论文模型构建方法如下:
首先要明确撰写论文的目的。
建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员读了之后,相信模型假设的合理性,理解在建立模型过程中所用方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。
当然,一篇好的论文是以作者所建立的模型的科学性为前提的。其次,要注意论文的条理性。
(一)问题提出和假设的合理性
在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。
列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届建模竞赛的试题可以看作是情景说明的范例。
对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立模型还是不够的,还要补充一些假设,模型假设是建立模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。
由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:
(1)论文中的假设要以严格、确切的语言来表达,使读者不致产生任何曲解。
(2)所提出的假设确实是建立模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。
(二)模型的建立
在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的方法,最后顺利地建立方程式或归纳为其他形式的问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨。
引用现成定理时,要先验证满足定理的条件。论文中用到的各种符号,必须在第一次出现时加以说明。总之,要把得到模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(三)模型的计算与分析
把实际问题归结为一定的问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。
有些模型需要作稳定性或其他定性分析。这时应该指出所依据的理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。
(四)模型的讨论
对所作的模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。
语言是构成论文的基本元素。建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。
最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。
模型有三个层次:
第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。
第二个层次,描述性统计,分析数据分布特征。
第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。
第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。
选题与预估计
问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。
问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。
问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。
问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。
问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。
数据模型(Data Model)是数据特征的抽象。数据(Data)是描述事物的符号记录,模型(Model)是现实世界的抽象。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。2、数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。3、数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。首先,先介绍一下,什么是数据模型?数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。数据模型的分类有三种:第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中,操作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。为什么要建立数据模型?当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。如何进行数据模型设计?1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。3:模型验证:通过具体的业务来验证模型是否能满足要求。4:在逻辑模型的基础上生产物理模型。在建立数据模型的时候需要注意:1.三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少2.如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。3.一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。4.在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。5.数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核2021年6月4日数据模型是什么?2167阅读·0评论·0点赞2016年7月4日去首页看看更多热门内容
实证论文里模型数据表示的含义是实证研究模型是指运用历史数据来描述所研究的经济事物的有关经济变量之间相互关系的一种理论结构。“实证研究”一词意指研究的方法较少基于有关金融市场如何运行的理论,但重视根据市场过去的历史数据研究金融市场的运行规律和关系。通过这些研究方法,研究人员确认与所研究证券相关的某些参数或特征,然后直接观察数据,从而总结归纳出这些特征与期望收益之间的关系。
表示实证研究倡导“用数据资料说话”,实验研究是一种受控制的研究,通过一个或多个变量的变化来评估它对一个或多个变量产生的效应。实验研究的主要目的是建立变量之间的因果关系,通常的做法是研究者预先提出一种因果关系假设,然后通过实验操作来检验该假设是否成立。可见,对于实证模型的构建和分析非常重要。一个恰当的模型可以帮我们对数据分析整理,得出结论供我们进行理论分析。
数据模型(Data Model)是数据特征的抽象。数据(Data)是描述事物的符号记录,模型(Model)是现实世界的抽象。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。2、数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。3、数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。首先,先介绍一下,什么是数据模型?数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。数据模型的分类有三种:第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中,操作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。为什么要建立数据模型?当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。如何进行数据模型设计?1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。3:模型验证:通过具体的业务来验证模型是否能满足要求。4:在逻辑模型的基础上生产物理模型。在建立数据模型的时候需要注意:1.三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少2.如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。3.一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。4.在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。5.数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核2021年6月4日数据模型是什么?2167阅读·0评论·0点赞2016年7月4日去首页看看更多热门内容
计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理;第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。
关于实证论文怎么写如下:
要搞清楚自己想要研究什么学科领域的什么主题。问题不是一下选出来的,是依循学科领域——研究方向——主题——具体问题等流程逐步聚焦窄化出来的。
选题的过程中可以广泛查阅文献资料,可以询问老师、专家、学长学姐等同专业人员,也可以通过网络广泛查阅相关信息。但最关键的还是要主观上自己感兴趣、有能力、有意愿,客观上行得通、走得远、有价值。
研究设计要对问题进行变量分析,一个论文最好一次解决一个问题,多个问题交织在一起会使得文章错综复杂,也让会让读者雨里雾里。
要预先进行样本抽样设计。定量研究一般采用概率抽样,定性研究一般采用非概率抽样。研究是大样本还是小样本,是随机抽样选取还是直接选取最大信息承载者,都需要设计完善。
要预先设计研究方法及方法组合,实证研究往往不会仅仅使用一个方法,而是采用混合研究范式,综合运用多种方法。
要预先设计调查、访谈、观察、测量计划,预先设计研究工具,要预先设计研究步骤与时间进度安排,要预先开展一些试探性调查,以查看研究计划和工具的适用性,发现问题及时解决,进一步修改完善研究计划和工具。
如果人手不够的话,需要提前联系相关人员协助开展研究。比如你一次发3000份问卷,一个人肯定忙不过来;一次访谈1个人,但是对方不允许你录音,那你必须有研究助手协助手写记录。
实施研究,搜集资料实证型论文最大的特征就是要数据,没有数据一切都是虚构的。可以通过实施问卷调查、访谈、观察、测量等多种方式来搜集量化或质性的数据资料。有的呈数量化形态可以用于统计分析,有的呈文字化形态可用于描述分析。
整理、分析资料,得出结论资料搜集回来以后就需要根据资料的性质开展定量或定向分析啦。分析中可以使用SPSS或NVIVO软件协助。通过分析得出研究结论。
撰写论文论文的撰写不是必须等到得出结论才可以进行。从一开始就可以边开展研究边进行论文撰写。只不过大规模完善地论文写作是在这个时候才开始的。
实证型论文在国际上有美国心理协会的APA格式、芝加哥大学格式等成熟的格式,在我国有中国心理学会的写作规范均可以参考,因为格式非常稳定一致,被戏称为“八股文”。
意思就是按照固定格式填内容就行,不需要每次费尽脑力设计提纲框架。这倒也省事啦。大家有样学样就行。
1、了解论文主题背景。2、明确论文主题方向。3、分析目前形势。1、首先要提出问题,可以是通过在生活中的思考或者生活中的痛点。从各个方向去解答这个问题,这些都是作者自己的感悟。2、然后我们要了解研究方法有这些,然后作者可以根据自己研究的课题采用调查研究法、行动研究法、比较研究法、案例研究法、经验总结法和文献研究法。3、然后去具体了解这些方法是怎么使用的,就根据使用步骤一一步步的收集资料,做实验,得到结论等。4、有了目标,有了问题,在实验中记录然后用自己的话撰写出来就可以的。
实证研究 是基于事实和证据的研究,强调的是用科学的方法,获得科学的数据,得出科学的结论,接受科学的检验。 实证研究具有多种类型和不同层次,针对实验研究、调查研究、访谈研究、案例研究、观察记录等都可以做出高水平的实证研究。 目前,实证研究一般包括以下几部分: 研究的缘起 :引言,研究问题的发展,包括问题的历史渊源和研究的目的。 文献综述 :从文献中找出证据 研究设计 :包括研究问题与假设、研究对象与方法、研究设计与实施 研究结果 :又名研究结果与讨论或者研究发现。 结论与讨论 :对结果的总结、解读以及对涵义的陈述或对于研究的归纳总结和提升。
案例1:网络同侪互评活动设计与应用研究 1.思维导图
3.研究方法
4.研究过程
实证论文里模型数据表示的含义是实证研究模型是指运用历史数据来描述所研究的经济事物的有关经济变量之间相互关系的一种理论结构。“实证研究”一词意指研究的方法较少基于有关金融市场如何运行的理论,但重视根据市场过去的历史数据研究金融市场的运行规律和关系。通过这些研究方法,研究人员确认与所研究证券相关的某些参数或特征,然后直接观察数据,从而总结归纳出这些特征与期望收益之间的关系。
数据模型(Data Model)是数据特征的抽象。数据(Data)是描述事物的符号记录,模型(Model)是现实世界的抽象。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。2、数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。3、数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。首先,先介绍一下,什么是数据模型?数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。数据模型的分类有三种:第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中,操作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。为什么要建立数据模型?当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。如何进行数据模型设计?1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。3:模型验证:通过具体的业务来验证模型是否能满足要求。4:在逻辑模型的基础上生产物理模型。在建立数据模型的时候需要注意:1.三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少2.如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。3.一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。4.在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。5.数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核2021年6月4日数据模型是什么?2167阅读·0评论·0点赞2016年7月4日去首页看看更多热门内容
模型有三个层次:
第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。
第二个层次,描述性统计,分析数据分布特征。
第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。
第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。
选题与预估计
问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。
问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。
问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。
问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。
问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。
创作思路模板如下:
论文的预期结果一般在开题报告里面,也就是论文的研究对象预期中期望能带来的理论意义(比如开创性的理论研究方法,对某个理论或者计算方法的优化等)、经济效益等。
理论意义(比如开创性的理论研究方法,对某个理论或者计算方法的优化等)、经济效益等。课题不同,研究成果的内容、形式也不一样,但不管形式是什么,课题研究必须有成果,否则,就是这个课题没有完成。
举个例子,假设你发现了城市停车难问题,为了解决这个问题,你要做一个智能停车系统,这个系统有什么,就是你的预期成果形式,比如这个系统包括一个车载接收器,包括停车场停车桩,以及停车场控制系统软件,这些就是你的预期成果形式。
1、了解论文主题背景。2、明确论文主题方向。3、分析目前形势。1、首先要提出问题,可以是通过在生活中的思考或者生活中的痛点。从各个方向去解答这个问题,这些都是作者自己的感悟。2、然后我们要了解研究方法有这些,然后作者可以根据自己研究的课题采用调查研究法、行动研究法、比较研究法、案例研究法、经验总结法和文献研究法。3、然后去具体了解这些方法是怎么使用的,就根据使用步骤一一步步的收集资料,做实验,得到结论等。4、有了目标,有了问题,在实验中记录然后用自己的话撰写出来就可以的。
实证分析论文写法如下:
1、阅读教材。
首先要具备一定的计量经济学基础。计量理论的学习推荐阅读《计量经济学导论》,计量经济学的一些基本理论要掌握,如果觉得《计量经济学导论》有难度,可以通过这本书先学习一些基础的计量知识,比如什么是内生性,稳健性等等。
在模型实现时,stata代码的撰写可直接参考陈强老师的书,这本书非常具有实用性,可以自学,随用随查即可。计量经济学中经济学才是核心,计量只是方法,不要把重心放错。
2、前沿文献。
阅读教材的同时可以多看一些实证类的文章加深理解,同时多多学习实证的套路,在阅读教材和前沿文献中不断积累,形成自己的想法,也就是论文的核心——创新点。
文献可以从知网进行查找,国内顶级的期刊有经济研究、中国工业经济、管理世界等(进入知网首页,搜索栏右侧点期刊,即可查看整个期刊中的文章)。
3、搜集数据。
在打好基础后,接下来要找做实证的数据了,根据自己的论文选题去查找数据。数据是实证论文重要的部分,如果数据找不到或者数据质量差,那么论文选题即使再创新,实证部分也无法完成。
因此不妨在找数据的过程中确定自己的选题。至于数据来源,可以从中国统计年鉴、中国城市统计年鉴以及一些数据库进行查找。