首页

> 学术期刊知识库

首页 学术期刊知识库 问题

知网论文检测中创新点

发布时间:

知网论文检测中创新点

可以不写的。i have 知网论文下载账号

创新点?这是论文报告里的吧?如果查重的话不用管或者一两句带过即可。没有什么实质作用。望采纳

论文创新点是研究对象上的创新。也就是和别的文献选择不同的研究对象,可以根据时间的不同选择不同的对象,是研究方法上的创新和别人选择不同的研究方式,主要的研究方式有别访谈问卷调查SPSS等等,可选择的研究方式还是非常多的。

论文创新点的要求

论文创新点是研究领域上的创新,这一种写法难度最大,这种创新实际上要求有着较为扎实的理论知识作为支撑,换而言之就是需要研究别人没有研究过方向,研究意义上自然是填补了这一方面的理论空缺,对于硕士论文来说没有创新的论文都是很难通过外审。

而论文的创新实际上也很好找,就是直接去知网数据库搜关键字,举例说明找创新的思路,论文框架的安排是否合理,是外审考核当中最主要的因素之一,就算你的论文创新再好框架有问题,章节与章节之间衔接的不紧密,写出花来也难通过外审。

查重用paperpass还不错,查出来一般都比知网高的,知网查重的创新点对报告内容没什么影响的。

知网论文检测创新点怎么写

论文创新点可以从资料创新、方法创新、观点创新这三个地方着手去写。

具体如下:

1.重新整理过去的文档,有可能从整理当中获得灵感,或是从文档回顾中整理出头绪。

2.对于定义各种问题的词语或句子保持好奇的态度,可以解放想象力,查字典或是专门的书籍,找出关键与同义字,也可以知道这些用语的意义,只有知道术语或用词的意义时,才会从当中选到所需要的词语,不会再一成不变,在写论文的时候可以更精准的用字遣词。

3.在思考之时可以将一般性概念逻辑性的区分为不同种类,学会分类技巧之后,往下更延伸就是将来论文有可能发展的方向。

4.观察力、敏锐度也是非常重要的能力,细心观察可以看到事情的反面,考虑到事情的另一角度也可以激发想象力,研究对比的客体也可以找出不同面向,更加了解要研究的主体。

5.利用微观与宏观的角度看事情,可以知道事情的脉络与细节。

创新点可以分为三种:

一.是研究对象上的创新。也就是和别的文献选择不同的研究对象,可以根据时间的不同选择不同的对象。

二.是研究方法上的创新。和别人选择不同的研究方式,主要的研究方式有别访谈、问卷调查,SPSS等等,可选择的研究方式还是非常多的。

三.是研究领域上的创新。这一种写法难度最大,这种创新实际上要求有着较为扎实的理论知识作为支撑,换而言之,就是需要研究别人没有研究过方向,研究意义上,自然是填补了这一方面的理论空缺。

对于硕士论文来说,没有创新的论文,都是很难通过外审。

创新点如何找

而论文的创新实际上也很好找,就是直接去知网数据库搜关键字,举例说明找创新的思路。

第一步,在知网数据库搜微信运营关键字,可以发现,对写的人比较多,这种情况下,就算换了研究对象,也比较难通过外审,主要原因就是,同类型的研究对象写的人实在是太多了,例如纸媒微信运营。如果要写这一方面的内容,也可以写,例如你可以写其他相关机构微信运营策略研究,这就是研究对象上的创新。

当然,后来,又了解到了媒介生态位,接着搜索相关内容,这样来看,写的人就非常少了,结合媒介生态学去写微信运营的,只有2篇硕士论文。这样的话,找一个比较冷门的研究对象去写,外审肯定可以通过。

目标检测论文创新点

地址 : 主要思路 :这篇论文虽然是17年投的,19年TPAMI发表,但是论文的解决角度还是值得学习和借鉴的。从题目可以看出,这篇paper主要利用混合的监督信息,即强监督信息(包含目标边界框注释信息)和弱监督信息(只有图像标签信息)。作者把从源(强监督)域中学习到的目标知识迁移到目标(弱监督)域中。

强监督目标检测虽然在一些数据集上取得了显著的效果,比如PASCAL VOC和COCO,可是,现实世界中的目标类别成千上万,用强监督的方法就需要获取这些类别的边界框注释信息,这样的工作量太大且耗费人力。这样弱监督目标检测就应运而生,训练这样的目标检测器,我们只需要图像的标签信息(只告诉图像中存在的目标类别信息),并且这种数据很容易通过网络获取。

