么多时代,才变成这个样子。这么简单的川字也能有这么多的变化,实在是让我大开眼界。
4.汉字研究报告400字五年级作文范文
汉字文化博大精深,特别是有趣的谐音字。那这些谐音字通常会出现在哪呢?有什么好处呢?于是我对谐音字进行了一次调查。
二、调查方法
1.询问老师长辈咨询汉字的应用情况。
2.查阅书籍报刊,搜集汉字谐音的类别。
3.上网查找有关汉字谐音的资料,了解其优缺点。
三、调查情况和资料的整理
谐音字通常出现在文学作品中:①文学作品中包括诗歌,民歌、对联,如:“春蚕到死丝方尽”中的“丝”谐“思”;②口头文学包括歇后语,字谜,如:咸菜烧豆腐一一有言(盐)在先,梁山泊的军师一一无(吴)用;③民俗艺术包括吉语和忌语,如:大年夜吃鱼寓意“年年有余(鱼)”。
谐音应用与汉字同音的条件,用同音字或近音字来代替本字。
优点:巧用谐音,风趣幽默。
缺点:可能对识字阶段的青少年产生误会。
四、研究结论
1.谐音在生活中的应用花八门。
2.谐音的出现充分体现了人们追求委婉含蓄,寄托吉祥,和美好愿望的文化心理,便于人们理解和沟通
3.谐音的存在给我们带来了欢乐的同时,也容易给人造成误导。
汉字是我们中华民族几千年的瑰宝,也是我们终身的良师益友。
5.汉字研究报告400字五年级作文范文
汉字有着悠久的历史,蕴含着丰富的文化。我们平时读书、写文章、看报,都离不开汉字。我不禁想到:汉字的演变过程是什么样的?有些什么字体?每种字体都有什么特点?带着这些问题,我做了一些研究报告。
二、调查方法
1、查阅有关的书籍。
2、上网查找。
3、询问老师。
三、资料整理
信息渠道:上网、询问老师
最有名的字:甲骨文、金文、小篆、隶书、楷书。
历史背景:甲骨文是商周时期刻在龟甲或兽骨的象形字体。金文是商周时期刻在铜器上的字体。小篆是最早统一的字体。楷书一直通用至今。
书法特点:小篆,字体略长而整齐,笔画圆匀秀美。隶书,结体精巧,线条较重顿挫,富有变化。楷书,方形方正,笔画规整平直。
四、研究结论
1、中国汉字源远流长,书体众多,如小篆、楷书、行书……
2、我国汉字流传悠长,像甲骨文现在还有被研究辨认。
3、我国古代书法家留下了许多书法作品,如王羲之的《兰亭集序》、苏轼的《赤壁赋》、米芾的《蜀素贴》等。
通过这一次的研究后,我深深地体会到汉字的伟大,它的实用性强,艺术性美,包容性大……
汉字的起源有种种传说,中国古书里都说文字是仓颉创造的.说仓颉看见一名天神,相貌奇特,面孔长得好像是一幅绘有文字的画,仓颉便描摹他的形象,创造了文字.有的古...汉字的起源五(2)班金珊杉从仓颉造字的古老传说到100多年前甲骨文的发现,历代中国学者一直致力于揭开汉字起源之谜.关于汉字的起源,中国古代文献上有种种说法,如“结绳”、“八卦”、“图画”、“书契”等.最近几十年,通过系统考察,汉字体系的正式形成应该是在中原地区是独立起源的一种文字体系,不依存于任何一种外族文字而存在,但它的起源不是单一的,经过了多元的、长期的磨合.商代文字是迄今为止中国发现的最早的成熟文字.从汉字构形的结体特征可分为四大类:取人体和人的某一部分形体特征为构字的基础,以劳动创造物和劳动对象为构字的基础,取禽兽和家畜类形象为构字的基础;取自然物象为构字的基础.这些的字形所取裁的对象与当初先民们的社会生活相当贴近,具有很强的现实性的特征.同时,这些字形所描写的内容涉及到了人和自然的各个层面.以下是一些有据可查的象形文字的演化过程1、介,像一个身上披着一片片铠甲的人.