首页

> 学术期刊知识库

首页 学术期刊知识库 问题

原子发射光谱检测法相关专业论文

发布时间:

原子发射光谱检测法相关专业论文

楼主可以先在各在数据库上搜索一下,对自己需要的,把文献名称等相关信息发到文献求助版去。for more answers about analytics and testing or chemistry questions, you may go to antpedia dot com, good luck.楼主的题目也太大了..上知网万方维普找吧,有很多.

原子吸收光谱法在环境常规监测中的应用 西南科技大学分析测试中心 张伟〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。〔关键词〕原子吸收光谱法环境监测应用原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监测技术规范》中有关金属元素的标准分析方法。1.水环境监测适时地对地表水质量现状及发展趋势进行评价,对生产和生活设施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于;最低检出限分别为、、、,相对标准偏差分别为、、、;该方法对标准样品的测试结果与国家标准方法基本一致,相对偏差均不大于。张美月等[2]以二乙胺基二硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉,检测限为μg/L,富集倍数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,通过测定水相残余铜,从而间接测定水和废水中的铝。在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到μg/L,精密度。用本法测定标准水样GBW08608中的铬,所得结果与标准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提高了测定准确度。痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在电流为 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈良好的线性关系。As(III)和As(V)检出限分别为μg/L和μg/L;该方法成功应用于食用鲜牛奶中无机砷的形态分析。2.土壤、底泥和固体物分析景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、铜、铅、镉、铬的相对标准偏差分别为、、、和。方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为,检出限达到×10-12g。宫青宇[11]采用直接固体进样、添加基体改进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)回收率分别为和。此法对实际样品中不同价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大相对标准偏差分别为μg/L、和μg/L、。王霞等[15]用冷原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为μg/L,回收率在91%-101%之间。方法简便快速,线性范围宽。3.大气环境质量监测邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光谱法测定居住区大气中硒,检出限为,线性范围为0-50ng/mL,回收率;其中砷对测定硒有一定干扰,其它金属元素对测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检出限为 ng/mL,线性范围为0-35 ng/mL,回收率为,其他金属元素对测定镍未见明显干扰[17]。冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<。在汞量范围内标准工作曲线线性关系良好。并且运用该法,对贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院地球化学研究所等地大气气态总汞进行了测定。综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。参考文献〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉〔J〕.化学分析计量,2008,17(1):53-54.〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废水中铝〔J〕.环境保护科学,2008,34(3):111-113.〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕量镉〔J〕.冶金分析,2007,27(1):61-63.〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):627-630.〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重金属〔J〕.中国土壤与肥料,2009,(1):74-77.〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.化学工程与装备,2009,(3):100-101.〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含量〔J〕.内蒙古科技与经济,2009,6:69.〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱法测定土壤重金属〔J〕.农业工程学报,2008,24():255-259.〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出液中汞〔J〕.光谱实验室,2008,25(5):981-984.〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研究〔J〕.现代预防医学,2004,31(6):879-880.〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业与健康,2000,16(6):36-37.〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.

原子发射光谱法(AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。 原子发射光谱法包括了三个主要的过程,即: 由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射; 将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱; 用检测器检测光谱中谱线的波长和强度。 由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。参考资料在百度

光谱法检测水质论文

浅谈水质分析中的检出限及其确定方法

【摘要】 想要使水质分析监测报告更加真实,就只有正确的进行检出限的确定方法的使用。但是,就目前来看,人们虽然在检出限的使用措施和技术上有所改进,但是仍然无法得出较好的检出限结果。所以,在水质分析中的检出限的确定方法的研究方面,人们还需要积极的进行探索。因此,基于这种认识,本文对水质分析中的检出限的定义及分类进行了说明,并进行了确定检出限的常用方法的提出,从而希望为水质分析工作提供一些的参考建议。

【关键词】 水质分析;检出限;确定方法

Abstract wants to make the water more realistic analysis of the monitoring report, carried out using only the right to determine the method detection limit. But, for now, although people in the detection limit of the measures and the use of technology has improved, but still can not come to a better detection limit results. Therefore, the research method for determining the water quality analysis detection limits, people also need to be explored actively. Thus, based on this understanding, this paper analyzes the definition and classification of water quality detection limits have been described, and the method used to determine the limit of detection of the proposed thus hope to provide some reference suggestions for water quality analysis.

Key words water quality analysis; detection limit; determining method

引言

作为重要的质量控制参数,检出限常常在水质分析报告中出现。就实际情况而言,由于生活用水的水质在不断恶化,所以随着相关部门及机构对检出限的重视程度的提高,检出限的确定已经成为了水质分析工作中的重要内容。而为了更好的进行水资源的利用和开发,人们也要不断的进行检出限的确定方法的探索,从而更好的进行水质的控制,进而更好的促进人类的发展。所以,在这种情况下,相关人员就更应该关注水质分析的检出限的确定问题。

1、水质分析中检出限定义及分类

检出限

在水质分析过程中,在特定置信限下进行某一特定分析方法的运用,从而检出的监测目标物的最小量,就是检出限。而在进行检出限确定的过程中,要进行特定的分析方法的使用。但是,由于检出限的分析方法不同,所以确定出的检出限的单位也并不相同。就目前来看,检出限可以用ug/ng等绝对量单位来表示,也可以用ug/g、10-6等浓度单位来表示[1]。

无论是利用哪种检测方法来进行检测,在检测目标物等于零的情况下,监测目标物的信号也会受到波动的影响。所以,一旦证据不充分,就不能认为检测到的信号是检测目标物所发出的。而与此同时,所得到的检测结果也不一定就是所要检测的目标物的检测结果。因为,检测信号的波动可能是由非检测物所造成的,所以检测的结果的真实性将不能被证明[2]。因此,进行检出限的分析时,要进行检测目标物和非检测物的检测信号的对比,然后在此基础之上进行产生差异的对应量的确定。此外,为了完全排除对检测结果的干扰,还要进行检测工作本身误差所导致的检测信号波动情况的测定。一般的情况下,检测工作本身的工作误差具有人为过失误差和不可回避误差。所以,如果可以使人为过失误差得到排除,就可以认为测量误差是偶然误差。而由于偶然误差往往是由检测信号波动存在所造成的,因此偶然误差往往具有正态分布的特性。而利用这一特性,就能进行信号波动区间的对应置信限的确定。同时,利用正态分布特性的标准偏差又可以进行波动区间大小的确定,进而进行置信区间值的获取。而在经过不限次数的多次测定后,3秒左右的置信区的置信度可以达到。但是,如果进行测定次数的限定,那么所测定出的3秒左右的置信区的置信度就只有95%[3]。因此,从这些内容可以了解到,在检测目标物为零的情况下,如果目标物产生的信号波动大于置信限,就可以证明信号的波动是由检测目标物所产生的。

检出限的分类

检出限

检出限的英文名为Detection Limit,简称DL。从本质上来讲,检出限就是一种量值,是以一定的置信水平为基础来进行分析方法和测试仪器灵敏度衡量的重要指标。

仪器的检出限

仪器检出限的英文名为Instrument Detection Limit,简称IDL。从本质上来讲,仪器检出限就是分析仪器能够检测出的被分析物的最低量或浓度。所以,仪器检出限常常能体现出仪器的检出能力,并且是一个与信噪比有关的指标。一般的情况下,被分析物的浓度会与特定仪器能够从背景噪音中分辨出的最小响应信号相对应。但是,由于不受到任何样品制备步骤的影响,仪器检出限的值总是低于方法检出限。所以,在大多数最终数据报告中,仪器检出限并不会出现[4]。而在与不同仪器的性能相比较的情况下,仪器检出限常常会被使用,并且常用于进行数据的统计分析。

方法检出限

方法检出限的英文名为Method Detection Limit,简称MDL。从本质上来讲,方法检出限就是利用某一种分析方法完成一项检测工作后,被测定物质被测定出来的最低浓度。但是,值得注意的是,这里的被测定物质产生的置信度要能达成99%,并能于空白样品相区分。具体来说,就是要利用分析方法测定出的空白实验值和选定的估算检出限公式来完成浓度的计算。所以,方法检出限不仅与仪器噪声有关,而且还与样品性质、预处理过程都有关系,并能够进行方法全过程的误差总和的确定。因此,从这里可以看出,方法检出限可以在衡量实验室、分析方法和分析人员效能方面被利用,并且可以被当做是一个相对的标准[5]。所以,作为分析化学中质量控制方面的重要概念和参数,方法检出限往往会在最终的数据报告中出现,并且可以显示出数据的不确定性和局限性。

定量限与应用定量限

在正常实验室的常规操作下,在被测组分的浓度产生的信号大于空白样本浓度产生的信号的情况下,这一信号就能以指定的置信水平定量检出。而这一浓度,就是定量限。通常的情况下,人们往往以试剂空白的标准偏差信号的10倍信号的产生浓度为定量限。此外,随着介质、分析方法和分析对象的改变,定量限也会发生相应的改变[6]。而应用定量限指的则是在实际操作和常规分析的条件下能够达成的定量限。因为,这样的定量限可以使检测结果具有较高的准确性。所以,应用定量限常常是方法检出限的.3到10倍,指的是能够准确测定的最低浓度。