由于弱监督只有图像标签可以利用,所以弱监督目标检测常常被当作多事例学习(multiple instance learning(MIL))问题。但是这样就存在一个很大的问题,我们只有图像标签可是我们干的是目标检测的事,所以检测器无法得到目标区域的清晰定义,进而导致了这种方法训练出来的检测器可能包含如下图中所示的目标背景,或者只包含目标的一部分。

利用混合监督学习来解决弱监督中存在的问题。那森么是混合监督呢?就是你有一部分类别的数据是强监督的(称为源域 ),另外一部分类别数据是弱监督的(称为目标域 )。并且这两份数据之间的类别没有交叠。而存在一种情况:一张图片中包含多个类别目标,这些目标分别属于这两个数据集,那么这张图片同时被两个数据集所有,可是对应的类别的目标的标注信息不同。

从图中可以发现论文方法主要分为两个部分: 1 :两个数据集一起训练,学习域不变(domain-invariant)的目标知识,即可以学习到恰好框住完整目标的能力; 2 :利用学习到的域不变目标知识辅助弱监督学习,从而使学习到的检测器能定位到完整目标。

论文中提到第一部分学习到的域不变目标知识拥有两个重要的特性: (1) 类别独立,能够很好的推广到未知的类别; (2) 目标敏感,能过可靠的剔除干扰边界框(包含背景或者只包含目标的一部分)。

通过方法结果图,我们可以看到这个训练模型包含两个分支:(1)目标预测 (2)域分类。从分支名字上,你们应该已经猜到作用了。(1)分支用于辨别目标框,(2)分支用于辨别图像属于哪个域。网络主要是靠损失函数指导学习,前面特征提取层我们就不多描述了,可能不了解的会问,这些框框是如何来的呢?其实结构图中的ROI模块其实就是Fast-RCNN中的Roi-Pooling,这些框是预先用选择搜索(select-search,SS)算法提前准备好的(我们称为proposals,可以翻译为候选框)。接下来我们主要分析这两个分支。

输入是 中的proposals经过特征提取网络得到的特征向量,输出是维度为2的向量,用于判断是不是目标。 首先给出损失函数: 公式中符号解析: 表示边界框的标签,通过与ground-truth(就是目标的真实边界框,人为的标注信息)计算intersection-over-union (IoU)得到,即两个框的相交面积/并集面积。如果IoU大于, ,即正样本。如果在[)之间, ,即负样本。在一张图片中有很多冗余的框,肯定正样本框远远大于负样本框,为了平衡正负样本比例,限定选取正负样本比例为1:3总数64的边界框计算损失。 (sigmoid函数), 表示这个分支, 表示第 个边界框的特征向量,其实这个公式可以理解为: 就是第 个边界框的一个打分 ,则公式可以等效于 。

论文中的domain-invariance就是通过这个分支实现的。 不同于目标预测分支,这个分支的不仅考虑了 中的边界框,也考虑了 的边界框,输出也是一个维度为2的向量,就是图像属于 或 的打分。 给出损失函数: 损失函数与上一个分支功能一样, 表示来自于 的proposals是正样本; 表示来自于 的proposals是负样本。

下面要说才是我认为最有意思的地方,可以看到方法结构图中这个分支有一个梯度取反。一般我们优化网络都会让损失收敛到0,即最小值优化,而作者在梯度方向传播到特征f前取反,这是为了最大值优化。最小值优化是为了让网络可以区分数据是来自哪一个域,作者取反操作就是为了让网络无法区分,从而实现domain-invariance。 其实我感觉直接损失函数的负号去掉是一样的(欢迎指正)。

然后从 和 中都随机选取64个proposals计算损失。

下面我们讲方法的第二部分:利用学习到辨别目标的知识来训练一个弱监督检测器。 这部分可以分为两个部分讲解:(1)如何利用目标知识(2)如何用 的数据训练检测器

作者是采用中的目标预测分支,对 中每一张图片的proposals进行打分,得到他们属于目标的分数,然后排序,取前15%当作目标框(一起当作一个"object bag"),剩余的75%作为干扰框(一起当作一个"distractor bag")。注意这里只是区分是不是目标,并没有给出目标是哪一类。所以"object bag"中会有很多类型的目标。

作者使用的是Fast-RCNN的结构训练检测器(只包含分类分支),输出维度是K+1,K是类别数目。

为了更好的理解这里的训练过程,我们先举个栗子:输入图片1张,包含2000个SS生成的proposals,输入网络后得到1x2000x(K+1)矩阵。

如果我们要计算损失,是不是应该知道2000个框的类别标签,可是 数据是没有边界框注释信息的,我们无法得到这2000个框的标签,我们肿么办?

