两开关管同时开通和关断。同时开通向副边传递能量,同时关断,变压器原边通过开关管的反向并联二极管向输入侧馈电,完成磁复位
双管正激电路的工作原理如下:
双管正激拓扑电路是一种在单端正激拓扑上衍生出来的一种拓扑电路。经过实践证明, 这种拓扑的电路具有电路简单,可靠性高,元器件较单端电路容易选取等特点。是一种非常 优秀的拓扑电路。
改善了变换器的性能。根据大数据分析显示双端正激变换器的双端含义改善了变换器的性能。在开关电源中,供电端的电源,经过一个开关管,在开关管导通期,把矩形波加在一次绕组上,使变压器的一次绕组流过锯齿波,变压器磁芯的磁通量也是按锯齿波增长,此时,在变压器的二次绕组将有矩形波输出,把此矩形波输出经整流二极管和滤波电路输出,这就是单端正激。
天下没有免费的午餐
你好,你这个问题我帮你在大比特论坛发过帖子了,就等待高手提供更详细解答。如果有回答,第一时间通知你,你可以留个邮箱。如果问题比较急,你可以登录论坛然后搜索你的标题看别人的回答也行。
我来回答你的两个问题。(你提出的问题在原书的118页)
这个是原文就麻烦了,误导啊,开关电源的稳压原理确定了输入电压最小时占空比最大,反之亦然。
离合变速器的技术关键就在于双离合,也就是有两个离合器,其中一个负责奇数档(1、3、5、7挡),另一个离合器负责偶数档(2、4、6挡)。可以想象为将两台手动变速箱的功能合二为一,并建立在单一的系统内,它没有液力变矩器也没有行星齿轮组。从齿轮部分乍一看很像一台手动变速器,因为它有同步器,但不同的是它用“双”离合器控制与发动机动力的通断,这两台自动控制的离合器,由电子控制及液压推动,能同时控制两组离合器的运作。
优点:
1.换挡快。双离合变速器的换挡时间非常短,比手动变速箱的速度还要快,只有秒不到。
2.省油。双离合变速器因为消除了扭矩的中断,也就是让发动机的动力一直在利用,而且始终在最佳的工作所以能够大量节省燃油。相比传统行星齿轮式自动变速箱更利于提升燃油经济性,油耗大约能够降低15%。
3.舒适性。因为换挡速度快,所以DCT的每次换挡都非常平顺,顿挫感已经小到了人体很难察觉的地步。
缺点:
1.成本问题。双离合变速器的结构复杂,制造工艺要求的也比较高,所以成本也是比较高的。所以配备双离合变速器的都是一些中高档的车型。
2.扭矩问题。虽然在可以承受的扭矩上,双离合变速箱已经绝对能满足一般的车辆的要求,但是对于激烈的使用还是不够。因为如果是干式的离合,则会产生太多的热量,而湿式的离合,摩擦力又会不够。
3.由于电控系统和液压系统的存在,双离合器变速箱的效率仍然不及传统手动变速箱,特别是用于传递大扭矩的湿式双离合器变速箱更是如此。
双离合变速器有别于一般的自动变速器系统,它基于手动变速器而又不是自动变速器,除了拥有手动变速器的灵活性及自动变速器的舒适性外,还能提供无间断的动力输出。
而传统的手动变速器使用一台离合器,当换挡时,驾驶员须踩下离合器踏板,使不同挡的齿轮做出啮合动作,而动力就在换挡期间出现间断,令输出表现有所断续。
参考资料:百度百科-双离合变速器
安徽自主品牌汽车营销策略研究——基于奇瑞汽车和江淮汽车的对比论汽车金融公司的风险管理——以J汽车金融公司为例电动汽车充电对电网的影响及有序充电研究汽车线控制动系统安全控制技术研究汽车4S店客户满意度分析及改进策略——以杭州骏田汽车有限公司为例3D打印技术在汽车制造与维修领域应用研究比亚迪公司新能源汽车竞争优势和基本竞争战略研究汽车主动悬架容错控制策略研究我国汽车金融发展现状与对策研究南京C汽车4S店盈利能力分析我国汽车制造上市公司并购绩效评价——基于吉利并购沃尔沃案例分析我国新能源汽车产业发展战略研究我国汽车金融业的发展问题研究我国新能源汽车发展的路径和对策研究基于客户行为差异的汽车售后服务推荐研究基于时空双尺度的电动汽车换电站有序充电调度方法电动汽车最优自动变速及能量回馈的控制技术研究我国汽车产业供应链金融服务研究基于两档双离合器自动变速器的纯电动汽车驱动与换档控制技术
