首页

> 学术期刊知识库

首页 学术期刊知识库 问题

模型实证研究的毕业论文

发布时间:

模型实证研究的毕业论文

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

学术堂最新整理了二十条好写的统计学毕业论文题目:排队模型在收费站排队系统中的应用2.财政收入影响因素的研究3.城市发展对二氧化碳排放的影响4.高技术产业产值影响因素的研究5.关于和谐社会统计指标的初步研究研究我国产业结构的区域差异对经济的影响7.基于单因素序列相关面板数据的实证分析8.基于空间面板数据的中国FDI统计分析9.基于排队论在杭州公交站点停车位的优化及实证分析10.基于统计方法的股票投资价值分析11.某某市2019年工业发展状况的统计分析12.近30年31省市城镇居民恩格尔系数的统计分析13.近30年31省市农村居民恩格尔系数的统计分析14.近三十年中国经济发展趋势的实证分析15.林业科技对经济的贡献率美联储量化16.宽松政策对中国经济影响的统计17.分析排队论简介及其应用18.我国财政收入总额影响因素分析19.我国城市竞争力的综合评价与实证分析20.我国城乡居民收入差距统计分析一以某某省为例

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

实证论文研究模型

实证论文里模型数据表示的含义是实证研究模型是指运用历史数据来描述所研究的经济事物的有关经济变量之间相互关系的一种理论结构。“实证研究”一词意指研究的方法较少基于有关金融市场如何运行的理论,但重视根据市场过去的历史数据研究金融市场的运行规律和关系。通过这些研究方法,研究人员确认与所研究证券相关的某些参数或特征,然后直接观察数据,从而总结归纳出这些特征与期望收益之间的关系。

数据模型(Data Model)是数据特征的抽象。数据(Data)是描述事物的符号记录,模型(Model)是现实世界的抽象。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。2、数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。3、数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。首先,先介绍一下,什么是数据模型?数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。数据模型的分类有三种:第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中,操作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。为什么要建立数据模型?当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。如何进行数据模型设计?1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。3:模型验证:通过具体的业务来验证模型是否能满足要求。4:在逻辑模型的基础上生产物理模型。在建立数据模型的时候需要注意:1.三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少2.如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。3.一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。4.在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。5.数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核2021年6月4日数据模型是什么?2167阅读·0评论·0点赞2016年7月4日去首页看看更多热门内容