肯定有人想到用上面得到的"object bag"和"distractor bag"制作标签呀,的确,作者就是这么干的。

首先这个2000个框已经被我们分成了目标和干扰两个包。首先给"distractor bag"一个标签 ,然后我们根据这个图像包含的目标类别对"object bag"给出对应的类别标签 。

可是网络输出是每个框属于每一类的打分,你这给的都是包的标签,不对应呀? 然后你肯定会想使用包中框的最高分作为包的打分不就行了。但是这样做就只是考虑了最大分框,作者给出了一个更好的计算方法: 这样可以考虑包中所有的框。 是包, 是包中每个框的打分。

然后使用交叉商损失指导网络训练:

我个人感觉这篇论文最大的创新点就是把 和 的数据一起训练的方式。一般我们都会想的是用 训练一个检测器 ,然后通过一种方式,用 来得到 中的pseudo-gt,然后训练检测器 。可是这篇论文就不一样,感觉很有意思。想继续深入了解的小伙伴,可以阅读原文。

其实看官看到这里就可以结束。 可是,本着从一而终的原则,我决定把实验也分析一遍。

其实这篇论文实验之前才5页,后面实验作者足足写了7页。。。看来实验才是重点,前面全是小菜。

实验主要可以分为三个部分:(1)数据集内部检测(2)数据集间检测(3)消融实验

实验的评价的标准主要:mAP和CorLoc。 这里说一下,mAP肯定一般都知道,CorLoc一般都是弱监督的时候才会用。它是评价模型在训练集上的定位精度。就是检测到每一类中检测到的图片占的比例,怎么叫检测到呢?就是对于一样图片中的某一类,取检测的打分最高边界框,如果与ground-truth(标注的边界框)的IoU>就是检测正确。

实验开始之前,作者给出了三个基本的检测方法。由于论文的方法是由目标知识学习和弱监督检测训练两个子模块组成了混合监督整体方法,所以作者提出了分别对应两个子模块和整体方法的基本方法。

B-WSD :基本的若监督检测方法------->对应的子模块 B-MSD :基础的混合监督检测方法------->对应整体的方法 OOM-MSD :用于混合监督检测的原始的目标学习模型------->对应的子模块

下面简要说一说后两个方法: B-MSD :作者是先用Fast-RCNN基于 训练一个强监督的检测器,然后用训练得到的模型参数初始化弱监督的检测器,然后用MIL的方式基于 训练检测器。 OOM-MSD :这部分作者就是把模型的子模块的域分类的分支去掉了,就是直接基于 训练网络学习区分目标和干扰的知识。

就是把一个数据集按类别分为 , 。

作者使用PASCAL VOC 2007 和 ILSVRC2013来评价他的方法。

这里就只是以PASCAL VOC 2007为例吧,作者把trainval的数据按类别分为两部分,一共20类,前10类为 ,后10类为 (根据字母排序选择的)。

当然啦,这些模型怎么训练的呢,这我要说的估计得照论文翻译了,还是感兴趣的孩童去看论文吧,哈哈哈。

还是贴图看一下模型的性能吧

这应该不用描述解释了吧。认真看图吧。(我是不会告诉你,我是认真读了一边作者分析再贴的图, :) 滑稽脸)

这里作者把PASCAL VOC 2007 的trainval作为 ,ILSVRC2013作为 。 由于ILSVRC2013有200类包含PASCAL VOC 2007的20类,所以 是180类,剔除了 中的类别。