前言 随着科学技术的不断进步,汽车工业相应得到了迅速发展。如何快速而平稳地把发动机的动力传递到驱动车轮上,是影响汽车操纵方便性与平顺性的关键之所在,要想解决好这些问题,首先要了解自动变速器技术特别是液力变矩器等相关技术的发展。1.自动变速器技术的发展目前汽车所使用的自动变速器大致可分为三类[1]:一类是由液力变矩器、行星齿轮机构及电液控制系统组成的液力自动变速器[2];一类是由传统固定轴式变速箱和干式离合器以及相应的电-液控制系统组成的电控机械式自动变速器;另一类是无级自动变速器。 液力自动变速器液力自动变速器其基本形式是液力变矩器与动力换挡的旋转轴式机械变速器串联。这种自动变速器的主要优点有[1]:液力变矩器的自动适应性使其具有无级连续变速及变矩能力,对外部负载有自动调节和适应性能,从根本上简化了操纵;液体传动本身特有一定的减振性能,能够有效地降低传动系的尖峰载荷和扭转振动,延长了传动系的寿命;汽车起步平稳,加速迅速、均匀、柔和;提高了乘坐舒适性与行驶安全性;车辆的通过性好。 电控机械式自动变速器这是一种由普通齿轮式机械变速器组成的有级式机械自动变速器。机械式自动变速器是在普通固定轴式齿轮变速器的基础上,把选挡、换挡、离合器操纵及发动机油门操纵由控制器完成,代写毕业论文实现自动变速。基本控制思想是:根据汽车运行状况、路面情况和驾驶员的意图,依据事先制定的换挡规律、离合器接合规律及发动机油门变化规律,对变速器进行最佳挡位判断、离合器动作控制及发动机油门动作控制,实现发动机、离合器及变速器的联合操纵。由于机械式自动变速器是非动力换挡,变速器输出扭矩与转速变化比较大,易造成冲击比较大,以及换挡期间动力中断等缺点,必须对其进行改进,因此提出了扭矩辅助型机械自动变速器和双离合器式机械自动变速器。前者通过辅助齿轮机构来实现,后者使变速器相邻挡位的扭矩传递,分别受控于两个独立的离合器,这样可以实现动力不中断换挡。 机械无级变速器前面提到的两种自动变速器都是有级或分段无级自动变速、无级变速器、带式无级变速器利用由许多薄钢片穿成的钢环,使其与两个锥轮的槽在不同的半径上“咬和”来改变速比,以达到无级变速的性能。它克服了前面两种自动变速器固有的齿轮传动比不连续和零件数量过多的缺点,具有传动比连续、传递动力平稳、操纵方便等特点,实现了无级变速。由于CVT 是摩擦传动,导致效率低,所使用的传动链制造技术难、加工精度要求较高,使用的材质要求更高,维修更是困难,对这些难点仍在继续攻关中。 液力变矩器+AMT 的自动变速器将液力变矩器(TC)与固定轴机械式齿轮变速器(AMT)组合[2],得到一种新型的自动变速系统,即:TC+AMT。TC 与AMT 共同工作,不但具有AT 的优点,大大提高了军车的通过性、越野性操纵方便性,而且具有成本低与易制造的特点。在保证汽车动力性、燃油经济性、操纵方便性等特性外,还可以实现发动机、液力变矩器和机械式自动变速器合理匹配,找到最佳工作点,达到总体效果最佳,不仅越野性、通过性好、操纵方便,而且使影响乘坐舒适性的冲击度最小,具有良好的乘坐舒适性。是一种具有良好发展前途的自动变速器,世界各国正致力于此项技术的研究和开发。 带闭锁与滑差的TC+AMT 的自动变速器液力变矩器具有的起步平稳、减振、通过性和乘坐舒适性好等优越性能,但最大的缺陷是效率低,为了提高液力变矩器的传动效率,而采用了闭锁与滑差技术。它是指在液力变矩器的泵轮与涡轮之间,安装一个可控制的离合器,当汽车的行驶工况达到设定目标时,控制离合器将泵轮与涡轮按设定的目标转速差传动(即滑差控制)或锁成一体(即闭锁控制),液力变矩器随之变为半刚性或刚性传动,这样做一方面提高传动效率[4]。闭锁后消除了液力变矩器高速比时效率的下降,理论上闭锁工况效率为1,从而使高速比工况效率大大提高;另一方面,在液力传动向机械传动转换过程中,由于采用滑差控制,不但扩大了液力变矩器的高效率范围,而且可以使传动系从液力传动平稳地过渡到闭锁后的刚性传动,特别是在闭锁开始和闭锁低速阶段,可以吸收由于闭锁产生的部分振动和冲击,按照滑差和闭锁的控制规律,使得涡轮转速逐步接近泵轮,大大减少了冲击和振动,使得乘坐舒适性得以提高。