2、水质分析中的检出限确定方法

就现阶段而言,常用来进行水质分析中的检出限确定的方法有分光光度法、光皮分析法和定量测定下限等多种方法。而无论是那种检出限的计算方法,都有着基本相同的计算原理。此外,值得注意的是,检出限的确定要根据选用的检测方法来完成。

分光光度法

在水质分析过程中,分光光度法是常规的检出限的确定方法。首先,利用分光光度法进行检出限的确定,要先进行空白值的测量。而这里所指的空白值,就是利用实验用水来进行检测样本的替代,然后利用与样本测定同样的步骤来进行实验用水的测定,而最后所获得测定值就是空白值[7]。就实际情况而言,实验用水质量、器皿洁净程度、试剂纯度、仪器性能、试验环境和人员操作等多种因素都会对空白值的测定造成影响。所以,只有各方面条件都比较完备的实验室的分析方法的空白值才会在非常小的范围内波动,从而使空白值保持一定的准确率。而空白值的测定也有着具体的测定方法,就是5到6个批次进行空白值的测定。而在每一个批次的测定过程中,需要对平行双样进行测定,同时在测定后进行标准曲线的制作,并在一段时间内进行同一批样本的重复测定。但是,如果使用的测定方法的数据波动变化相对较大,就可以进行约10个批次的分析。其次,在空白值测定完成后,就要进行检出限计算公式的选择。而一般的情况下,检出限计算公式的选择都是按照《全球环境监测系统水监测操作指南》中的规定来进行的。当空白的测定次数大于等于20时,公式为σwb。其中,指的是检出限,而σwb指的则是空白平行测定的标准偏差。但是,在空白的测定次数小于20时,就可以用Swb来进行σwb的替代,具体的公式为。其中,代表着检出限,tf则表示显著性水平,Swb则表示空白平行测定标准差。

光谱分析法

利用光谱分析法进行检出限的确定也是在水质分析中比较常见的。首先,利用光谱分析法进行检出限的确定需要进行超过20个的空白样品的测定。而在进行空白样品检测时,空白信号的标准偏差为Sbo。就实际情况而言,在某些水质分析方法中,空白值的测定结果趋近于零。所以,可以用约等于零的标准溶液来进行纯水的代替,从而进行空白值的测定。因为在这种条件下,测定出的数据将更具有价值,所以可以为下一阶段的计算提供比较可靠的数据。但是,在正常的情况下,往往接近空白的加标浓度是预期检出限的1到3倍。所以,需要根据已定的分析方法进行测定结果的预处理[8]。其次,在空白值测定完成后,利用光谱分析法进行检出限的确定同样要进行检出限计算公式的选择。根据有关规定,通常使用 Sb/a来进行检出限的计算。其中,Sb代表着空白多次测定的信号的标准偏差,a代表着分析方法的灵敏度,而K往往等于3,从而便于进行检出限的计算。另外,利用光谱分析法进行检出限的确定时,需要注意空白测定的过程中的同一日期内多次测定的变动风险存在问题。而如果在不同的日期内进行多次空白测定,也同样存在着变动风险。因此,由于公式中并没有体现出对这一问题的考量,所以要进行这两种因素的全面的考量,进行每个批次的平行双样的测定,同时进行对应的标准曲线的制定,并保证测定的批次大于10次的测定在特定的时间段内完成。而这样一来,空白值的浓度的标准偏差就可以被计算出来,而这一值的3倍就是需要测定的检出限。

定量测定下限

利用定量测定下限来进行检出限的确定时,可以根据有关规定将测定下限认定成10倍空白标准偏差对应的浓度值,既倍的MDL,而相应的置信度则为90%。但是需要注意的是,不同的规定中的测定下限不同,而相应的置信度也不相同。在HJ/T168-2004导则中,将以4倍检出限浓度为测定下限,既4倍的MDL。而在这种情况下,相对标准偏差约为10%。此外,在实际分析的过程中,测定下限的确定还会受到仪器设备响应信号稳定状态、校准曲线标准系统各点分布等多种因素的影响[9]。而与此同时,还要使实际测定下限大于理论的测定下限,并要保证测定下限与校准曲线各点分布相对应。此外,在条件允许的情况下,还要根据测定下限的精密度进行标准偏差的测试,进而保证标准偏差小于10%。而在实验的过程中,如果低浓度样品的精密度要求较高,就可以5倍以上的MDL为测定下限。

其他检出限确定方法

在水质分析过程中,还可以利用其他方法进行检出限的确定。一方面,可以使用容量法进行检出限的确定。具体来说,就是利用滴定管产生的最小液滴体积来进行检出限的计算。另一方面,还可以使用总量法进行检出限的确定。而该种确定方法主要与天平的灵敏度和监测样品的体积有关。所以,可以根据这两方面的因素进行检出限的计算。

结论

总而言之,从本文的研究来看,水质分析中的检出限可以被分成是仪器的检出限、方法检出限、定量限和应用定量限等多个种类。而目前常用来进行水质分析的检出限确定的方法则有分光光度法、光谱分析法和定量测定下限等多种方法。所以,从这里可以看出,我国对水质分析中的检出限及其确定方法已经有一定程度的研究。但是,由于水质环境仍然在不断变化,所以现有的检出限确定方法已经无法满足水质分析的工作需要。因此,相关部门还应该不断的进行检出限的确定方法的优化,进而促进水质分析工作的发展。

参考文献

[1]叶洞君.解析水质分析中的检出限及其确定方法[J].河南科技,2013,04(01):197.

[2]蔡英.水质有机污染物的分析方法研究[D].湖南师范大学,2010.

[3]王路.水质分析中仪器法的检出限的计算[J].环境与发展,2014,03(01):175-176.

[4]陈爽,徐接胜.关于检出限的定义、分类及估算方法的探讨[J].广州化工,2014,18(42):137-139.

[5]李君霞.分析检出限的实验测量和计算方法的研究[D].北京化工大学,2012.

[6]雷雯雯,雷庆,栗颜博.从多种角度分析水质化验中的检出限[J].黑龙江水利科技,2011,01(01):92.

[7]夏春,陈 琨 .水质分析方法中检出限的计算[J].广州化工,2014,10(42):170-171.

[8]邢飞.TMP废水有机物监测方法的研究[D].河北工程大学,2013.

[9]朱海豹,钱亚玲,唐红芳.色谱分析中的检出限和定量下限及其在职业卫生检测中的应用[J].中国卫生检验杂志,2012,09(22):234-235.

水质检测中生物检测技术的使用论文

在日常学习和工作中,大家总少不了接触论文吧,论文是学术界进行成果交流的工具。那么你有了解过论文吗?以下是我为大家收集的水质检测中生物检测技术的使用论文,欢迎大家借鉴与参考,希望对大家有所帮助。

摘要:

近年来,随着我国环保事业的逐步成熟,社会各界对环境污染问题给予了广泛的重视,特别是水质安全问题,直接影响着广大群众的正常生活。为了更好地保障人民群众的用水安全及生态环境的和谐发展,就必须加强水质检测工作的管控力度,运用科学先进的现代化技术手段,提升水质检测数据的精确性和可靠性,为人民群众的安全用水提供坚实的技术保障。鉴于此,本文就着重围绕水质检测环节中生物检测技术的具体应用进行了深入探究。

关键词:

生物检测技术;水质检测;应用:探究;

引言:

水是人们赖以生存的重要资源,水质的好坏不仅会影响到人们的生命安全,同时也会影响到正常的社会生产秩序,然而,近年来我国工业及农业产业的迅猛发展,都不可避免的加剧了我国水环境的污染问题。为了有效改善这一局面,就必须加强水质检测工作的监管力度,运用科学先进的生物检测技术,来提升水质检测工作的技术水平,确保水质检测结果的科学性和准确性,推动水质检测工作的顺利开展。

1、生物检测技术的含义及相关特性探究

(1)生物检测技术的具体含义。

生物检测的含义主要是指通过某些生物个体、群落来对周边环境污染及变化情况进行客观反映,以此来作为环境质量检测重要的参考依据。近年来,受到外界各种因素的不同影响,对我国的水资源带来了严重的破坏,由于其污染源头较为复杂,这就需要科学先进的技术手段对其进行全面深入的检测分析,而生物检测技术的优势就在于可以在特殊环境中对水污染效应进行充分展示,有效弥补了传统检测技术的不足之处。

(2)生物检测技术的相关特性。

对于生物检测技术的相关特性,我们可以结合以下三点进行分析:其一,相较理化检测的具体应用而言,生物检测技术可以在某些特定区域内对生物的污染情况加以充分反映,彻底打破了理化检测的局限性,使水质检测结果的精确性得到了进一步的提升。其二,针对仪器设备的具体应用而言,由于部分生物对污染物的反应情况较为敏感细微,但无法通过仪器设备对其进行精准的检测,这势必会影响到检测数据的准确性,而通过对生物检测技术的科学运用,就能够对微量污染物所产生的反应进行充分展示,同时还可以清晰的展示出相应的受损效应。其三,在整个生态系统之中,为了能够使微量的有毒有害物质形成聚集效果,便可以借助生物链来完成,当到达食物链末端时便可以使污染物的浓度得到显着的提升,为检测工作提供重要的参考依据。