直接贴图,直接贴图

不得不佩服,作者做实验验证的能力。学习一波。

采用数据集间检测方式,都使用AlexNet

其实作者验证这个就是是否用那75%的proposals,作者把它丢掉,WSD的网络类别就是K了,训练了一个MSD-no-distractor的模型。

就是选取其他的值来训练,看哪个高。

作者选取了ILSVRC2013中人们创造的类别作为 ,PASCAL VOC 2007中自然界中的类别作为 ,进行训练。

所实话,作者真的很会来事,但是不得不佩服。

如果你更着我读到了这里,我不得不给你点个赞,其实笔者都快被你感动了,坚持一下马上就结束了。

其实我又看了下后面,好像还不能很快结束。。。你还得在坚持很久。 -_-# ,我继续码。

这里作者和其他的目标学习方法或者获得proposals的方法进行了比较。

目标学习模型其实就是给proposals打分,然后分包,只要有类是功能的方法应该就可以比较。

作者使用召回率来比较的。

实际是如何操作的呢? 可以看上图中的横轴是百分比,这是怎么来的呢?是由SS生存的proposals按打分排序(ss算法本身对proposals会有个打分),然后取前5%,与ground-truth计算一遍IoU,大于就算是目标框,这些框的个数/选取的proposals,这个值就是recall值。

然后用这些方法训练WSD。

作者发现一个很有意思的现象:EdgeBox,Original Obj,Domain-invarint obj 三个的Recall在15%的时候都差不多,为什么上图的性能差距这么多,为森么?

然后自问自答 :)

然后作者定义: 正样本 :IoU>= 局部目标 :0

作者 :快看,蓝色柱子,不要盯着绿色的看,我这是局部目标的比例,看我的方法多稳定。知道你们不懂,我给你举个例子 :)

我们来看0%~10% x轴 ,假设每个图片是2000个proposals 那么前15%就是300个proposals(那么其中就包含0~30个局部目标)。 让我们来看 y轴 ,蓝bar是,那么5011个训练图片中有大约500的图片的局部目标是在范围0%~10%。可以看图中,随着局部目标比例的增加,其他方法的对应的图片比例都在增加,而论文方法反而在减少,说明论文方法可以很好的剔除局部目标。

作者还进一步解释了为什么15%中包含局部目标的比例少,因为在训练图片中还包含了很多不属于数据集类别的完整目标,可是完整目标是被我们当作背景的,但是在使用学习到的目标辨别知识是与目标类别无关的,所以15%会包含很多背景中存在的完整目标,进一步相对减少了局部目标的比例。 在这里我不得不佩服作者脑回路清奇,我感觉我发现了这篇论文的另一个宝藏 。如果你读到了这里,我该恭喜你。

作者也给出了效果图,来分析几个效果较差的类别。

自行感受有多差吧。

终于结束了,我写的都累了,默默心疼在看的你。希望你有所收获。 第一次写blog,希望不是最后一次,以后应该陆续推出论文解读。

如果发现有问题,欢迎指正 _ 。

论文: EfficientDet: Scalable and Efficient Object Detection

目前目标检测领域,高精度的模型通常需要很大的参数量和计算量,而轻量级的网络则一般都会牺牲精度。因此,论文希望建立一个可伸缩的高精度且高性能的检测框架。论文基于one-stage的检测网络范式,进行了多种主干网络、特征融合和class/box预测的结构尝试,主要面临两个挑战:

FPN是目前最广泛的多尺度融合方法,最近也有PANet和NAS-FPN一类跨尺度特征融合方法。对于融合不同的特征,最初的方法都只是简单地直接相加,然而由于不同的特征是不同的分辨率,对融合输出特征的共享应该是不相等的。为了解决这一问题,论文提出简单但高效加权的bi-directional feature pyramid network(BiFPN),该方法使用可学习的权重来学习不同特征的重要性,同时反复地进行top-down和bottom-up的多尺度融合

论文认为除了缩放主干网络和输入图片的分辨率,特征网络(feature network)和box/class预测网络的缩放对准确率和性能也是很重要的。作者借鉴EfficientNet,提出针对检测网络的混合缩放方法(compound scaling method),同时对主干网络,特征网络和box/class预测网络的分辨率/深度/宽度进行缩放

最后,论文将EfficientNet作为主干,结合BiFPN和混合缩放,提出新的检测系列EfficientDet,精度高且轻量,COCO上的结果如图1,论文的贡献有以下3点:

定义多尺寸特征 ,论文的目标是找到变化函数 来高效融合不同的特征,输出新特征 。具体地,图2a展示了top-down FPN网络结构,一般FPN只有一层,这里应该为了对比写了repeat形式。FPN获取3-7层的输入 , 代表一个分辨率为 的特征层

top-down FPN操作如上所示, 为上采用或下采样来对齐分辨率, 通常是特征处理的卷积操作

top-down FPN受限于单向的信息流,为了解决这一问题,PANet(图2b)增加了额外的bottom-up路径的融合网络,NAS_FPN(图2c)使用神经架构搜索来获取更好的跨尺度特征网络的拓扑结构,但需要大量资源进行搜索。其中准确率最高的是PANet,但是其需要太多的参数和计算量,为了提高性能,论文对跨尺寸连接做了几点改进:

大多的特征融合方法都将输入特征平等对待,而论文观察到不同分辨率的输入对融合输出的特征的贡献应该是不同的。为了解决这一问题,论文提出在融合时对输入特征添加额外的权重预测,主要有以下方法:

, 是可学习的权重,可以是标量(per-feature),也可以是向量(per-channel),或者是多维tensor(per-pixel)。论文发现标量形式已经足够提高准确率,且不增加计算量,但是由于标量是无限制的,容易造成训练不稳定,因此,要对其进行归一化限制

,利用softmax来归一化所有的权重,但softmax操作会导致GPU性能的下降,后面会详细说明

,Relu保证 , 保证数值稳定。这样,归一化的权重也落在 ,由于没有softmax操作,效率更高,大约加速30%

BiFPN集合了双向跨尺寸的连接和快速归一化融合,level 6的融合操作如上, 为top-down路径的中间特征, 是bottom-up路径的输出特征,其它层的特征也是类似的构造方法。为了进一步提高效率,论文特征融合时采用depthwise spearable convolution,并在每个卷积后面添加batch normalization和activation

EfficientDet的结构如图3所示,基于one-stage检测器的范式,将ImageNet-pretrained的EfficientNet作为主干,BiFPN将主干的3-7层特征作为输入,然后重复进行top-down和bottom-up的双向特征融合,所有层共享class和box网络

之前检测算法的缩放都是针对单一维度的,从EfficientNet得到启发,论文提出检测网络的新混合缩放方法,该方法使用混合因子 来同时缩放主干网络的宽度和深度、BiFPN网络、class/box网络和分辨率。由于缩放的维度过多,EfficientNet使用的网格搜索效率太慢,论文改用heuristic-based的缩放方法来同时缩放网络的所有维度

EfficientDet重复使用EfficientNet的宽度和深度因子,EfficinetNet-B0至EfficientNet-B6

论文以指数形式来缩放BiFPN宽度 (#channels),而以线性形式增加深度 (#layers),因为深度需要限制在较小的数字

box/class预测网络的宽度固定与BiFPN的宽度一致,而用公式2线性增加深度(#layers)

因为BiFPN使用3-7层的特征,因此输入图片的分辨率必需能被 整除,所以使用公式3线性增加分辨率

结合公式1-3和不同的 ,论文提出EfficientDet-D0到EfficientDet-D6,具体参数如Table 1,EfficientDet-D7没有使用 ,而是在D6的基础上增大输入分辨率

模型训练使用momentum=和weight decay=4e-5的SGD优化器,在初始的5%warm up阶段,学习率线性从0增加到,之后使用余弦衰减规律(cosine decay rule)下降,每个卷积后面都添加Batch normalization,batch norm decay=,epsilon=1e-4,梯度使用指数滑动平均,decay=,采用 和 的focal loss,bbox的长宽比为 ,32块GPU,batch size=128,D0-D4采用RetinaNet的预处理方法,D5-D7采用NAS-FPN的增强方法

Table 2展示了EfficientDet与其它算法的对比结果,EfficientDet准确率更高且性能更好。在低准确率区域,Efficient-D0跟YOLOv3的相同准确率但是只用了1/28的计算量。而与RetianaNet和Mask-RCNN对比,相同的准确率只使用了1/8参数和1/25的计算量。在高准确率区域,EfficientDet-D7达到了,比NAS-FPN少使用4x参数量和计算量,而anchor也仅使用3x3,非9x9

论文在实际的机器上对模型的推理速度进行了对比,结果如图4所示,EfficientDet在GPU和CPU上分别有和加速

论文对主干网络和BiFPN的具体贡献进行了实验对比,结果表明主干网络和BiFPN都是很重要的。这里要注意的是,第一个模型应该是RetinaNet-R50(640),第二和第三个模型应该是896输入,所以准确率的提升有一部分是这个原因。另外使用BiFPN后模型精简了很多,主要得益于channel的降低,FPN的channel都是256和512的,而BiFPN只使用160维,这里应该没有repeat