2.带有闭锁与滑差控制的液力变矩器结构特点 液力变矩器结构的方案分析图1 液力变矩器方案一 图2 液力变矩器方案二 以某公司开发的带有闭锁与滑差控制的某大型汽车液力变矩器结构简图如图1和图2所示,二者是原理相同而结构形式相异的两种液力变矩器。对于图1所示结构[5]:在液力传动时,在分离离合器后,AMT 自动变速器输入轴的转动惯量由涡轮、闭锁离合器、涡轮法兰、涡轮轴等部件的惯量组成。而原车此时的转动惯量仅为原干式离合器的从动盘和变速器一轴的惯量,新系统的转动惯量为原车的4倍。这将延长换挡时同步器接合时间,大大地影响了换挡品质的提高。图中:1 为闭锁离合器,2 为换挡离合器;对于图2所示结构[6]:在液力传动时,AMT 自动变速器输入轴的转动惯量由换挡离合器的从动片、涡轮轴、花键轴等组成。这种布置使转动惯量想比与手动装置大大的减少,而且减少了同步器的接合惯量,这不仅有利于AMT 换挡,具有工作平稳、寿命长等特点,有利于提高换挡品质,而且更加巧妙地将闭锁离合器1布置于涡轮同一侧,使得方案二的结构紧凑。 闭锁与滑差的控制(1)闭锁与滑差控制系统的液压原理图4 电控系统示意图 实现闭锁与滑差控制的动力源是液压控制系统所提供的系统压力,根据闭锁与滑差控制系统的工作原理和要求。在何时采取液力传动、滑差控制的半刚性传动还是闭锁控制的刚性传动,完全由各电磁阀综合控制的系统油压P1和P2的压差(P1-P2)来决定。(2)闭锁与滑差电控系统根据动态三参数控制理论,在保证TC+AMT 自动变速器的换挡品质的前提下,根据在线所采集的数据,监控车辆的行驶状态,按照特定控制程序和规定的换挡规律,代写毕业论文实现闭锁与滑差的精确控制。具体电控系统方块图如图4所示。有了良好的带有闭锁与滑差控制的TC+AMT 自动变速器硬件,先进的控制技术来怎是确保它的优越性能实现的根本保证。总之,开展液力变矩器的研究是提高自动变速器技术的重要环节。参考文献:1.葛安林 车辆自动变速理论与设计 北京:机械工业出版社19912. 葛安林 自动变速器(二)—液力变矩器 汽车技术 2001(6)3.马文星 液力传动在汽车上的应用与展望 汽车技术 1991(2)4.过学迅 汽车自动变速器 北京:机械工业出版社出版1999(1)5.朱经昌等 车辆液力传动 北京:国防工业出版社1983(1)6.朱经昌等 液力变矩器的设计与计算 北京:国防工业出版社1991(1)
双离合变速箱的工作原理可以简单理解为一个离合器对应奇数挡,另一离合器对应偶数挡。当车辆挂入一个挡位时,另一个离合器及对应的下一个挡位已经位于预备状态,只要当前挡位分离就可以立刻接合下一个挡位,因此双离合变速箱的换挡速度要比一般的自动变速箱甚至手动变速箱还快。此外双离合变速箱虽然内部复杂,但实际体积和重量相比自动变速箱而言并没有比手动变速箱增加多少,因此装备双离合变速箱的车型不会为自己平添过多的负担。
双离合变速器的优势:它的基本原理与手动变速器一致,都是齿轮与齿轮之间的传动,效率高,油耗低(可以做到比手动挡更低),同时两组离合器的设计让换挡更为迅速,几乎感觉不到动力的中断,衔接快速。
劣势:双离合的加工工艺是比较复杂的,成本不低(尤其是使用湿式双离合时),它在汽车起步阶段与手动挡一样存在半联动状态,此时就需要离合器片有足够的抗磨损性能(大众的7挡干式离合器变速器就是缺乏这个性能)
大众力推双离合的初衷是好的(该技术当年确实领先其他品牌),能节省燃油,同时让驾驶者感受到更加淋漓尽致的加速快感,但是为了节约成本,其7挡干式离合器变速器并不能完全适应中国的拥堵路况。高配车型上的6挡湿式双离合还是比较稳定的。
相关拓展:
双离合变速器(Dual Clutch Transmission) DCT有别于一般的自动变速器系统,它基于手动变速器而又不是自动变速器,除了拥有手动变速器的灵活性及自动变速器的舒适性外,还能提供无间断的动力输出。
你好,一种是离合器打滑,需更换离合器片。一种是挡杆松旷,没挂到位,需检修
检查一下离合器,看看是不是一直处于分离状态。