2、水质检测的基本概况及影响要素探究

(1)水质检测的基本概况。

水资源是人们赖以生存的重要资源,同时也是宝贵的非可再生资源。近年来,我国政府部门在推动经济发展的同时对环境保护愈加重视,随着环保宣传的广泛开展,社会各界都对环保理念有了全新的认识。水质检测工作的重要价值不仅体现在人们的安全用水方面,同时也对生态环境的保护与研究发挥着非常重要的作用。结合目前的实际情况来看,水质检测在社会各个领域都得到了较为广泛的运用,水质检测对推动社会与生态环境的和谐发展具有非常重要的影响。

(2)水质检测的影响要素。

针对水质检测的影响要素,主要体现在以下三个方面:首先,是水样来源的具体影响,结合水质检测环节来看,假如检测人员对水样来源的具体情况没有进行全面掌握,就有可能对解决措施作出错误的判断,无法有效的解决该区域水源的污染问题,因此,在开展水质检测工作的具体操作之前,检测人员必须要对水质来源进行全面的了解,并结合实际情况制定出妥善的解决措施,使水质检测工作的重要价值得以充分发挥。其次,是针对类别方面的影响要素,在对水样水质进行具体检测时,必须要依据水质的不同选用适宜的水质检测方法,这就要求检测人员必须要认真对待检测工作,并严格依照检测工作的相关流程实施具体的检测操作。对此,检测人员要对不同的水质进行分析研究,针对不同水质的差异性做出准确判断,然后再运用科学合理的检测技术来对水样进行水质检测,这样才能确保水质检测数据的精确性,并使其成为相关部门制定解决方案的重要参考依据。最后,针对人为方面的影响因素,在进行水质检测的具体操作时,检测人员作为最直接的参与者,在整个检测环节中占据着非常重要的地位。为了有效避免人为操作失误情况的发生,就必须加强对整个检测环节的监管力度,在开始检测之前,要对检测仪器、试剂以及玻璃器皿等重要物品进行详细的检查,在确定一切符合标准,严格规范取样工作;进行检测工作时,检测所用的药品,一定要确保其在有效期内,过期变质的药物必须马上进行更换,检测工作要在规定时间内。另外,针对整个检测环节而言,检测人员还必须严格遵循检测标准来规范自身的实际操作,同时还要保证检测记录的准确性和客观性,从根本上避免人为失误对检测结果所造成的不利影响。

3、水质检测中生物检测技术的实际应用探究

(1)发光细菌检测技术的具体应用。

发光细菌检测技术可以对水样中存在的大部分有毒有害物质进行检测,因此在重金属以及有机物等检测领域中得到了较为广泛的运用。然而在具体的检测环节中,发光细菌检测技术也存在一定的弊端,如操作繁杂以及误差较大等相关问题。随着科技水平的日益发展,电子技术已对发光细菌检测技术做出了相应的完善,如紫外分光光度法以及荧光光度法等检测手段的辅助,可以有效提升水质检测工作的质量和效率,确保检测数据的精确性和可靠性。

(2)生物行为反应检测技术的`具体应用。

生物行为反应检测技术的操作原理主要体现在借助生物受污染物危害后所出现的趋利避害行为反应对水体污染的具体情况加以评断,并对水体污染的安全浓度加以确定,然后依据水体的实际污染情况制定出合理准确的预警措施。生物行为反应检测技术通常运用在鱼、水蚤以及双壳软体动物等生物的具体检测中,同时在实施淡水生物检测环节中一般会运用斑马鱼进行具体的检测操作,这主要是由于斑马鱼会在水质污染的情况下迅速做出行为反应,为水质检测工作提供了非常重要的参考依据。在海洋环境中,通常会运用双壳生物活体来检测水体的污染情况,而在淡水环境中,则一般会借助鱼类来完成具体的检测工作。针对贻贝双壳距离变化的具体检测操作,可以借助电磁感应技术来进行落实,此外,还可以借助高频电磁感应系统对贝壳类物质的运动情况实施检测。

(3)微生物群落检测技术的具体应用。

微生物群落检测技术通常运用于对细菌、真菌以及原生动物等微型生物在水体中的物种频率及数量的检测工作,然后再结合先进的电子技术对分布指数进行精准的计算,最后依据分布指数的具体数值对水质污染程度进行评断。伴随科技水平的全面发展,微生物群落检测技术也得到了相应的完善,检测评价指标的增加就是一个很好的证明,一般较为常见的检测评价指标有原物种种类指标、植鞭毛虫百分值以及异样性指数等。通过对生物检测技术的合理运用,使我国的水质检测技术水平得到了更好的完善与提升,这在生态环境的保护工作以及为人们提供优质用水资源等方面都发挥出了非常重要的作用。与此同时,在微生物群落检测技术的发展之中,数学分析的实用性也在逐步攀升,数学分析与计算机技术的联合应用有效拓展了生物群落参数变化规律的检测范围,使微生物群落检测技术的重要价值得以充分展现,同时对提升检测数据的精确性和可靠性也有着非常积极的影响。

(4)底栖动物及两栖动物检测技术的具体应用。

底栖动物及两栖动物检测技术的主要原理为运用生物在水体中的出现、消失以及数量的多少对水质进行具体的检测,底栖动物及两栖动物的检测参数主要包括BI指数以及群落多样性指数等。通过对两栖动物行为及生物指标的全面检测可以对水体的整体质量进行评估,尤其是在检测发育阶段中可以实现对环境因子变化的进一步感应。

4、水质检测环节中生物检测技术的应用前景探究

(1)分子生态毒理学应用于水质污染检测。

分子生态毒理学检测技术通常被运用于污染物及其代谢物与细胞内大分子代谢作用的具体研究,在对发生作用的靶分子进行研究后,便可以对个体、种群以及群落的基本情况进行预报。在科技水平日益提升的今日,生物体内胆碱酯酶活性检测被广泛运用于海水及淡水资源水质污染的检测工作。

(2)遗传毒理学应用于水质污染检测。

遗传毒理学检测原理主要是借助DNA链损伤程度的检测对遗传毒性加以判断的检测技术,相比微核试验操作而言,遗传毒理学检测技术的效果更加显着,主要是因为单细胞凝胶电泳能够对低浓度的有毒有害物质进行准确的检测,SOS显色方案作为遗传毒理学检测技术的另一种检测方法,其具体的操作原理表现在受到外界范围损伤及抑制的干扰下,DNA分子会进行错误修复,在经过遗传毒物处理后而出现的反应便可以称为SOS应答,SOS检测方法具有灵敏性强且操作便捷等技术优势。

5、结语

结合以上论述可以看出,伴随社会经济的飞速发展,工业及农业产业规模的不断壮大,加剧了我国的水污染问题。对此,为了有效解决这一难题,相关部门就必须对水质检测工作给予高度的重视,通过对生物检测技术的科学运用,使水质检测工作的效率和质量得到进一步的提升,在确保检测数据准确性的基础之上,为人民群众提供优质的用水资源,以此来推动社会与生态环境的可持续发展。

参考文献:

[1]廖伟,杨蓉,徐建,闫政,金小伟饮用水源微生物快速检测技术的发展及应用[J]中国环境监测, 2020,36(06)—:104—112.

[2]张松松生物检测技术在水环境中的应用及研究[J]环境与发展, 2020,32(06)—.74+76.

[3]李悦浅析水环境污染检测中生物监测的运用[J]绿色环保建材, 2020(01):55+57.

[4]陈朋利谈生物技术在水质检测与污水处理中的应用[J]环境与发展, 2019,31(09):81—82.

[5]施小玲.水质检测与污水处理中生物技术的应用分析[J].化工管理2019(21):42—43.

[6]谢本祥生物工程中检测技术的需求和发展趋势[J]科技经济导刊.2019,27(15)—163—164.

[7]杨磊生物技术在水质检测与污水处理中的应用[J]工程技术研究, 2019,4(05): 102+130.