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

本科毕业论文的模型实证

本科生如何写实证论文,模型指标如何选择

中国统计年鉴可能有更详细的统计年鉴,比如说汽车产业统计年鉴德国大众内部肯定也有统计年鉴,但应该很难拿到 我鞥能可以的

实证分析方法:实证的分析工具实证分析要运用一系列的分析工具,诸如个量分析与总量分析、均衡分析与非均衡分析、静态分析与动态分析、定性分析与定量分析、逻辑演绎与经验归纳、经济模型以及理性人的假定等等。我们这里着重介绍在经济学中应用最多而在前面又未曾有过说明的均衡分析、静态分析与动态分析、经济模型。先找一篇同类型的实证论文,模仿着写,数据要改,图要重新画形势变一下,企业资料要换。 大学毕业季,很多同学都写不好论文。写不好论文,不仅影响成绩,也影响毕业。所以,我在此分享一点经验给同学们。 分析论文题目。大家在选定一个论文题目之后,一定要分析论文题目的写作重点,分清主次。 收集材料,写读书笔记。当大家分析过论文的主要写作方向后,大家要开始收集与论文相关的论文材料。把自己找到与所选论文相关的材料记到读书笔记上,以备将来写论文的时候作为参考。 国内外研究现状。大家要将论文中的主要研究目的找出来。然后寻找分析国内外对此题目的分析与研究。 列举大纲。结合论文题目。开始列举大纲。先解释论文中相关的知识点。然后写当前的研究现状,接着写某题目的问题与不足,再写针对该问题的对策。注意,问题和对策要相对应。论文中要列举事例、添加数据、分析的图片等等。 开始写论文。按照大纲开始写论文,但是要在必要的地方加上过渡段。然后是论文的脚注,引用、参考资料、结论等。 最后,大家把排版做好。未尽事宜,请大家斧正。祝大家把论文写得更优秀。 特别需要注意: 注意,问题和对策要相对应。必要的地方加上过渡段 在经济学论文中,经常会出现实证分析,那么什么是实证分析呢?实证分析也可称为经验分析,目的在于用事实来支持论文所提出的观点或证明某一种理论,具体包括两种分析方法,一是统计分析,其中案例分析是其中的特例(样本只有一个),二是回归分析。那么毕业论文撰写实证分析都有哪些呢?对于某一种的观点,只要举出一个例子来证实就可以了(暂时可以被接受),而如果验证的结果是事实与理论不符,应分析其可能的原因:①事实与理论不对应,该理论本来就不是解释这种现象的;②理论不正确,只要一个反例就可否定一个理论(用事实来证伪),没有反例的理论被认为是暂时可以接受的假说;③理论提出的背景与我国当前的现实不一致,要分析不一致的地方,然后改进理论,或提出改变现实的政策建议。与理论分析相比,实证分析应成为写作、选题的重点。因为理论创新很难,而实证分析则可以且能够体现论文写作过程中付出的工作量,使论文可较易通过。毕业论文(尤其是学士、硕士毕业论文)应以实证分析为主,实证分析的内容可包括:1、案例的调查、分析,可包括:具有一定创新意义的案例分析,如果该案例可以否定一个理论,或者说明这个理论在某个领域不适用;具有现实意义的社会调查,如当前有关“三农”问题的调查;在一个新的领域内做的调查,别人没有做过或很少做过,如结合自身情况对大学生借贷状况进行的调查。2、发现一个证据,可以证明别人已经提出的但尚未被人证明过的理论,如林毅夫(2000,)的文章“食物的供应量、食物获取权与中国1959~1961年的饥荒”,是第一篇用计量经济学方法检验1998年诺贝尔经济学奖获得者Sen的理论(“食物获取权的被剥夺是饥荒发生的最根本原因”)的论文,属于实证分析中的创新。3、用大样本的数据来验证一种理论,或用一种新的方法验证一种理论或观点,虽然他人曾经用过同样的数据,但自己使用的数据更多、周期更长(如利用每年都在增长的股市数据)、论证更有效率(证明更简短)、更有说服力(如使用计量经济学的最新成果来证明),则具有一定的创新价值。4、进行历史分析或比较分析,收集的资料比别人全,或发现新的证据、能够提出新的观点,或有第一手的资料(如直接翻译的外文或自身调查得来的资料),这样的实证分析往往会成为论文中的出彩点。5、研究结论及政策含义。这是论文中所占比例最少的部分,大约占论文整体的5%。研究结论是论文各部分得出结论的总结,政策含义(建议)则是根据结论自然延伸、推导出来的,后面不需要再解释原因。因而,各条研究结论、政策含义可能只需要一句话。6、论文写作中其他应注意的问题。论文的写作是建立在他人已有研究基础上的,肯定涉及他人的观点、资料(包括外文资料),但引用时均应注明出处,切忌抄袭;论文不要写成说明材料或教科书,而应有自己的观点,因为论文是给导师以及这个领域内的专家看的;也不要将论文写成领导报告或政策建议,论文的重点在于其创新之处。主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。 总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测。三、文献综述规定1. 为了使选题报告有较充分的依据,要求硕士研究生在论文开题之前作文献综述。2. 在文献综述时,研究生应系统地查阅与自己的研究方向有关的国内外文献。通常阅读文献不少于30篇3. 在文献综述中,研究生应说明自己研究方向的发展历史,前人的主要研究成果,存在的问题及发展趋势等。4. 文献综述要条理清晰,文字通顺简练。5. 资料运用恰当、合理。文献引用用方括号"[ ]"括起来置于引用词的右上角。6. 文献综述中要有自己的观点和见解。鼓励研究生多发现问题、多提出问题、并指出分析、解决问题的可能途径。

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

构建模型的论文是实证研究吗

实证论文里模型数据表示的含义是实证研究模型是指运用历史数据来描述所研究的经济事物的有关经济变量之间相互关系的一种理论结构。“实证研究”一词意指研究的方法较少基于有关金融市场如何运行的理论,但重视根据市场过去的历史数据研究金融市场的运行规律和关系。通过这些研究方法,研究人员确认与所研究证券相关的某些参数或特征,然后直接观察数据,从而总结归纳出这些特征与期望收益之间的关系。

表示实证研究倡导“用数据资料说话”,实验研究是一种受控制的研究,通过一个或多个变量的变化来评估它对一个或多个变量产生的效应。实验研究的主要目的是建立变量之间的因果关系,通常的做法是研究者预先提出一种因果关系假设,然后通过实验操作来检验该假设是否成立。可见,对于实证模型的构建和分析非常重要。一个恰当的模型可以帮我们对数据分析整理,得出结论供我们进行理论分析。