变速器换挡叉又叫拨叉,作用是拨动同步器齿环,以实现各前进档齿轮的结合与分离,倒档齿轮无同步器,拨叉直接拨动倒档齿轮,以达到切换倒档。
作为汽车变速箱上的重要部件,拨叉与变速手柄相连,位于手柄下端,拨动中间变速轮,使输入/输出转速比改变。
拨叉是用于变速的,主要用在操纵机构中就是把2个咬合的齿轮拨开来再把其中一个可以在轴上滑动的齿轮拨到另外一个齿轮上以获得另一个速度。即改变变速箱内部齿轮的位置,实现变速。
扩展资料:
简单式变速器有效率高、构造简单使用方便的优点,但档数少,i变化范围小(牵引力、速度范围小),只宜在档数不多的某些车工采用。若增加i的范围,则使变速器尺寸加大,轴跨度增加,为了既增加档数又不使轴跨度过大,可采用组成式变速器。
所谓组成式变速器,通常由两个简单式变速器组合而成,其中档数较多的称为主变速器,较少的称为副变速器。
当发现某档掉档时,仍将变速杆推入该档,然后拆下变速器盖,察看齿轮啮合情况。若齿轮啮合良好,则故障在换档机构。用手推动跳档的换档叉试验其定位装置。如果定位不良,需拆下换档叉轴,检验定位球及弹簧。
如果齿轮未完全啮合,用手推动掉档的齿轮或齿套,能正确啮合,应检查换档叉是否弯曲或磨旷,换档叉固定螺丝有无松脱,叉端与齿轮槽间隙是否过大。若是换档良好,而齿轮或齿套又能完全啮合时,应检查齿轮是否磨成锥形、轴承是否松旷、变速轴是否前后移动。
参考资料来源:百度百科-变速器
参考资料来源:百度百科-拨叉
加减各挡齿轮
电源开关开关电源是相对线性电源说的。他输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。在电感(高频变压器)的帮助下,输出稳定的低压直流电。由于变压器的磁芯大小与他的工作频率的平方成反比,频率越高铁心越小。这样就可以大大减小变压器,使电源减轻重量和体积。而且由于它直接控制直流,使这种电源的效率比线性电源高很多。这样就节省了能源,因此它受到人们的青睐。但它也有缺点,就是电路复杂,维修困难,对电路的污染严重。电源噪声大,不适合用于某些低噪声电路。所谓开关式电源,就是通过用电子线路组成开关式(方波)震荡电路来达到对电能的转换. 这种方式有好多优点,一是稳压范围宽,在一定范围内输出电压与输入电压变化无关,电脑电源可以在80V-240都可以正常工作,是其它方式电源无法比拟的。二是效率高,由于采用开关震荡工作方式,热损耗特别少,发热低。三是结构简单,相对于其它相同功率的电源,开关电源的体积与重量要少得多。因此,在众多的电子设备中,开关式电源已经是相当普遍。 所谓开关电源,是指开关电源中的调整管工作在截止区和饱和区。调整管截止时,相当于机械开关的断开,调整管饱和时,相当于机械开关闭合。这种起开关作用的三极管就叫开关管,而用开关管来稳定电压的电源,就称之为开关型稳压电源。开关式电源:是调整元件工作在开关状态的稳压电源.调整元件通常采用晶体管\可控硅\磁开关等. 特点:体积小,稳压范围宽,效率高,但结构复杂,电源噪声大.输出电压为矩形脉冲电压.所以,不能使用在高要求的线性电源上.开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50HZ变为高频那开关电源就没有意义 开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; 一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源. 主要用于工业以及一些家用电器上,如电视机,电脑等开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50HZ变为高频那开关电源就没有意义!!开关变压器也不神秘.就是一个普通的变压器!这就是开关电源. 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. 