原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方。

关于液相色谱质谱检测的论文

化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。测定时需使用化学试剂、天平和一些玻璃器皿。 仪器分析(近代分析法或物理分析法):是基于与物质的物理或物理化学性质而建立起来的分析方法。这类方法通常是测量光、电、磁、声、热等物理量而得到分析结果,而测量这些物理量,一般要使用比较复杂或特殊的仪器设备,故称为“仪器分析”。仪器分析除了可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向。 相对于化学分析仪器分析有以下特点: 1. 灵敏度高,检出限量可降低。如样品用量由化学分析的mL、mg级降低到仪器分析的g、L级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2. 选择性好。很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3. 操作简便,分析速度快,容易实现自动化。 仪器分析的特点(与化学分析比较) 4. 相对误差较大。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5. 仪器分析需要价格比较昂贵的专用仪器。 二者相同点 : 1、都可作为定性定量的分析方法。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 2、分析原理一致。

三聚氰胺检测方法汇总检测方法GC-MS法测定动物食品中的三聚氰胺Spectra-Quad实现三聚氰胺含量在线检测超高效液相色谱_电喷雾串联质谱法测定饲料中残留的三聚氰胺反相高效液相色谱法测定饲料中三聚氰胺的含量高效液相色谱-二极管阵列法测定高蛋白食品中的三聚氰胺高效液相色谱法(HPLC)测定饲料中三聚氰胺的含量高效液相色谱-四极杆质谱联用测定饲料中三聚氰胺含量固相萃取与高效液相色谱联用测定宠物食品中三聚氰胺液相色谱串联质谱法(LC-MSMS)分析宠物食品中三聚氰胺液相色谱-串联质谱法测定饲料中三聚氰胺残留GC-MS法测定动物食品中的三聚氰胺附:三聚氰胺检测方法示例仪器与条件高效液相色谱仪;二极管阵列检测器(DAD),检测波长240nm,柱温:40℃。(1)AgelaVenusilTMASBC18(×250mm);缓冲液:10mM柠檬酸,10mM庚烷磺酸钠;流动相:缓冲溶液:乙腈=85:15;流速:。(2)AgelaVenusilTMASBC8(×250mm);流动相:缓冲液:乙腈=85:15;缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为;流速:;离子交换固相萃取柱AgelaClearnertTMPCX试剂与样品宠物饲料样品(农业部饲料供应中心提供);甲醇、乙腈为北京艾杰尔科技有限公司提供;氨水、乙酸铅、三氯乙酸、均购于北京化学试剂公司;三聚氰胺标准品、柠檬酸、辛烷磺酸钠(Sigma公司);甲醇为色谱纯,其他均为化学纯。实验方法1、样品前处理方法(1)标准样品配制:取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(三氯乙酸)稀释至所要的浓度。(2)提取:称取饲料样品5g,加入三氯乙酸提取液,充分混匀,加入2mL2%乙酸铅溶液,超声20min。然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。(3)净化(PCX小柱,60mg/3mL):a)活化及平衡:3mL甲醇,3mL水b)上样:加入提取液3mLc)淋洗:3mL水;3mL甲醇;弃去淋洗液并将小柱抽干。d)洗脱:5mL5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。e)浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL,HPLC分析或衍生后GC/MS分析。2、三聚氰胺被立案三聚氰胺HPLC-UV检测方法三聚氰胺是强极性化合物,在传统的反相C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部公布的三聚氰胺检测方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,可以得到良好的分离效果:(a)色谱柱:×250mm;标准:FDA方法;流动相:缓冲液:乙腈=85:15;缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为;流速:;柱温:40oC;波长:240nm(b)色谱柱:×250mm;标准:中国农业部颁标准方法;缓冲液:10mM柠檬酸,10mM庚烷磺酸钠;流动相:缓冲溶液:乙腈=85:15;流速:;柱温:40℃;波长:240nm空白加水平(mg/L)回收率三聚氰胺LC-MS检测方法由于FDA公布的HPLC-UV方法中,流动相添加了离子对试剂,因此限制了液质联用方法的使用;但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,不能得到较好的分离定量〔3〕。基于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离。因此方法中流动相不含离子对试剂,可以用于质谱检测。与FDA2007年4月公布的《UpdatedFCCDevelopmentalMelamineQuantitation(HPLC-UV)》相比较,该方法大大降低了最低检测限(MSD:;UV:2ppm),提高了检测灵敏度。以该方法分别在××250mm得到很好的谱图。缓冲液:10mM的NH4AC;流动相:Buffer::ACN=95:5;流速:;进样量:样品先用70%ACN溶解成约1mg/mL,用ACN稀释成,进10uL;柱温:40℃;波长:240nm结果与讨论1、阳离子交换柱(PCX)三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般应选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子交换和反相吸附两种机理,并具有以下优点:a)可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。b)批次重复性好。c)回收率高,重现性好,即使小柱跑干也可以得到较高回收率。2、LC-MS方法优点:(1)检测过程简便:无须添加离子对试剂,三聚氰胺就可得到良好的保留与分离,避免了配制离子对流动相的复杂过程。(2)提高了检测的灵敏度:无离子对试剂,可以用于质谱检测器,大大降低了最低检测限(MSD:;UV:2ppm)。(3)降低了检测成本:不用离子对试剂,就不再需要买价格较贵的离子对试剂了,从而降低了检测成本。(4)延长了色谱柱的使用寿命:避免了使用离子对试剂减少色谱柱寿命的影响。(5)该方法所使用的色谱柱具有通用性:无论是用FDA方法、中国农业部部颁标准方法和本公司开发的LC-MS方法,使用艾杰尔(Agela)ASB系列亲水色谱柱均能得到一个很好的检测结果,从而给客户提供了多种选择空间。国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。