数据模型(Data Model)是数据特征的抽象。数据(Data)是描述事物的符号记录,模型(Model)是现实世界的抽象。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。2、数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。3、数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。首先,先介绍一下,什么是数据模型?数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。数据模型的分类有三种:第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中,操作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。为什么要建立数据模型?当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。如何进行数据模型设计?1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。3:模型验证:通过具体的业务来验证模型是否能满足要求。4:在逻辑模型的基础上生产物理模型。在建立数据模型的时候需要注意:1.三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少2.如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。3.一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。4.在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。5.数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核2021年6月4日数据模型是什么?2167阅读·0评论·0点赞2016年7月4日去首页看看更多热门内容

计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理;第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。

学术型毕业论文实证模型要求

毕业论文撰写结构要求

1、题目应简洁、明确、有概括性,字数不宜超过20个字。

2、摘要要有高度的概括力,语言精练、明确,中文摘要约100-200字;

3、关键词从论文标题或正文中挑选3~5个最能表达主要内容的词作为关键词。

4、目录写出目录,标明页码。

5、正文

专科毕业论文正文字数一般应在3000字以上。

毕业论文正文:包括前言、本论、结论三个部分。

前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。

本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。

学位论文

学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。

学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那么就给予学位。如果说学位申请者的课程考试通过了,但论文在答辩时被评为不合格,那么就不会授予他学位。

有资格申请学位并为申请学位所写的那篇毕业论文就称为学位论文,学士学位论文。学士学位论文既是学位论文又是毕业论文。

鉴于学术思想的价值,笔者认为,它是追求学科研究真理的思想路线的发展轨迹。并沿着认识和理解学科知识的基本状态去发现问题,大胆地坚持探索未知的精神品质,最终形成追求真理、探索未知真理的学术思维品质。具体而言,在毕业论文写作方面,注重内容与形式的统一。内容是指论文的主题和写作材料,形式是指文章的逻辑结构和语言表达。此外,对于论文写作,我们还需要开展思维活动,要用概念、判断、推理等思维形式来表现。只有掌握了这些思维方式,才能创造出一篇具有学术性思维的毕业论文。随着时间的推移,通过这种方式撰写本科论文,借助自己对学科知识的掌握,我们可以找到和探索专业中存在的问题,并提出一系列的解决方案。最终培养出他们的学术思维模式,为科研能力的培养及进步打下坚实基础。教育部关于高校毕业生必须完成毕业论文的规定,都表明毕业论文的撰写是大势所趋,也是时代回到“百家争鸣”时代的重要标志。在此基础上,本论文运用于本科毕业论文写作中,既是学生掌握的知识的综合运用,又是对寒窗学习知识掌握十年以上的测试,也使他们能够借鉴好事物,开拓自己的学术思想。创造新事物的最终目的是形成学术科学研究的思维能力,充分发挥生命的最大价值。