简单地说,开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; 一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源. 以上说的就是开关电源的大致工作原理. 其实现在已经有了集成度非常高的专用芯片,可以使外围电路非常简单,甚至做到免调试. 计算机开关电源的发展经过了AT、ATX、ATX12V三个发展阶段。AT标准是由IBM早期推出PC/AT机时所提出的,提供+5V、-5V、+12V、-12V四组电压,具备硬开关。ATX标准的产生具有划时代的意义,实现了软开机关机,可以通过远程网络唤醒,增加了+、+5VSB输出。ATX12V是CPU等硬件发展的产物,主要是增加了+12V的输出能力。
国内外开关电源发展状况,主要表现在以下几个方面。1. 高性能碳化硅(SiC)功率半导体器件可以预见,碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料,其优点是:禁带宽,工作温度高(可达600°C),通态电阻小,导热性能好,漏电流极小,PN结耐压高等等。2. 高频磁技术高频开关变换器中用了多种磁元件,有许多基本问题要研究。(1)随着开关电源的高频化,在低频下可以忽略的某些寄生参数,在高频下将对某些电路性能(如开关尖峰能量、噪声水平等)产生重要影响。尤其是磁元件的涡流、漏电感、绕组交流电阻Rac和分布电容等,在低频和高频下的表现有很大不同。高频磁技术理论作为学科前沿问题,仍受到人们的广泛重视,如:磁心损耗的数学建模,磁滞回线的仿真建模,高频磁元件的计算机仿真建模和CAD、高频变压器一维和二维仿真模型等。有待研究的问题还有:高频磁元件的设计决定了高效率开关电源的性能、损耗分布和波形等,人们希望给出设计准则、方法、磁参数和结构参数与电路性能的依赖关系,明确设计的自由度与约束条件等。(2)对高频磁性材料有如下要求:损耗小,散热性能好,磁性能优越。适用于兆赫级频率的磁性材料为人们所关注,如5~6µm超薄钴基非晶态磁带,1MHz(Bm=)时,损耗仅为,是MnZn高频铁氧体的1/3~1/4。纳米结晶软磁薄膜也在研究。(3)研究将铁氧体或其他薄膜材料高密度集成在硅片上。或硅材料集成在铁氧体上,是一种磁电混合集成技术。磁电混合集成还包括利用电感箔式绕组层间分布电容实现磁元件与电容混合集成等。3. 新型电容器研究开发适合于功率电源系统用的新型电容器和超级大电容。要求电容量大、等效电阻(ESR)小、体积小等。据报道,美国在20世纪90年代末,已开发出330µF新型固体钽电容,其ESR有显著下降。4. 功率因数校正AC-DC开关变换技术一般高功率因数AC-DC电源由两级组成:在DC-DC变换器前加一级前置功率因数校正器,至少需要两个主开关管和两套控制驱动电路。这样对于小功率开关电源说,总体效率低、成本高。对输入端功率因数要求不特别高的情况,用PFC和变换器组合电路构成小功率AC-DC开关电源,只用一个主开关管,可使PF校正到以上,称为单管单级PF校正AC-DC变换器,简称为S4。例如一种隔离式S4PF校正AC/DC变换器,前置功率因数校正器用DCM运行的Boost变换器,后置电压调节器主电路为反激变换器,按CCM或DCM运行;两级电路合用一个主开关管。5. 高频开关电源的电磁兼容研究高频开关电源的电磁兼容问题有特殊性。通常,它涉及到开关过程产生的di/dt和dv/dt,引起强大的传导型电磁干扰和谐波干扰。有些情况还会引起强电磁场辐射。不但严重污染周围电磁环境,对附近的电气设备造成电磁干扰,还可能危及附近操作人员的安全。同时,开关电源内部的控制电路也必须能承受主电路及工业应用现场电磁噪声的干扰。由于上述特殊性和测量上的具体困难,专门针对开关电源电磁兼容的研究工作,目前还处于起始阶段。显然,在电磁兼容领域,存在着许多交叉科学的前沿课题有待人们研究。如:典型电路与系统的近场、传导干扰和辐射干扰建模;印制电路板和开关电源EMC优化设计软件;低中频、超音频及高频强磁场对人体健康的影响;大功率开关电源EMC测量方法的研究等。6. 