色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

涂料检测中的现代色谱分析技术应用分析

摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

关键词:涂料检测;现代色谱;气相色谱法

1 高效液相色谱法

该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

2 气相色谱法

裂解气相色谱-傅里叶变换红外光谱联用

能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

裂解气相色谱-质谱联用

涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

3 结论

快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

参考文献

[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

原子荧光检测砷的论文题目

共发表科技和教学研究论文100多篇,已主编、副主编、参编出版著作28部,撰写260余万字,其中主编、副主编国家级“十五”“十一五”规划教材、教育科学“十五”国家规划课题研究成果和高等教育百门精品课程教材、教育部面向21世纪课程教材11部,获国家级、省级和市、厅级优秀教材奖6部。一、论文(2005年以来)1. 2005,1月 流动注射化学发光法测定鲜酒糟中微量乙醇的研究中国卫生检验杂志(核心期刊) p49~512. 2005,1月 发芽豆乳面包的生产工艺研究粮油加工与食品机械 2005(1)p69~703. 2005,4月 改革本科实验教学提高学生创新能力中国教育教学杂志(高等教育版) 总 p74~744. 2005,4月 高效液相色谱法检测小麦粉中过氧化苯甲酰的含量粮油加工与食品机械(核心期刊) 2005(4)p67~685. 2005,6月 微波增压消解-流动注射化学发光法快速测定去离子水中微量有机物质 中国卫生检验杂志(核心期刊) p654~6566. 2005,7月 鸡腿菇保健饮料的工艺探讨食品工业科技(核心期刊)2005年第7期 p158~1597. 2005,7月 浓度直读法快速测定食用菌中微量氟的研究中国食用菌(核心期刊) 2005年第4期 VoL24,No4 p36~37,358. 2005,8月 海带粉的加工及其在面包中的应用粮食与饲料工业 . (中文核心) p18~199. 月 浅谈分析化学教学质量的提高中国教育科学通报 VoL2,No8 p105、10810. 2005,9月 浓度直读法快速测定碘盐中的微量碘食品科学(一级学报) p423~42511. 2005,9月 微波消解快速测定特殊粒色小麦中的10种金属元素麦类作物学报(核心期刊) . p140~14212. 2005,11月 南阳彩色小麦微量氟的分布及浓度直读快速分析方法研究食品科学(一级学报) p187~18913. 2005,11月 微波消解原子吸收法在南阳彩麦矿质元素测定中的应用河南农业大学学报(核心期刊) p365~367、38214. 月 浓度直读法快速测定蔬菜中的硝酸盐和亚硝酸盐含量中国卫生检验杂志(核心期刊) p1444~144615. 2006,3月 离子选择性电极浓度直读法测定小麦中的碘含量(通讯作者)食品与发酵工业(核心期刊) 2006年第3期 p89~, 3月 微波消解-浓度直读法快速测定南阳彩色小麦中的微量钙安徽农业科学(核心期刊)2006,34 p1048~1049,, 5月 南阳彩色小麦籽粒品质性状分析初报麦类作物学报(核心期刊) p164~16518. 2006,6 月 南阳彩色小麦中维生素含量的研究初报安徽农业科学(核心期刊) p2355~235719. 2006,7月 色泽异常肉及其产生的原因肉类工业(统计源期刊)2006(7)p38~,7月 南阳特殊粒色小麦部分品质指标的初步分析麦类作物学报(核心期刊) p161~月 高校食品化学实验课程的创新性教学中国教育教学研究杂志 总139期 p15~16中国教育教学研究会主办22.2006,10月 南阳彩色小麦面团拉伸性能测定及粉质评价研究初报食品科学(一级学报) p32~, 10月 离子选择性电极浓度直读法快速测定火棘果中的铜含量安徽农业科学(核心期刊) p4824~4825,月 海带挂面配方优化研究河南农业大学学报(核心期刊) p532~,10月 温室效应及其防治对策安徽农业科学(核心期刊) p5351~,11月 Luminol-KMnO4化学发光体系测定小麦中的微量砷*食品科学(一级学报) p412~,12月 微波高压快速消解-紫外分光光度法测定南阳彩色小麦中的微量元素硒 安徽农业科学(核心期刊) p6093~6095,月 标准加入直读法快速测定南阳彩色小麦面粉中硝酸根的研究 粮食储藏(核心期刊) p39~41,月 离子选择性电极浓度直读法快速测定火棘果中的微量钙*食品科学(一级学报) , p305~月 微波溶样快速测定南阳彩色小麦面粉中的微量镉安徽农业科学(核心期刊), p1893~1894、,5月 超声波诱导紫外光协同法降解苯酚化学通报(一级学报)第5期, p396~,5月 农产品中微量元素锗的分析方法研究安徽农业科学(核心期刊) ,No14 p4093~月 南阳彩色小麦面粉中微量铜的快速测定方法研究食品科学(一级学报) , p274~,7月 小麦中有害元素砷的测定及其生物吸收比的研究食品科学(一级学报) , p407~410全国食品与环境学术会议宣读论文 中国.贵阳2007年8月,8月 南阳彩色小麦中氨基酸含量的研究及初步评价粮食储藏(核心期刊) , p42~45,, 9月 郑州市火棘果红色素的提取及理化特性研究食品科学(一级学报) , p242~,11月 偶合化学发光法测定食用油中碘价的研究中国油脂(核心期刊) , p74~,11月 土壤样品中有效氮的化学发光法测定中国农学通报(核心期刊) , p228~,11月 反相HPLC法测定郑州地区火棘果中氨基酸含量的研究昆明理工大学学报(核心期刊) , p86~89,,11月 南阳特殊粒色小麦色素的提取及粗提溶液理化特性的研究昆明理工大学学报(核心期刊) , p99~,12月 微波压力消解-原子荧光法测定土壤及其小麦中有害元素砷的研究 河南科学(核心期刊) , p911~91442. 2008,2月 Luminol-SCN—体系测定土壤中有效钼安徽农业科学(核心期刊),2008,36(4):1300~130243. 2008,2月 Luminol-I2化学发光体系测定食用油中过氧化值的研究食品科学(一级学报)2008. , p318~,4月 超声波-中性甲醛浸提—固定pH法快速测定水果中的总酸度食品科学(一级学报) 2008. , p341~,8月 标准加入直读法快速测定南阳彩色小麦中的微量铜河南科学(核心期刊) 2008. , p920~,8月 微波程序消解-流动注射化学发光法快速测定彩色小麦中微量铬食品科学(一级学报) 2008. , p547~,8月 分光光度法快速测定酸奶中的钙安徽农业科学(核心期刊) , p9352~,9月 微波消解-浓度直读法快速测定食品中的蛋白质食品科学(一级学报) 2008. , p441~,10月 微波消解-恒pH滴定法快速测定粮食中的粗蛋白粮食储藏(核心期刊) ,p33~,11月 南阳彩色小麦中微量铅的快速测定技术研究农业工程学报(一级学报),~,12月 贮藏期间大蒜的生理特性变化研究江苏农业科学(核心期刊),2008,(6)p251~月 食品添加剂对南阳彩色小麦淀粉糊化黏度特性的影响&#91;J&#93;.麦类作物学报(核心期刊), 2009, ,~25553. 2009,7月 超声波辅助-反相HPLC法测定火棘果中的有机酸河南科学(核心期刊) 2009. ~82354. 2009,8月 超声波浸提-加标浓度直读法快速测定大豆中的微量氟食品科学(一级学报) 2009. ,55. 2009,8月 郑州地区栾树果实理化参数的研究初报 900河南科学(核心期刊) 2009. ~108856. 2009,9月 栾树果实中粗脂肪、粗蛋白和粗纤维营养特性的初步研究经济林研究(核心期刊)57. 2009,8月 加标浓度直读法快速测定大蒜中微量氟的研究安徽农业科学(核心期刊)58. 2009,6月 南阳彩色小麦及其土壤中微量硒的相关性研究云南农业大学学报(核心期刊),10月 Luminol-K3Fe(CN)6流动注射化学发光体系测定恩诺沙星食品科学(一级学报) 2009. ,60. 2009,11月 黄山栾果与栾果中维生素含量的测定河南科学(核心期刊),12月 微波消解-流动注射化学发光法快速测定小麦中的稀土元素粮食贮藏(核心期刊),12月 超声波辅助-旋光法快速测定食品中蔗糖的研究安徽农业科学(核心期刊)二、著作(2004年以来)1. 月 新编仪器分析(第二版)ISBN 7-03-012731-5教育部国家级“十五”规划教材 高向阳(主编)科学出版社(北京)2. 月(上册 实验化学(上下册)(第二版)月(下册) ISBN7-04-016084-6(上册) ISBN7-04-016085-4(下册)高等教育出版社(北京)高向阳(副主编)获教育部2002年国家级优秀教材二等奖3. 2006 .5月 现代仪器分析 (第二版) ISBN 7-04-018709-4高等教育出版社(北京) 高向阳(副主编)教育科学“十五”国家规划课题研究成果高等教育百门精品课程教材建设计划研究成果4. 2006,7月 绿色食品 ISBN 7-5349-3290-4/河南科学技术出版社(郑州)高向阳(主编)教育部全国高中职业技能试用教材年10月 食品分析与理化检验ISBN 7-5026-2485-6/中国计量出版社(北京) 高向阳(主编)“十一五”高等学校通用教材(食品类)6. 2006年11月 绿色食品 教师教学用书 ISBN 7-5349-3592-X/河南科学技术出版社(郑州)高向阳(主编)教育部全国高中职业技能试用教材普通高中新课程实验教科书 通用技术(选修4)现代农业技术 专题一7. 2007,7月 现代仪器分析学习指导与问题解答 ISBN 9787040218046高等教育出版社(北京) 高向阳(副主编)教育科学“十五”国家规划课题研究成果高等教育百门精品课程教材建设计划研究成果8. 2008,8月 现代仪器分析 ISBN 978-7-04-018709-0高等教育出版社(北京) 高向阳(副主编)普通高等教育“十一五”国家级规划教材,1月 新编仪器分析实验 ISBN 978-7-03-022919-9科学出版社(北京) 高向阳(主编)普通高等教育“十一五”国家级规划教材,7月 新编仪器分析(第三版)ISBN 978-7-03-023312-7科学出版社(北京) 高向阳(主编)普通高等教育“十一五”国家级规划教材,7月 新编仪器分析学习指导 ISBN 978-7-03-024882-4科学出版社(北京) 高向阳(主编)普通高等教育“十一五”国家级规划教材国家专利1. 实用新型专利 一种微波炉用消解装置申请号: 专利号:申请日:2006年1月16日申请人:河南农业大学食品学院 高向阳2. 实用新型专利 一种移液管申请号: 专利号:申请日:2006年1月16日申请人:河南农业大学食品学院 高向阳3. 实用新型专利 一种高精度多功能环保型滴定装置申请号: 专利号:申请日:2006年1月16日申请人:河南农业大学食品学院 高向阳4. 实用新型专利 一种改进型定量分析用库仑测定液池申请号: 专利号:申请日:2006年12 月 8 日申请人:河南农业大学食品学院 高向阳5.国家发明专利 生物样品中微量元素及物质的快速分析方法申请号:申请日:2006年5 月 30 日申请人:河南农业大学食品学院 高向阳6. 国家发明专利 薯蔓越冬盆栽生产技术申请号:2006申请日:2006年12 月 8 日申请人:河南农业大学食品学院 高向阳公开公告号 101194592A国际学术交流情况1. 2004年 海峡两岸食品加工暨国际学术交流会议 中国.福州2. 2005年7月17~21日参加全国食品工程类专业教材编写会议 中国.杭州为我院争取主编、参编教材16部3. 2005年~25,中国农学会农产品贮藏与加工学会学术交流会 中国.开封4. ~21, 参加“功能食品与营养产业论坛”会议 中国.南京5. 2006年9月8~10日 食品安全与检测技术论坛 (中国.青岛)6. 2006年10月23-26日 第四届食品科学国际年会暨学术交流会 ,中国.厦门集美大学 4th FOOD SCIENCE INTERNATIONAL SYMPOSIUM October 23rd~26th,2006 Xiamen,China7. 2007年8月1~3日 全国食品与环境学术会议 中国.贵阳会议宣读论文:小麦中有害元素砷的测定及其生物吸收比的研究8. 2008年国际食品安全高峰论坛 中国.北京2008年1月12~13日9. 2008年8月15-20日 第五届食品科学国际年会暨学术交流会 ,中国.昆明 5th FOOD SCIENCE INTERNATIONAL SYMPOSIUM August 15rd~20th,2008 KunMing,China10.2009年8月13日~8月20日 高新技术在食品加工中的应用学术交流会,中国.南昌

方法提要

用王水分解试样后,加入高锰酸钾溶液进行氧化处理,用草酸溶液稀释,经硫脲-抗坏血酸还原,硼氢化钾为还原剂,以氢化物发生-原子荧光光谱法(HG-AFS)测定砷和锑。不经预还原进行铋的测定。