Table 4展示了Figure 2中同一网络使用不同跨尺寸连接的准确率和复杂度,BiFPN在准确率和复杂度上都是相当不错的

Table 5展示了不同model size下两种加权方法的对比,在精度损失不大的情况下,论文提出的fast normalized fusion能提升26%-31%的速度

figure 5展示了两种方法在训练时的权重变化过程,fast normalizaed fusion的变化过程与softmax方法十分相似。另外,可以看到权重的变化十分快速,这证明不同的特征的确贡献是不同的,

论文对比了混合缩放方法与其它方法,尽管开始的时候相差不多,但是随着模型的增大,混合精度的作用越来越明显

论文提出BiFPN这一轻量级的跨尺寸FPN以及定制的检测版混合缩放方法,基于这些优化,推出了EfficientDet系列算法,既保持高精度也保持了高性能,EfficientDet-D7达到了SOTA。整体而言,论文的idea基于之前的EfficientNet,创新点可能没有之前那么惊艳,但是从实验来看,论文推出的新检测框架十分实用,期待作者的开源

中国新知网论文检测

大概当今所有的研究生毕业论文都会经过中国知网的“学术不端检测”,即便最后不被盲审。这个系统的初衷其实是很好的,在一定程度上能够对即将踏入中国科研界的硕士研究生们一个警示作用:杜绝抄袭,踏实学问。但正所谓“世界万物,有矛就有盾”的哲学观,中国知网的这个“学术不端检测系统”并不是完善的。原因有二,其一是目前的图文识别技术还不够先进;其二是目前的机器识别还达不到在含义识别上的智能化。求索阁一贯的观点就是“战略上蔑视,战术上重视”和“知己知彼百战百胜”。要破敌,必先知敌;要过学术检测这一关,当然必先了解这一关的玄机。一、查重原理 1、知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。对于3万字符以上文字较多的论文是可以忽略的。对比数据库为:中国学术期刊网络出版总库,中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库,国重要会议论文全文数据库,中国重要报纸全文数据库,中国专利全文数据库,个人比对库,其他比对库。部分书籍不在知网库,检测不到。 2、上传论文后,系统会自动检测该论文的章节信息,如果有自动生成的目录信息,那么系统会将论文按章节分段检测,否则会自动分段检测。 3、有部分同学反映说自己在段落中明明引用或者抄袭了其他文献的段落或句子,为什么没有检测出来,这是正常的。中国知网对该套检测系统的灵敏度设置了一个阀值,该阀值为5%,以段落计,低于5%的抄袭或引用是检测不出来的,这种情况常见于大段落中的小句或者小概念。举个例子:假如检测段落1有10000字,那么引用单篇文献500字以下,是不会被检测出来的。实际上这里也告诉同学们一个修改的方法,就是对段落抄袭千万不要选一篇文章来引用,尽可能多的选择多篇文献,一篇截取几句,这样是不会被检测出来的。 4、一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。二、快速通过论文查重的七大方法方法一:外文文献翻译法查阅研究领域外文文献,特别是高水平期刊的文献,比如Science,Nature,WaterRes等,将其中的理论讲解翻译成中文,放在自己的论文中。优点:1、每个人语言习惯不同,翻译成的汉语必然不同。因此即使是同一段文字,不同人翻译了之后,也 不会出现抄袭的情况。2、外文文献的阅读,可以提升自身英语水平,拓展专业领域视野。缺点:英文不好特别是专业英文不好的同学实施起来比较费劲。方法二:变化措辞法将别人论文里的文字,或按照意思重写,或变换句式结构,更改主被动语态,或更换关键词,或通过增减。当然如果却属于经典名句,还是按照经典的方法加以引用。优点:1.将文字修改之后,按照知网程序和算法,只要不出现连续13个字重复,以及关键词的重复,就不会被标红。2.对论文的每字每句都了如指掌,烂熟于心,答辩时亦会如鱼得水。缺点:逐字逐句的改,费时费力。方法三:google等翻译工具翻译法将别人论文里的文字,用google翻译成英文,再翻译回来,句式和结构就会发生改变,再自行修改下语病后,即可顺利躲过查重。优点:方便快捷,可以一大段一大段的修改。缺点:有时候需要多翻译几遍,必须先由中文翻译成英文,再翻译成阿尔及利亚语,再翻译成中文。方法四:转换图片法将别人论文里的文字,截成图片,放在自己的论文里。因为知网查重系统目前只能查文字,而不能查图片和表格,因此可以躲过查重。优点:比google翻译法更加方便快捷。缺点:用顺手了容易出现整页都是图片的情况,会影响整个论文的字数统计。方法五:插入文档法将某些参考引用来的文字通过word文档的形式插入到论文中。优点:此法比方法四更甚一筹,因为该方法日后还可以在所插入的文档里进行重新编辑,而图片转换法以后就不便于再修改了。缺点:还没发现。方法六:插入空格法将文章中所有的字间插入空格,然后将空 格 字 间距调到最小。因为查重的根据是以词为基础的,空格切断了词语,自然略过了查重系统。优点:从查重系统的原理出发,可靠性高。缺点:工作量极大,课可以考虑通过宏完成,但宏的编制需要研究。方法七:自己原创法自己动手写论文,在写作时,要么不原文复制粘贴;要么正确的加上引用。优点:基本上绝对不会担心查重不通过,哪怕这个查重系统的阈值调的再低。缺点:如果说优缺点的话,就是写完一篇毕业论文,可能会死掉更多的脑细胞。呵呵。。。

