首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数据分析的毕业论文选题

发布时间:

数据分析的毕业论文选题

我老是也是统计学的,惨哦

大数据只是一个时代背景,具体内容可以班忙做

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

计算机网络技术专业毕业论文题目

你是不是在为选计算机网络技术专业毕业论文题目烦恼呢?以下是我为大家整理的关于计算机网络技术专业毕业论文题目,希望大家喜欢!

1. 基于移动互联网下服装品牌的推广及应用研究

2. 基于Spark平台的恶意流量监测分析系统

3. 基于MOOC翻转课堂教学模式的设计与应用研究

4. 一种数字货币系统P2P消息传输机制的设计与实现

5. 基于OpenStack开放云管理平台研究

6. 基于OpenFlow的软件定义网络路由技术研究

7. 未来互联网试验平台若干关键技术研究

8. 基于云计算的海量网络流量数据分析处理及关键算法研究

9. 基于网络化数据分析的社会计算关键问题研究

10. 基于Hadoop的网络流量分析系统的研究与应用

11. 基于支持向量机的移动互联网用户行为偏好研究

12. “网络技术应用”微课程设计与建设

13. 移动互联网环境下用户隐私关注的影响因素及隐私信息扩散规律研究

14. 未来互联网络资源负载均衡研究

15. 面向云数据中心的虚拟机调度机制研究

16. 基于OpenFlow的数据中心网络路由策略研究

17. 云计算环境下资源需求预测与优化配置方法研究

18. 基于多维属性的社会网络信息传播模型研究

19. 基于遗传算法的云计算任务调度算法研究

20. 基于OpenStack开源云平台的网络模型研究

21. SDN控制架构及应用开发的研究和设计

22. 云环境下的资源调度算法研究

23. 异构网络环境下多径并行传输若干关键技术研究

24. OpenFlow网络中QoS管理系统的研究与实现

25. 云协助文件共享与发布系统优化策略研究

26. 大规模数据中心可扩展交换与网络拓扑结构研究

27. 数据中心网络节能路由研究

28. Hadoop集群监控系统的设计与实现

29. 网络虚拟化映射算法研究

30. 软件定义网络分布式控制平台的研究与实现

31. 网络虚拟化资源管理及虚拟网络应用研究

32. 基于流聚类的网络业务识别关键技术研究

33. 基于自适应流抽样测量的网络异常检测技术研究

34. 未来网络虚拟化资源管理机制研究

35. 大规模社会网络中影响最大化问题高效处理技术研究

36. 数据中心网络的流量管理和优化问题研究

37. 云计算环境下基于虚拟网络的资源分配技术研究

38. 基于用户行为分析的精确营销系统设计与实现

39. P2P网络中基于博弈算法的优化技术研究

40. 基于灰色神经网络模型的网络流量预测算法研究

41. 基于KNN算法的Android应用异常检测技术研究

42. 基于macvlan的Docker容器网络系统的设计与实现

43. 基于容器云平台的网络资源管理与配置系统设计与实现

44. 基于OpenStack的SDN仿真网络的研究

45. 一个基于云平台的智慧校园数据中心的设计与实现

46. 基于SDN的数据中心网络流量调度与负载均衡研究

47. 软件定义网络(SDN)网络管理关键技术研究

48. 基于SDN的数据中心网络动态负载均衡研究

49. 基于移动智能终端的医疗服务系统设计与实现

50. 基于SDN的网络流量控制模型设计与研究

51. 《计算机网络》课程移动学习网站的设计与开发

52. 数据挖掘技术在网络教学中的应用研究

53. 移动互联网即时通讯产品的用户体验要素研究

54. 基于SDN的负载均衡节能技术研究

55. 基于SDN和OpenFlow的流量分析系统的研究与设计

56. 基于SDN的网络资源虚拟化的研究与设计

57. SDN中面向北向的`控制器关键技术的研究

58. 基于SDN的网络流量工程研究

59. 基于博弈论的云计算资源调度方法研究

60. 基于Hadoop的分布式网络爬虫系统的研究与实现

61. 一种基于SDN的IP骨干网流量调度方案的研究与实现

62. 基于软件定义网络的WLAN中DDoS攻击检测和防护

63. 基于SDN的集群控制器负载均衡的研究

64. 基于大数据的网络用户行为分析

65. 基于机器学习的P2P网络流分类研究

66. 移动互联网用户生成内容动机分析与质量评价研究

67. 基于大数据的网络恶意流量分析系统的设计与实现

68. 面向SDN的流量调度技术研究

69. 基于P2P的小额借贷融资平台的设计与实现

70. 基于移动互联网的智慧校园应用研究

71. 内容中心网络建模与内容放置问题研究

72. 分布式移动性管理架构下的资源优化机制研究

73. 基于模糊综合评价的P2P网络流量优化方法研究

74. 面向新型互联网架构的移动性管理关键技术研究

75. 虚拟网络映射策略与算法研究

76. 互联网流量特征智能提取关键技术研究

77. 云环境下基于随机优化的动态资源调度研究

78. OpenFlow网络中虚拟化机制的研究与实现

79. 基于时间相关的网络流量建模与预测研究

80. B2C电子商务物流网络优化技术的研究与实现

81. 基于SDN的信息网络的设计与实现

82. 基于网络编码的数据通信技术研究

83. 计算机网络可靠性分析与设计

84. 基于OpenFlow的分布式网络中负载均衡路由的研究

85. 城市电子商务物流网络优化设计与系统实现