学术论文是某一学术课题在实验性、理论性或预测性上具有的新的科学研究成果或创新见解和知识的科学记录,或是某种已知原理应用于实际上取得新进展的科学总结,用以提供学术会议上宣读、交流、讨论或学术刊物上发表,或用作其他用途的书面文件。学术论文按写作目的,可将学术论文分为交流性论文和考核性论文。学术论文是对某个科学领域中的学术问题进行研究后表述科学研究成果的理论文章。学术论文的写作是非常重要的,它是衡量一个人学术水平和科研能力的重要标志。在学术论文撰写中,选题与选材是头等重要的问题。一篇学术论文的价值关键并不只在写作的技巧,也要注意研究工作本身。在于你选择了什么课题,并在这个特定主题下选择了什么典型材料来表述研究成果。科学研究的实践证明,只有选择了有意义的课题,才有可能收到较好的研究成果,写出较有价值的学术论文。所以学术论文的选题和选材,是研究工作开展前具有重大意义的一步,是必不可少的准备工作。学术论文,就是用系统的、专门的知识来讨论或研究某种问题或研究成果的学理性文章。具有学术性、科学性、创造性、学理性。折叠基本类别按研究的学科,可将学术论文分为自然科学论文和社会科学论文。每类又可按各自的门类分下去。如社会科学论文,又可细分为文学、历史、哲学、教育、政治等学科论文。按研究的内容,可将学术论文分为理论研究论文和应用研究论文。理论研究,重在对各学科的基本概念和基本原理的研究;应用研究,侧重于如何将各学科的知识转化为专业技术和生产技术,直接服务于社会。按写作目的,可将学术论文分为交流性论文和考核性论文。交流性论文,目的只在于专业工作者进行学术探讨,发表各家之言,以显示各门学科发展的新态势;考核性论文,目的在于检验学术水平,成为有关专业人员升迁晋级的重要依据。折叠编辑本段国家标准折叠技术报告科学技术报告是描述一项科学技术研究的结果或进展或一项技术研制试验和评价的结果;或是论述某项科学技术问题的现状和发展的文件。科学技术报告是为了呈送科学技术工作主管机构或科学基金会等组织或主持研究的人等。科学技术报告中一般应该提供系统的或按工作进程的充分信息,可以包括正反两方面的结果和经验,以便有关人员和读者判断和评价,以及对报告中的结论和建议提出修正意见。折叠学位论文学位论文是表明作者从事科学研究取得创造性的结果或有了新的见解,并以此为内容撰写而成、作为提出申请授予相应的学位时评审用的学术论文。学士论文应能表明作者确已较好地掌握了本门学科的基础理论、专门知识和基本技能,并具有从事科学研究工作或担负专门技术工作的初步能力。硕士论文应能表明作者确已在本门学科上掌握了坚实的基础理论和系统的专门知识,并对所研究课题有新的见解,有从事科学研究工作或独立担负专门技术工作的能力。博士论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,并具有独立从事科学研究工作的能力,在科学或专门技术上做出了创造性的成果。折叠学术论文学术论文是某一学术课题在实验性、理论性或观测性上具有新的科学研究成果或创新见解和知识的科学记录;或是某种已知原理应用于实际中取得新进展的科学总结,用以提供学术会议上宣读、交流或讨论;或在学术刊物上发表;或作其他用途的书面文件。学术论文应提供新的科技信息,其内容应有所发现、有所发明、有所创造、有所前进,而不是重复、模仿、抄袭前人的工作。

学术论文是一种具创新性的科学研究成果的记录,它是人类知识宝库的基本单元。 学术论文应具备以下四个特点: 第一,科学性。学术论文的科学性,要求作者在立论上不得带有个人好恶的偏见,不得主观臆造,必须切实地从客观实际出发,从中引出符合实际的结论。在论据上,应尽可能多地占有资料,以最充分的、确凿有力的论据作为立论的依据。在论证时,必须经过周密的思考, 进行严谨的论证。内容的客观性:论文内容必须是客观存在的事实,即要求科学内容真实、成熟、可行,而且可重复性。表达的全面性:论文的科学内容,须用语言、文字或图片等方式表达,并且力求文字简洁、明确及全面性。结构的逻辑性:文章结构所显现的科学内容必须符合逻辑推理、论证反驳等思维规律,其逻辑性强。 格式的标准化:论文写作格式已逐渐趋标准化,必须严格遵守其法则。第二,创造性。科学研究是对新知识的探求。创造性是科学研究的生命。学术论文的创造 性在于作者要有自己独到的见解,能提出新的观点、新的理论。因此,没有创造性,学术论文就没有科学价值。创造性是衡量学术论文价值的根本标准。创造性大,论文价值高;反之,论文价值就低 。这里所谓的创造性是指论文中阐述世人尚未谈过的新理论、新方法、新技术或创造性的模仿。一篇没有创见的文章,可能具有一定的社会经济价值,但它对科学技术发展不起作 用,也无法提供科技领域新的内容。有些科技成果填补了国内空白,但国外已有,严格言之应无创造性。 第三,理论性。学术论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有 自己的理论系统的,不能只是材料的罗列,应对大量的事实、材料进行分析、研究,使感性 认识上升到理性认识。一般来说,学术论文具有论证色彩,或具有论辩色彩。论文的内容必 须符合符合历史唯物主义和唯物辩证法,符合“实事求是”、“有的放矢”、“既分析又综合” 的科学研究方法。学术性或称为理论性。学术论文可以取材于某一具体产品,或某一抽象的理论,第四,平易性。指的是要用通俗易懂的语言表述科学道理,不仅要做到文从字顺,而且要 准确、鲜明、和谐、力求生动。 选题在学术论文写作中具有头等重要的意义。这是因为,只有研究有意义的课题,才能获得好的效果,对科学事业和现实生活有益处;而一项毫无意义的研究,即使研究得再好, 论文写作得再美,也是没有科学价值的。

相关百科

热门百科

首页
发表服务