只是考试要做而已,平时哪里有用哟.
柯西不等式证明写法如下:
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
相关信息:
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。
把我的看法留给你参考一下吧 第一,不等式表示大小关系。 第二,利用不等式可以进行推理论证。 第三,不等式的极限应用可以推出等量关系。例如夹逼准则。(备注:基础数学原理就是通过不等关系进行研究,添加附加条件从而得出等量关系。同时你也可以从哲学角度剖析,不等式与等式是对立的。)
证明:先证明左边,利用柯西不等式(1/(n+1)+1/(n+2)+...+1/2n)(n+1+n+2+...2n)>=(1+1...+1)^2=n^2=>(1/(n+1)+1/(n+2)+...+1/2n)>=n^2/((3n+1)2n/2)=2n/(3n+1)=2/(3/2+1/n)显然在n=2时2/(3/2+1/n)取最小值,故2n/(3n+1)>=4/7当且仅当1/(n+1)=1/(n+2)...1/2n且n=2取等号,显然是取不到的,故有4/7<1/(n+1)+1/(n+2)+...+1/2n下面证明右边,利用柯西不等式:(1/(n+1)+1/(n+2)+...+1/2n)^2<=(1^2+1^2...+1^2)(1/(n+1)^2+1/(n+2)^2...1/(2n)^2)=n*(1/1/(n+1)^2+1/(n+2)^2...1/(2n)^2)<=n*(1/(n(n+1)+1/(n+1)(n+2)...1/(2n-1)2n)=n*(1/n-1/(n+1)+1/(n+1)+1/(n+2)...+1/(2n-1)-1/(2n))=n(1/n-1/2n)=1/2=>(1/(n+1)+1/(n+2)+...+1/2n)^2<=1/2=>1/(n+1)+1/(n+2)+...+1/2n<=(根号2)/2显然是不可能取等号的,所以右边也成立,故原命题成立,证毕!
柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题:1) 证明相关命题2) 证明不等式3) 解三角形的相关问题4) 求最值(或者范围)每个问题都有详细的例子这里不能打公式,没办法把例子弄出来,你可以到我的空间来看下有一篇文章专门研究 柯西不等式的。
论文答辩是所有大学生都需要经历的毕业程序,想要顺利通过答辩考核,前期的准备是很有必要的,特别是答辩中的提问环节,那么论文答辩问题一般问些什么呢? 1、 你的论文采用了哪些与本专业相关的研究方法? 2、 论文中的核心概念是什么?用你自己的话高度概括。 3、 你选题的缘由是什么?研究具有何种现实指导意义? 4、 论文中的核心概念怎样在你的文中体现? 5、 从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样? 6、 论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么? 7、 质性研究与访谈法、定性研究、定量研究、调查研究、实证研究的区别? 8、 经过你的研究,你认为结果会是怎样?有何正面或负面效果? 9、 你的论文基础何种研究视角?是管理学、教育学、心理学还是社会学视角? 10、 论文研究的对象是个体还是群体?是点的研究还是面的研究? 关于论文答辩问题一般问些什么的相关内容就介绍到这里了。
柯西不等式公式:
√(a^2+b^2)≥(c^2+d^2)。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
一般地,用纯粹的大于号“>”、小于号“,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,…,z)≤G(x,y,…,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
相关信息:
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。
我只知初等数学中:比较大小,求函数定义域,函数单调性,求最值(均值不等式、柯西不等式),求变量(参数)范围,判断一元二次方程有没有实根,求距离(如异面直线距离)。高等数学中还有什么?不太清楚了,呵呵
【柯西不等式的简介】 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的"留数"问题时得到的.但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,并将这一不等式应用到近乎完善的地步。 柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。[编辑本段]【柯西不等式的证法】 柯西不等式的一般证法有以下几种: ■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ■②用向量来证. m=(a1,a2......an) n=(b1,b2......bn) mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2) 这就证明了不等式. 柯西不等式还有很多种,这里只取两种较常用的证法.[编辑本段]【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 ■巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1) 证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。 像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.[编辑本段]【柯西简介】 柯西1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。 他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。 柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础。
分析:柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) ∵a 、b 、c 均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b 、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。 函数的定义域为[5, 9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{ [√(x-5)] ^2 + [√(9-x)] ^2 }=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。[编辑本段]【柯西简介】柯西(Cauchy, Augustin-Louis, 1789-1857),法国数学家,8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。不过并不是他所有的创作质量都很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子相反。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础
柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题:1) 证明相关命题2) 证明不等式3) 解三角形的相关问题4) 求最值(或者范围)每个问题都有详细的例子这里不能打公式,没办法把例子弄出来,你可以到我的空间来看下有一篇文章专门研究 柯西不等式的。
分析:柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) ∵a 、b 、c 均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b 、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。 函数的定义域为[5, 9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{ [√(x-5)] ^2 + [√(9-x)] ^2 }=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。[编辑本段]【柯西简介】柯西(Cauchy, Augustin-Louis, 1789-1857),法国数学家,8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。不过并不是他所有的创作质量都很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子相反。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础
额 可以看一下中等数学2008年第12期和2009年第一期
晕,柯西不等式属于数学里面的一个基础知识,这哪有什么应用前景,研究现状
柯西不等式证明写法如下:
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
相关信息:
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。
柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。函数的定义域为[5,9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{[√(x-5)]^2+[√(9-x)]^2}=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。
1、柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 2、柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
柯西不等式公式:
√(a^2+b^2)≥(c^2+d^2)。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
一般地,用纯粹的大于号“>”、小于号“,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,…,z)≤G(x,y,…,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
相关信息:
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。