方法适用于地球化学勘查水系沉积物、土壤和岩石等样品中砷、锑及铋的测定。

方法检出限(3s)为:砷μg·g-1、锑μg·g-1、铋μg·g-1。

测定范围:砷~600μg·g-1、锑~100μg·g-1、铋~60μg·g-1。

仪器和装置

原子荧光光谱仪。

砷、锑、铋单元素高强度空心阴极灯。

试剂和材料

酒石酸。

盐酸。

硝酸。

王水75mLHCl与25mLHNO3混合,搅匀。用时配制。

高锰酸钾溶液(10g/L)。

草酸溶液(10g/L)。

铁盐溶液ρ(Fe3+)=1g/L称取三氯化铁(FeCl3·6H2O),加入200mLHCl,溶解后,用水稀释至500mL。

硫脲(50g/L)-抗坏血酸(50g/L)混合溶液用时配制。

硼氢化钾(或硼氢化钠)溶液(7g/L)称取7g硼氢化钾(KBH4),溶于水中,加入2gNaOH,搅拌溶解完全,用水稀释至1000mL,摇匀。用时配制。

砷标准储备溶液ρ(As)=500μg/mL称取已于105℃干燥2h后的高纯三氧化二砷(纯度),置于100mL烧杯中,加入10mL40g/LNaOH,搅拌溶解,加入10mL(1+1)HCl,冷却后转入1000mL容量瓶,用水稀释至刻度,摇匀。

砷标准溶液ρ(As)=μg/mL由砷标准储备溶液稀释制得,介质!(HCl)=。

锑标准储备溶液ρ(Sb)=100μg/mL称取已在干燥器中干燥一昼夜的金属锑(纯度)[或(纯度)],置于250mL烧杯中,加入20mL(1+1)H2SO4,盖上表面皿,加热溶解完全,冷却。用水吹洗表面皿,加入80mL(1+1)HCl及50g酒石酸,搅拌溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。

锑标准溶液ρ(Sb)=μg/mL由锑储备溶液稀释制得,稀释过程中需加入适量酒石酸(20g/L)防止水解。制得的锑标准溶液每100mL应加入(1+1)H2SO4、(1+1)HCl及2g酒石酸。

铋标准储备溶液ρ(Bi)=100μg/mL称取已在干燥器中干燥一昼夜的三氧化二铋(纯度为),置于250mL烧杯中,盖上表面皿后,沿烧杯壁加入40mL(1+1)HNO3,溶解完全后,用水吹洗表面皿及杯壁,移入1000mL容量瓶中,用水稀释至刻度,摇匀。

铋标准溶液ρ(Bi)=μg/mL由铋标准储备溶液稀释制得,介质!(HNO3)=2%。

校准曲线

分别移取砷标准溶液和锑标准溶液各、、、、置于100mL容量瓶中,加50mL1g/L铁盐溶液,补加25mL硫脲-抗坏血酸混合溶液,用水稀释至刻度,摇匀,配成μg/mL、μg/mL、μg/mL、μg/mL、μg/mL的砷标准系列和μg/mL、μg/mL、μg/mL、μg/mL、μg/mL的锑标准系列。放置30min。分取,以硼氢化钾为还原剂,HG-AFS法测定砷和锑,分别绘制相应的校准曲线。

移取铋标准溶液、、、、、于100mL容量瓶中,加入20mL(1+1)HCl,用水稀释至刻度,摇匀,配成μg/mL、μg/mL、μg/mL、μg/mL、μg/mL、μg/mL的铋标准系列。分取,以硼氢化钾为还原剂,HG-AFS法测定铋,绘制校准曲线。

仪器工作条件见表。

表 仪器参考工作条件

注:1011A型仪器为例。

分析步骤

依据各元素的含量,称取~(精确至)试样。试样置于25mL聚乙烯试管中,用水润湿,加入10mL(1+1)王水后摇匀。置于沸水浴中保持1h,期间摇动1次,取出冷却后,加入1mL10g/LKMnO4溶液,摇匀后放置30min,用10g/L草酸溶液稀释至刻度,摇匀,放置澄清待测。

分取清液于50mL烧杯中,加入铁盐溶液、硫脲-抗坏血酸混合溶液,摇匀,放置30min后进行砷和锑的测定。

清液放置48h后直接分取进行铋的测定。

移取试液置于氢化物发生器中,以硼氢化钾为还原剂,按与校准曲线相同的

仪器工作条件测定砷、锑和铋。

注意事项

1)在空白试验中,若已检测到所用试剂中含有大于μg/g的砷量及μg/g的锑量或铋量,并确认已经影响试样中低量砷、锑及铋量的测定,应净化试剂。

2)对于试样中砷、锑及铋的含量高于100μg/g或试样中汞、硒和碲等元素的含量较高时,它们之间会产生相互干扰,应做适当的稀释或采用有效的干扰掩蔽和分离富集后再进行测定。

3)如采用本方法进行铋的测定,清液必须放置48h以上,否则测定精密度会很差。对于一般样品可采用经预还原后的测定砷和锑的溶液进行测定。

4)高锰酸钾的加入可将溶液中的砷、锑、硒和碲等元素氧化到高价态,起到掩蔽干扰的作用,同时可克服有机质的干扰。当样品中有机质含量高时,可加入2mL10g/LKMnO4溶液进行氧化处理。

5)采用本方法制备的试样溶液,可直接分取用于汞的测定。冷蒸气-原子荧光光谱法测定汞

方法提要

用王水分解试样后,经高锰酸钾和草酸溶液处理,采用汞高强度空心阴极灯,以氯化亚锡作还原剂,使溶液中的Hg2+还原成Hg蒸气后,由载气导入预加热200℃的石英原子化器中进行冷蒸气-原子荧光光谱法测定。

方法适用于水系沉积物、土壤和岩石中汞的测定。

方法检出限(3s,汞):μg/g。

测定范围(汞):~6μg/g。

仪器及材料

原子荧光光谱仪。

汞高强度空心阴极灯。

试剂

盐酸。

硝酸。

王水75mLHCl与25mLHNO3混合后,搅匀。用时配制。

高锰酸钾溶液(10g/L)称取10gKMnO4,用水溶解后,加水稀释至1000mL,摇匀。

草酸溶液(10g/L)称取10gH2C2O4,用水溶解后,加水稀释至1000mL,摇匀。

重铬酸钾溶液(50g/L)称取5gK2Cr2O7,用水溶解后,加水稀释至100mL,摇匀。

氯化亚锡溶液(100g/L)称取10g氯化亚锡(SnCl2·2H2O),加20mLHCl,加热溶解清亮后,用水稀释至100mL,摇匀。

汞标准储备溶液ρ(Hg)=100μg/mL称取优级纯氯化汞(HgCl2)(预先在室温干燥器中干燥过夜),置于100mL烧杯中,加入20mL(1+1)HNO3,低温加热至溶解完全。取下,冷却后,移入已含有40mLHNO3及10mLK2Cr2O7溶液的1000mL容量瓶中,用水稀释至刻度,摇匀。

汞标准溶液Ⅰρ(Hg)=μg/mL分取汞标准储备溶液,移入已含有90mL(1+1)HNO3及9mLK2Cr2O7溶液的1000mL容量瓶中,用水稀释至刻度,摇匀。

汞标准溶液Ⅱρ(Hg)=μg/mL分取汞标准溶液Ⅰ,移入已含有40mL(1+1)王水的100mL容量瓶中,用水稀释至刻度,摇匀。

校准曲线

分取、、、、、、汞标准溶液Ⅱ,分别置于一组100mL容量瓶中,加入20mL(1+1)王水,用水稀释至刻度,摇匀,配成、、、、、、的汞标准系列。

用定量加液器先注入溶液于氢化物发生器中,接着分取标准溶液置于氢化物发生器中,盖上磨口塞,进行GF-AFS测定,仪器操作条件见表。绘制校准曲线。

表 仪器参考工作条件

注:1011A型仪器为例。

分析步骤

称取(精确至)试样(粒径小于,经室温干燥),置于25mL聚乙烯试管中,用水润湿试样,加入10mL(1+1)王水,摇散试样,置于沸水浴中保持1h,期间摇动一次。取出冷却后,加入1mLKMnO4溶液,摇匀后放置30min,用草酸溶液稀释至刻度,摇匀,放置沉清备测定用。

移取试液,按照校准曲线分析步骤操作,测量荧光强度,测得汞量。

分析结果的计算

汞含量的计算公式同式()。

注意事项

1)除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水(去离子水)或亚沸蒸馏水。在空白试验中,若已检测到所用试剂中含有大于μg/g汞,并确认已经影响试样中超痕量汞的测定,应净化试剂。

2)高锰酸钾的加入可将溶液中的砷、锑、硒和碲等元素氧化到高价态,起到掩蔽干扰的作用,同时可克服有机质的干扰。当试样中有机质含量高时,可加入2mLKMnO4溶液进行氧化处理。