86. 基于分形的网络流量分析及异常检测技术研究

87. 网络虚拟化环境下的网络资源分配与故障诊断技术

88. 基于中国互联网的P2P-VoIP系统网络域若干关键技术研究

89. 网络流量模型化与拥塞控制研究

90. 计算机网络脆弱性评估方法研究

91. Hadoop云平台下调度算法的研究

92. 网络虚拟化环境下资源管理关键技术研究

93. 高性能网络虚拟化技术研究

94. 互联网流量识别技术研究

95. 虚拟网络映射机制与算法研究

96. 基于业务体验的无线资源管理策略研究

97. 移动互联网络安全认证及安全应用中若干关键技术研究

98. 基于DHT的分布式网络中负载均衡机制及其安全性的研究

99. 高速复杂网络环境下异常流量检测技术研究

100. 基于移动互联网技术的移动图书馆系统研建

101. 基于连接度量的社区发现研究

102. 面向可信计算的分布式故障检测系统研究

103. 社会化媒体内容关注度分析与建模方法研究

104. P2P资源共享系统中的资源定位研究

105. 基于Flash的三维WebGIS可视化研究

106. P2P应用中的用户行为与系统性能研究

107. 基于MongoDB的云监控设计与应用

108. 基于流量监测的网络用户行为分析

109. 移动社交网络平台的研究与实现

110. 基于 Android 系统的 Camera 模块设计和实现

111. 基于Android定制的Lephone系统设计与实现

112. 云计算环境下资源负载均衡调度算法研究

113. 集群负载均衡关键技术研究

114. 云环境下作业调度算法研究与实现

115. 移动互联网终端界面设计研究

116. 云计算中的网络拓扑设计和Hadoop平台研究

117. pc集群作业调度算法研究

118. 内容中心网络网内缓存策略研究

119. 内容中心网络的路由转发机制研究

120. 学习分析技术在网络课程学习中的应用实践研究

数据分析毕业论文选题

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

大数据只是一个时代背景,具体内容可以班忙做

没问题的,按照你的要求来的

***统计方法的应用

毕业论文数据分析选题

如果你想写一篇好论文,最基本、最重要的一点就是选题。如果选定的题目是创新的,有特色的;如果你能写作和创作自己。对于硕士毕业生来说,这可能还是一个麻烦的问题,那么如何选择硕士论文的选题呢?paperfree论文查重网站小编给大家讲解。 一、如何选择硕士毕业论文选题? 1.毕业论文是对过去学习和实践经验的总结,因此论文的主题选择也应该有实际内容,可以让我们发挥和进一步扩展。 2.每年都有很多毕业论文。过于重复的内容往往会使人感到疲劳。因此,在选择主题时,我们应该具有一定的独特性。所选主题不应重复太多,否则也不利于我们的表现。 3.除了创新,还要注意选题的可操作性,即选题是否有能力和写作空间。对于很多人来说,很难在不熟悉的领域发挥自己的优势,所以在选题的时候要尽量选择自己擅长的方向。 二、硕士毕业设计论文选题有哪些方面要求? 1.毕业论文的选题一直注重前沿性、应用性和可行性,要求学生的选题具有实际的应用价值。 2.硕士的培养侧重于培养,需要培养他们的系统研究能力。因此,他们写的论文应该具备数据分析能力。创新应该与应该达到的水平相结合。 3.硕士论文要在学术上分析别人的命题,尽量填补前人研究领域的空白,起到实际作用,要求学生根据自身条件和研究资源调整论文选题难度。

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

内容如下:

1、大数据对商业模式影响

2、大数据下地质项目资金内部控制风险

3、医院统计工作模式在大数据时代背景下改进

4、大数据时代下线上餐饮变革

5、基于大数据小微金融

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

spss数据分析的毕业论文

需要演示结果,用科学的三线表,不用演示计算过程

你的论文的主题已经确定了,怎么写网上也有成熟的范文格式,那么现在最重要的是要有数据,如果没有数据,光有论文格式是没用的,数据方面最好自己设计问卷调查,再用spss分析,网上也有相关数据,不过不一定符合你的要求,最好自己收集,然后针对问题做数据分析,我现在也在做这个论文,正苦于没有数据分析

先逆向数据正向化使得所有数据具有统一的量纲和排序标准然后再倒入SPSS就不会出现你所说的问题啦

可以用独立样本t检验以及one-way anova两个值是没有办法进行检验的两组值可以自行查找上述方法的case吧。。

毕业论文如何分析数据分析

如何利用数据分析工具,对自己的文章进行诊断

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

1、获取数据

获取数据也有两种途径,要么就是手上有的或者是能直接使用到的现成数据,还有一种就是二手数据。现在的数据分析库主要分为了调查数据和政府数据。

2、整理数据

整理数据就是对观察、调查、实验所得来的数据资料进行检验与归类。得出能够反映总体综合特征的统计资料的工作过程。并且,对已经整理过的资料(包括历史资料)进行再加工也属于统计整理。

3、呈现数据

当数据收集充分且真实过后,研究者可运用数据,但要清楚的说明数据来源以及如何对原始的数据进行加工的。需要尽可能的描述获取数据的过程,提供足够多的细节,以便同行能重复研究过程,并保障原生作者的创作性。

相关百科

热门百科

首页
发表服务