中国知网自己查重的方法如下:

电脑:华为MateBook。

系统:Windows10。

软件:谷歌浏览器。

1、打开电脑的浏览器,百度搜索“中国知网论文查重检测系统入口”。

2、点击进入到对应的官方网站,注意需要是知网的查重网站。

3、在官网首页,选择顶部页签中的“论文查重入口”选项。

4、在下拉选项中,点击选择本科论文检测或者研究生论文检测。

5、进入检测系统详情页后,点击“立即检测”按钮,进入检测流程。

6、填写好论文信息,并上传论文;支付费用后即可进行检测。

查重服务

2022年6月12日凌晨,同方知网(北京)技术有限公司在中国知网官方网站以及中国知网微信公众号发布公告:即日起,中国知网向个人用户直接提供查重服务。

知网论文查重规则毕业论文要如何查,主要集中与以下五个方面,下面小编为大家总结助力同学们快速通过论查重。1、中国知网论文查重系统设计了辨别程序,一般标黄色内容为引用句子,标红的内容则涉嫌抄袭,需要大家认真修改。2、中国知网论文查重标准一般是按13个字符算,如果您的文章不超过连续13个字的抄袭,就不会被辨别出是重复抄袭。但中国知网是会检测查重频率的,若引用的文献相似度太高也会被查重出来。3、中国知网查重系统的比对库,一般中国知网就仅仅收录的大多数文献都是中文文献,外文文献很少,这就为广大毕业生修改论文提供的极大方便,大家可以在创作时多引用一些外文句子,这样可以有效规避查重。4、章节总重复率,知网查重监测系统是通过论文给出的,一般同一章节或段落内的查重率不得超过5%。5、模糊检测,当知网对论文进行检测时,会根据论文的中心进行段落的重点监测。所以当一次不过时,经过改动的文章在以前没有出现的查重部分上,有时就会出现被查重不合格的现象。还有当论文被认为的抄袭段落或句子上,系统会进行模糊处理,所以只加如“虽然”“但是” 是没有用的。这一点要切记。总之,知网查重是有规律可偱的,建议在提交学校之前一定先在知网查重系统(知网查重 入口)提交自己的毕业论文查重检测,这样才能确保自己的论文通过学校的检测哈。

对于首次接触毕业论文查重的同学来说,论文是如何查重的还是挺迷茫的,也不知道该如何下手。所以就会有很多毕业生都会问道到底毕业论文的查重是如何查重的?

一般来说毕业论文查重就是将你的毕业论文提交到学校要求的查重检测系统里,然后系统就会将你的论文与系统本身所收录的数据进行比对,检测完会有一份检测报告,有和系统数据库内相似或重复的部分就会被标记出来,红色表示严重重复,橙色表示相似部分,绿色表示没有检测到重复是合格的。每个学校对于论文的重复率要求都有所不同,一般的要求本科论文重复率不超过30%就能合格,但有的学校也许要求会更严格,比如不超过20%才行。有的学校对论文中的章节段落也会有要求,这个学校都会有相应的公告需要同学们多多留意下。目前大多数的高校使用的都是知网查重系统,那么知网检测系统是对毕业论文是如何查重的呢?