3)采用本方法制备的试样溶液,可分取用于砷、锑、铋的测定。

都已经很详细了,我也就没什么说的了!@

气相质谱检测论文

我建议你去万方数据库或者知网上面下载几篇,然后融合下,哈哈,现在都是这么干的

色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

涂料检测中的现代色谱分析技术应用分析

摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

关键词:涂料检测;现代色谱;气相色谱法

1 高效液相色谱法

该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

2 气相色谱法

裂解气相色谱-傅里叶变换红外光谱联用

能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

裂解气相色谱-质谱联用

涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

3 结论

快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

参考文献

[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

这是一篇综述性关于化学痕量分析的论文。如果没有自己做试验,那综述性论文是很好的选择,因为不需要做试验,查一些资料,就可以自己整理出来。气相色谱有机痕量分析进展摘要对气相色谱有机痕量分析的进展进行了评述,共引用文献63篇。关键词气相色谱;有机痕量分析;前处理;综述前言 痕量分析是指样品中低含量物质的测定,这些低含量物质通常被称为痕量组分。所谓痕量分析这个概念是一个动态的概念,是随着科学技术的发展而变化的。梁汉昌[1]认为,现代痕量分析是指检测纯物质或混合物中所含浓度为10-9-100×10-6,或者更低的组分。朱明华[2]认为,含量在100 ppm以下的组分的分析,称为痕量分析(TraceAnalysis)。 随着国民经济的发展和高新技术的不断出现,各行业各领域对物质纯度和质量的要求越来越高,环境及生命体中的痕量组分也会对自然界及生物体造成很大影响,从而促进和推动了痕量分析技术的发展。因此,研究并建立更加灵敏、更加准确的痕量分析方法具有重要的现实意义。 诸多分析方法,如气相色谱法[3]、液相色谱法[4],质谱法、红外光谱法、拉曼光谱法[5],毛细管电泳法[6],电化学法[7]、毛细管电色谱法一电喷雾质谱测定法[8]、导数分光光度法[9]等都可以用于有机痕量分析。气相色谱法由于具有分离效率高,选择性好,灵敏度高,分析速度快,直接进样样品用量少,一次进样可以同时分析多种组分等突出优点,特别适用于有机痕量物质的分析。但是有机痕量分析是一项面大、面广、难度大、要求高的工作,不仅包括仪器本需要解决的检测灵敏度和分离的问题,还包括极为关键的内容,如样品采集、运输、存储、制备等。气相色谱有机痕量分析样品预处理 环境中有机污染物(包括环境激素),食品中某些成分,药物中的杂质等的分析大都涉及痕量水平的检测,必须适应不同基体和大量共存物等复杂因素,是一项系统的痕量分析工作。在早期,人们把注意力集中于发展高灵敏和高选择性的色谱分析方法上。通过二十年来的实践,人们认识到在这些分析中,样品的前处理是整体分析方法中不可忽略的一个环节,而且往往还是影响分析成败的关键。我国在样品前处理技术方面已有一定的发展,但不平衡。现就近年来国内外对样品前处理技术的进展作一简要介绍。溶剂萃取 溶剂萃取是各类样品最常用的处理技术之一。液-固萃取(LSE)和液-液萃取(LLE)一直是应用最为广泛的样品前处理方法,如索氏提取,兼有富集和排除基体干扰的效果,过去美国EPA500,600,800系列方法大都采用这个方案,其缺点是要耗用较大量的有机溶剂(数10 mL)并易引入新的干扰(溶剂中的杂质等),还需要费时的浓缩步骤,易导致被测物的损失,造成空气污染,效率也较低。 微量溶剂萃取和连续萃取在方法和设备上均作了改进,前者每次萃取只需耗用100-1000μL的溶剂,灵敏度有所提高;连续萃取法结合气相色谱测定海水中的痕量有机物,检测限可达10 ppt水平(辛烷)[10]。 快速溶剂萃取(ASE)是由Bruce等自1995年以来介绍的一种萃取技术[11],适用于固体和半固体样品的前处理技术是在加压(7-12 MPa,最高可达20 MPa)和加热(50-200℃)条件下进行萃取,适用于固体样品(10-30 g),溶剂用量15-45mL,全程约15 min。ASE在飘尘、底泥、食品和鱼肉中的除草剂、含磷农药,多氯二苯呋喃和多氯联苯的监测中已得到广泛应用,回收率和相对标准偏差(RSD)均优于一般萃取法12]。微波萃取 微波萃取是指在微波能的作用下,用有机溶剂将样品基体中的待测组分萃取出来的过程。以往微波处理仅用于无机分析,自20世纪80年代末期逐渐扩展到有机分析。微波萃取的萃取速度快,溶剂用量少,回收率高,可以同时处理多个样品。主要适用于固体或半固体样品。微波萃取的原理是:利用极性分子吸收微波能量来加热具有极性的溶剂,如:甲醇、乙醇、丙酮和水等等。由于萃取过程是在密封罐中进行,内部压力可达1 MPa以上,因此,溶剂沸点比常压下的溶剂沸点提高了许多。这样用微波萃取可以达到常压下使用同样的溶剂所达不到的萃取温度,可以提高萃取效率。对有机氯农药的微波萃取试验表明,萃取温度120℃时可获得最好的回收率。微波萃取技术已应用于土壤、沉积物、海洋生物、食品和蔬菜中的多环芳烃、农药残留、有机金属化合物、重金属及有毒元素的萃取测定,回收率一般优于索氏提取和超声波萃取法[13],该法易于实现自动化[14]。但微波萃取技术在应用时可能出现微波泄露的问题,作为一种新兴技术,有待进一步研究。液相微萃取 液相微萃取或溶剂微萃取是1996年发展起来的一种新型的样品前处理技术,最初是由Jeannot和Cantwell提出的[15]。此技术是将有机液滴挂在气相色谱(GC)微量进样器针头上对物质进行萃取。微量进样器,既用作GC进样器,又用作微量分液漏斗。LPME分动态和静态两种,静态LPME,用10μL微量进样器抽取1μL溶剂,浸入到水样中,水样中有机物通过扩散作用分配到有机溶剂中,一定时间后,将溶剂抽回进样器中,进GC分析。与静态LPME操作不同,动态LPME用微量进样器抽取1μL溶剂,将微量进样器浸入到样品中,抽取3μL样品进入进样器中,停留一定时间,推出3μL样品,如此反复,取有机溶剂进行GC分析。该技术是在液-液萃取的基础上发展起来的,与液-液萃取相比,LPME可以提供与之相媲美的灵敏度,甚至更佳的富集效果,同时,该技术集采样、萃取和浓缩于一体,灵敏度高,操作简单,而且还具有快捷,廉价等特点。另外,它所需要的有机溶剂也是非常少的(几至几十μL),是一项环境友好的样品前处理新技术,特别适合于环境样品中痕量、超痕量污染物的测定。另外,LPME技术在处理样品时只需一个搅拌器、一支普通的微量进样器或多孔性的中空纤维,这些特点使液相微萃取与便携式的气相色谱仪很容易联用,可望对环境污染物进行简单、快捷的现场分析,因此更具有较广泛的应用前景[16]。微蒸馏 蒸馏包括简单蒸馏,分馏,减压蒸馏、水蒸气蒸馏等。蒸馏技术是挥发性和半挥发性有机物样品精制的第一选择。但是在进行色谱分析样品制备时,蒸馏通常不是第一选择技术。具有蒸馏时间短,能够制备多种样品、可进行小体积样品蒸馏等优点的微蒸馏技术可以成功的用于色谱分析前样品的精制或者混合样品的预分离。Tim Mansfeldt曾用微蒸馏技术测定了土壤中的氰化物[17],得到了很好的效果。固相萃取(SPE) 固相萃取是70年代初发展起来的样品前处理技术,固相萃取主要用于复杂样品中微量或痕量目标化合物的分离和富集。例如,生物体液中(如血液,尿等)药物及其代谢产物的分析,食品中有效成分或有害成分的分析,环境水样中各种污染物的分析都可使用SPE进行样品预处理。该技术利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。据统计,现在将近有50%的环境样品采用这个方法。固相萃取是净化和富集相结合的方法,特别适用于水样样品,样品量不受限制,少到几毫升多至几十升都可适应。从实验技术上讲,SPE接近于一般的顶替色谱,样品藉重力或加压通过萃取床层,除去基体,富集待测物,然后用少量(若干毫升)适当的溶剂洗脱回收待测物。 SPE所用固定相主要有硅胶、反相C18固定相(RP-C18)、石墨化碳黑、苯乙烯-二乙烯基苯系列聚合物、聚二甲基硅氧烷(PDMS)等。这些固定相对不同有机物的选择性不同,SPE可利用固定相的选择性来萃取样品中各种有机物,从而提高目标物的分析灵敏度。固相萃取的萃取床层有两种形式,一是柱状,商品预装柱的装填量约100~500 mg,另一是以较细的颗粒混于聚四氟乙烯纤维中形成状(disc),装填量约30 mg-10 g,其优点是层薄而紧,不易发生渗漏,样品通过速度可较快(~1 L/min)。