铠甲是一片一片连缀而成的,所以由连接引申出介绍之义.介绍就是连接两个方面或诸多方面.由连接的反面引申就有间隔和不合群的意思,如耿介就是正直而不随波逐流.2、母,本同女字,所不同的是在女字的中间加上了两点.这两点表示女人的乳头.女人用乳头流出的乳汁哺育幼儿,这个女人就是“母”了.3、老,像一个驼背、伸手、扶杖、头戴大帽的老人.老字单独用或作偏旁时都表示老人、长辈,成语有尊老爱幼、老当益壮、老成持重、老谋深算、老气横秋等..9、吕,像人的背脊骨.11、身,像一个孕妇.特别突出孕妇的大肚子.在那大肚子当中还有一点,表示母腹中的胎儿.后世称怀孕为有身、有孕正是用了身的本义.由怀孕引申出身体之义.16、帝,像一个稻草人.这是远古时代人们用以代表主宰万物的天神的偶像,所以帝有上帝之义..20、黄,像一个身佩玉环的人.22、黑,像一个被火烟熏黑面孔和全身的人.黑就是黑色的意思.引申指在黑暗中进行------私自进行的工作,如黑市交易.五(2)班金珊杉汉字的来历从仓颉造字的古老传说到100多年前甲骨文的发现,历代中国学者一直致力于揭开汉字起源之谜.关于汉字的起源,中国古代文献上有种种说法,如“结绳”、“八卦”...人文社科图书,王婷著,2002年05月中华学林出版社出版.其内容为:汉字起源于生殖崇拜文化,发明于太极文化,大汶口文化早期,创造于刻契、绘画、结绳、编贝...汉字的演变过程中国汉字的起源和演变,汉字的演变过程:汉字流行使用数千年,最早的文字、符号可以追溯到结绳时代.可以这样说,如果站在五千年历史之上看中国文字,早期...
人都应该有梦,有梦就别怕痛。——题记考试结束,翻开课本,竟发现语文做错了一大堆题目。成绩出来,我忐忑不安地问老师:“老师,我语文得了多少分啊?”老师翻了翻试卷,说道:“79分。你怎么考得这么差啊?”我不好意思回答,回到座位上呆呆地坐着,心里只有对自己的责备。“你天天玩电脑,看电视,哪有学习语文的时间?你这个结果是我早就意料到的。”爸爸生气地说。当我问起怎么办时,爸爸却只是淡淡地说了句:“以后多在语文上下点功夫呗。”这时,我有些醒悟了,后悔不该那样入迷地玩电脑、看电视,我制定了一份学习计划,准备从现在开始把语文成绩赶上来。刚开始两个星期,我每天都坚持看书、背书,每个星期写一篇作文,做几道阅读理解题。可是不久,我却渐渐厌烦了这些计划,三天打鱼两天晒网,不再把语文学习当回事。期末考试前几个星期,数学和英语作业繁多,便完全放弃了这些计划。期末考试到了,本以为又要一败涂地,可当我拿起语文试卷时,却发现大部分题目都会做。难道我的语文真的变好了?我边写试卷边偷偷窃喜。拿成绩单时,老师对我说:“你的语文成绩是99分。”正当我以为成功了,洋洋得意时,老师又说道:“但是全班有四十几个同学语文成绩过百了。”瞬间,整个世界像是崩溃了一样。题目太简单?或是自己太弱?亦或是同学们太强?回到家中,打开电脑,想用音乐调节下心情。躺在床上想到了自身层出不穷的问题:要是我持之以恒、坚持不懈,就能取得好成绩了;要是我热爱学习,就能取得好成绩了;要是我经常阅读,就能取得好成绩了……“我失败吗?”想累了,睡着了。梦倒是挺美的,却被吵醒了。电脑声音大,恰巧又在放一首高亢的歌。我懒散地起来,正准备关掉电脑时,却听到了张韶涵的歌:“人都应该有梦,有梦就别怕痛。”张韶涵的这首歌我再熟悉不过了,但此时她甜美的歌声仿佛给我打了一针强心剂,我的睡意瞬间全无。