相对来说知网对于外文文献的收录较少,我们在撰写时可以查找一些然后进行翻译。还有就是我们在查重一次修改后,不要以为就能合格了。由于检测系统里增添有互联网资源,由于互联网比对数据是在不断地变化,所以很有可能第一次检测时没有被标记的地方,第二次再检测时可能就会被标记出来。所以我们在修改时最好是修改完隔断时间多检测几次,直到修改的重复率达到学校要求为止。

知网论文创新点填什

论文创新点如下:

一、资料创新

就是你写论文用的资料很新,是最新的科研成果,本专业最前沿的数据、资料,这也是论文指导老师看你文章质量的一个着眼点。

二、方法创新

在论文写作中,你用了一种别人没用过的方法,得出了一个新颖且靠谱的结论,令人信服又耳目一新。

三、观点创新

这个最明白了,你提出了别人没有提出过的新观点,这个看起来简单,其实最难,学术水平的高下,在这一点上基本可以判断。

不过,也别畏难,在占有资料、研究资料的过程中,有些观点会忽然冒出来,灵光一闪,学术的辛苦会在这一刻得到最大回报。就像忽然得到了一个别人不知道的秘密,你完全知道内幕。

最后要说的是,创新点不是制造出来的,是研究过程中的高峰体验,你得提前有充分的问题意识、知识储备和艰苦探索。写论文是苦的,得熬,好论文是反复改出来的,得磨。写论文的过程,也是磨练心性的过程,需要耐心!

论文是一个汉语词语,拼音是lùn wén,古典文学常见论文一词,谓交谈辞章或交流思想。

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

2020年12月24日,《本科毕业论文(设计)抽检办法(试行)》提出,本科毕业论文抽检每年进行一次,抽检比例原则上应不低于2%

论文的创新点怎么写?这你算是问对人了,今天就和大家分享一下有关论文创新点的写作技巧:一篇有创意的论文,那么你的理论一定要是足够创新的。理论创新是指人类在开括进取的社会实践活动中,对不断出现的新情况新问题作出新的理论分析和理论解答。对认识对象或实践对象的本质,规律和发展变化的趋势作出新的揭示和预见,对研究对象作出新的理性升华。理论创新一般有以下几种类型:一是对新情况新问题的解释原则、模式和视野的创新,即方法层次的创新。二是在深刻把握事物发展规律及人的思维规律、有效探索社会实践新领域的基础上,提出前所未有的新观点、新范畴,特别是形成新原理、新的科学体系。三是从发展着的社会实践出发,并以此为检验标准,对前人创立的基本原理,在充分肯定和继承的基础上作补充。四是根据实践的需要,对前人科学的思想资料和理论观点进行重新梳理,清除由于后人的错误理解而混杂其中的不正确的或随意附加的东西。了解了论文创新点该怎么写之后,小伙伴们对于自己的论文该如何进行创作是不是有了更清醒的认知了呢?如果还有疑问,可以在茅茅虫论文写作助手上去写论文,里面有很多论文可以参考,都是免费的哦。

1、资料创新

毕业设计论文的创新点该怎么写呢?首先要资料管理创新 ,论文里要用到的可以是比较新的内容,比如最新的科研工作成果以及专业最前沿的数据和资料,这个创新点就需要大家经常关注一些大企业相关的新闻资讯之类的,这样就可以第一时间获取有用知识!

2、方法创新

很多同学在写论文时,都会按照一些所谓常规的套路来写,这样写的出错率肯定小,但是老师在查阅的时候已经厌倦疲劳了,这时候如果有人写出别人没有写出的东西,给老师新颖的感觉,那自然会得到青睐。

3、观点创新

没有人提出来的观点,但是你提出来了,那么这个过程呢它就是一个观点进行创新。不过这个对于同学们来说有一定的难度,因为学术发展水平的高低会在这个方面体现出来,这个除了考验同学们的学术研究水平,同时也考验同学们的思维创新能力。因为有时在翻阅资料的时候,脑子里会突然想到某个想法,这时候思维转弯就转出来了,不过在提成新理论观点时,还是要严格遵循社会科学、谨慎的态度和思想,不能偏离实际,更不能虚化。

4、角度创新

大家都在用同一个角度思考和看待学生们的研究,但如果你选择了另一个角度思考,不仅仅只从一个角度创新,可能最后我们的结论就会成为一定的创新点,就像杨桃正面与侧面看是不一样的

其实毕业论文进行创新是一个研究过程的极佳体验,问题意识,知识储备与探索,也是磨练自己的过程,要让自己静下心来,才可以获取成功!

相关百科

热门百科

首页
发表服务