当用气相色谱一电子捕获检测器(GC-ECD)测定有机氯等非极性农药残留时,一般采用氧化铝一银盐吸附柱,硅胶吸附柱的净化分离效果不如氧化铝柱。 SPE主要用于痕量分析中,其最大优点是减少了高纯溶剂的使用,易于自动化,当它与热脱附装置联用时可避免使用溶剂,降低实验成本及溶剂后处理费用。SPE与LLE相比,避免了LLE中易出现的乳化问题。但对有些样品,SPE空白值较高,灵敏度比LLE方法差,极性化合物的萃取也存在一些问题。后来逐渐发展了SPE-GC/GC-MS18]在线分析方法。在线方法的优点是自动化分析,分析物损失少,外来污染少,方法精密度高,适于大批量样品的分析,但缺点是顺序操作,程序不灵活,导致不同步骤的优化较复杂,甚至不能优化。固相微萃取 近年来,在SPE的基础上发展出了固相微萃取(SPME)样品前处理技术,但它不是把待测物全部分离出来,而是通过样品(例如水样)与萃取剂(固相)之间的平衡分配来实现分离。该法的基本技术是将一附着有适当涂层的弹性石英丝(丝径100-150μm)浸入样品(浸入方式)或置于样品上部空间(顶空方式),待平衡一段时间(2-30 min)后,样品中的待测物即被吸附于涂层上,吸附量与样品中待测物的原始浓度成正比,并与待测物的物化性质和平衡条件有关,然后将石英丝导入气相色谱进样室,待测物受热挥发进入色谱系统。SPME保留了SPE的优点,避免了SPME中样品高空白的缺点,完全避免使用溶剂。该法对水中挥发性有机物的测定取得了较好的效果,以聚硅氧烷为涂层,达到了饮用水中挥发性有机物的检测要求(法)。此法也已成功地应用于排放水中氯苯、PCB、PCDD、除草剂、农药、酚等的监测,数据与液液萃取法基本平行,RSD稍低[19]。应用聚丙烯酸涂层,结合GC-MS,对水中氯酚用SPME方法进行预处理,效果也令人满意[20]。 把涂层石英丝悬置于水样的顶端空间中,藉气相中的待测物与涂层平衡分配,开发了顶端空间的SPME技术。适当提高平衡温度或缩小顶端(气相)空间的体积,此法甚至可适用于水中沸点稍高物质的分析,缩短了样品萃取时间,易于测定各种介质中挥发性有机物[21]。顶空-固相微萃取(HS-SPME)在重现性上可与静态顶空方法相比,在灵敏度上可以与动态顶空方法相比,是目前应用最为广泛的顶空分析方法。顶空样品制备技术 顶空气相色谱不是一种新技术,此技术从气相色谱出现初期就一直在应用着。顶空分离技术广泛用于把挥发性物质从液体或固体样品中的基体中分离出来[22]。它的原理是:在恒温的条件下,样品中挥发性物质在气-液(或气-固)两相间分配,达到平衡时,取液上蒸气相进行GC分析。因此,平衡温度和平衡时间是影响分析灵敏度的主要因素。而分析的准确度主要取决于良好的恒温状态和分析环境,另外要注意样品瓶和瓶密封塞不能对样品有吸附效应。顶空分离有以下特点:(1)可用于测定不能直接汽化的试样(液体、固体)中的微量挥发性组分,不需对样品进行特殊处理;(2)色谱柱不会由于直接注入水样或高沸点物质或非挥发性组分而污染;(3)由于在气相中,挥发性组分的浓度比其它组分的浓度高,因此,可以提高挥发性组分的检测灵敏度。(4)不使用试剂,操作简单,可与气相色谱联用。吹扫-捕集法(动态顶空法) 吹扫-捕集法可看作是一个连续的顶空技术,主要用于样品中挥发性物质的分析,该方法在理论上可测定水中全部挥发性有机物。吹扫-捕集的原理是依据许多有机化合物具有挥发性的特点,利用气体将挥发性物质从样品中吹扫出来,吹扫出来的组分被捕吸附的化合物吹脱出来,直接用色谱仪进行分析。这样可以将水体中的痕量有机物富集到足以用色谱能够检测的浓度。此法不但克服了色谱分离中溶剂主峰掩盖其它峰的问题,而且比静态顶空有更高的检测灵敏度,更适于痕量和超痕量分析,美国环保局实验室应用吹扫-捕集技术测定公共饮用水和各种环境样品中挥发性有机物。利用吹扫捕集-气相色谱分析法时,最好使用大口径( mm)毛细管色谱柱;如用填充柱时,应选择冷柱头进样方式,以便使各组分得到很好的分离。另外吹扫流量、吹扫和捕集时间是影响分析灵敏度的主要因素,最好用标准样品在已知的条件下通过实验获得。国内已开展了一些气提法富集水中痕量有机物研究,但挥发性有机物回收率低,不够稳定,其应用面亦窄。许丽娟[23]等人改进了气提装置,深入、系统地研究了气提法的实验条件对挥发性有机物收率的影响,并确定了最佳富集条件。在进行了合成样品实验的基础上以气提法富集GC-MS联用方法对多个水样进行定性定量分析,取得了令人满意的结果。超临界流体萃取(SFE) 超临界流体萃取(SFE)是近几年出现的一种特殊分离技术。SFE主要使用超临界状态的C02作萃取剂,兼有气体的渗透能力和液体的分配作用。超临界流体对物质的溶解能力接近于液体,但其粘度接近于气体,扩散系数介于液体和气体之间,即它既有良好的溶解能力,又有高效的传输能力。目前最常用的流体CO2,临界温度℃,临界压力 MPa)。流出液中的C02在常压下挥发,待测物用溶剂溶解后进行分析。与传统的溶剂提取方法相比,SFE有很多优点。首先可以避免使用大量溶剂,提高萃取效率,减少了分析时间,降低对样品污染的可能性,特别适合于环境、生物等方面的组成复杂、组分易变的样品[24],而且可以自动化。SFE是近几年才发展起来的,很多实验参数和条件还有待进一步优化和明确。萃取液的压力、温度已能很好的控制,但其它一些问题,如细胞组织的萃取、萃取液通过细胞时的速度、滞留时间、样品物质的干扰等还需要进一步的研究[25]。膜分离技术 膜分离是近年来新发展起来的可用于分析化学领域中的新技术之一。利用待测物与溶剂或待测物与大分子物质(如蛋白质或其他高聚物)的传递速度的差异而使彼此得以分离。膜萃取是用膜将目标分析物从样品溶液(给体)萃取到萃取剂(受体)中。如果系统保持较长时间,相间可建立平衡。在样品处理过程中,尽可能将目标分析物从给体转到受体上。膜萃取可与反相-液相色谱(RP-HPLC)[26]、GC[27,28]和毛细管电泳(CE)等在线联用。膜萃取克服了水本身的干扰、选择性较高,然而低极性膜不适合极性有机污染物分析。膜萃取成功地测定了水样中许多有机污染物[29],有些膜对水中低浓度物质有较高的富集倍数。超声悬浮技术 超声悬浮技术是利用声辐射力将物体悬浮在超声驻波场声压结点处的无容器处理技术,该技术能够以非接触的方式处理体积为几μL甚至几十pL的样品,避免因容器壁的不确定性吸附、记忆效应和污染而引起的分析物的损失,排除由于容器壁与样品间的相互作用对细胞反应的干扰以及容器壁引起的光学干扰,且对被悬浮物体的物理化学性质无特殊要求,是基于单颗粒或小液滴研究的强有力工具,特别适合于材料的深过冷(远离凝固平衡状态)研究和小体积痕量分析,可使检测极限降低1-3个数量级。超声悬浮技术在生物科学与生物技术中的应用越来越引人注目,展示了诱人的前景。尽管如此,它还处于初始阶段,国内基本是一个空白。 回顾样品前处理技术已取得相当的成就,但有机痕量分析的科学家们仍在不断努力发展更有效、更合理、更简便可靠的新技术和新方法。由于各种样品来源和存在形式比较复杂,待测物也多种多样,不太可能找到一个统一的或“万能”的前处理方法,要根据检测要求和样品情况,因地制宜地制订出适当的方案。在所有已知的方法中,固相萃取法、固相微萃取法将继续发展,应用面将更广,方法将更趋于自动化。在固体样品方面,除改进的液固萃取(快速、微波协助等)外,超临界流体萃取将随着对其机理认识的深化,得到更好的选择性和处理效果。膜技术,特别是微透析和支持液膜的应用是值得注意的发展动向。色谱技术的联用,如GC/GC,LC/GC以及LC/CE(毛细管电泳)将为样品分析,特别是有机痕量分析提供更为广阔的应用领域。样品中的挥发性有机物将仍以顶端空间法(包括吹扫-捕集)为主要的前处理方式。其他的样品前处理技术,如电化学富集,免疫化学色谱也是值得注意的发展内容。借助于计算机技术的智能化的样品前处理方案也将是一个研究方向。

气相色谱与液相色谱的原理是一样的,但实际上这两者的差别挺大的。三言两语很难说清楚。共同点:都是将样品用流动相承载,并经过柱分离后,用检测器检测目标样品的方法。不同之处:气相色谱法流动相是气体,液相色谱法是液体(最主要的区别) 其他还有适用样品不同,日常维护方法不同等等。 相同点:一都是色谱分离 检测分析法 针对有机物的分析方法二:气相跟质谱联用 变GC-MS 液相跟质谱联用 LC-MS不同点:一 气相应用范围 30% 液相应用范围85%二 气相检测器 FID TCD ECD FPD 液相检测器 紫外检测器 示差检测器 荧光检测器 蒸发光散射检测器三 气相应用于可挥发的有机物 液相用于不可挥发的有机物 四 柱子不一样 气相有填充柱 毛细管柱 液相有 正相色谱柱 反相色谱柱总之 很多不一样 建议你买本书 多看看 建议您可以到行业内专业的网站进行交流学习!分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

相关百科

热门百科

首页
发表服务