开关电源的设计、测试技术建模、仿真和CAD是一种新的、方便且节省的设计工具。为仿真开关电源,首先要进行仿真建模。仿真模型中应包括电力电子器件、变换器电路、数字和模拟控制电路,以及磁元件和磁场分布模型,电路分布参数模型等,还要考虑开关管的热模型、可靠性模型和EMC建模。各种模型差别很大,因此建模的发展方向应当是:数字-模拟混合建模;混合层次建模;以及将各种模型组成一个统一的多层次模型(类似一个电路模型,有方块图等);自动生成模型,使仿真软件具有自动建模功能,以节约用户时间。在此基础上,可建立模型库。开关电源的CAD,包括主电路和控制电路设计、器件选择、参数优化、磁设计、热设计、EMI设计和印刷电路板设计、可靠性预估、计算机辅助综合和优化设计等。用基于仿真的专家系统进行开关电源的CAD,可使所设计的系统性能最优,减少设计制造费用,并能做可制造性分析,是21世纪仿真和CAD技术的发展方向之一。现在国外已开发出设计DC-DC开关变换器的专家系统和仿真用MATSPICE软件。此外,开关电源的热测试、EMI测试、可靠性测试等技术的开发、研究与应用也是应大力发展的。7. 低电压、大电流的开关电源开发(1)低电压、大电流的开关变换器的要求数据处理系统的速度和效率日益提高,新一代微处理器的逻辑电压低达,而电流达50~100A,其供电电源——低电压、大电流输出DC-DC变换器模块,又称为电压调整器模块(VRM)。新一代微处理器对VRM的要求是:输出电压很低,输出电流大,电流变化率高,响应快等。①为降低IC的电场强度和功耗,必须降低微处理器供电电压,因此VRM的输出电压要从传统的3V左右降低到小于2V,甚至1V。②运行时,电源输入电流>100A,由于寄生L、C参数,电压扰动大,应尽量减小L。③微处理器起停频繁,不断从休眠状态启动,工作,再进入休眠状态。因此要求VRM电流从0突变到50A,又突降到0,电流变化率达5A/ns。④设计时应控制扰动电压≤10%,允许输出电压变化±2%。(2)采用波形交错技术线路的寄生阻抗、电容的ESR和ESL对VRM在负载变化过程中的电压调整影响很大。必须研制高频、高功率密度和快速的新型VRM。现在已有多种拓扑问世,如:同步整流Buck变换器(用功率MOS管替代开关二极管);为防止电流大幅度变化时由于高频寄生参数引起输出电压扰动,有文献介绍采用多输入通道或称多相DC-DC变换器,应用波形交错(Interleaving)技术,保证VRM输出纹波小,改善输出瞬态响应,并可减小输出滤波电感和电容。 (3)电压纹波与冲击电压问题①电压纹波与ESR。对于电压在1V以下、电流在100A以上的负载,其负载电阻在10mΩ以下,低于滤波电容的内部等效串联电阻,会出现电压纹波问题。现在,假设可以通过升降压或升压型变换器实现这种电源,但流过电容的纹波电流在100A以上,效率小于50%。对此,降压型变换器中含有串联滤波电感,可抑制纹波电流。但是,负载电阻与ESR相当,纹波电流分别流过电容和负载,其动作模式和目前的滤波电路不同。为探讨纹波电压动作模式,首先给出等效电路进行仿真。仿真中根据Crc的值,有四种动作模式的纹波电压。电压纹波值与rc/R的变化关系曲线,也有四种动作模式,C越大,纹波率就越小。为进一步降低低压大电流输出电压纹波,即减小滤波电容ESR值,必须采取一定的方法和策略。②负载突变引起的冲击电压。对于数字电路的负载,为快速响应各种模式的转换,输出电压相应于负载变化的瞬态响应特性就显得非常重要。此时,如果电流的变化率大,冲击产生时间比开关周期Ts短,则很难期待由反馈而带来的输出电压稳定效果。目前技术还没有办法,正处于仿真研究阶段。(4)探寻省略滤波电容的可能性如果因负载急变引起输出电压波动,波动持续时间超过开关周期的话,通过反馈可在一定程度上进行调整,LC滤波电路对此电压调整效果起决定作用。为达到电压调整目的,必须提高开关频率,减小L和C值,让截止频率尽量向高域端延伸。有人考虑用两个非对称逆变器(带变压器)输出双相方波,每个逆变器的输出电压通过半波整流接向共同的负载,将截止频率延伸至高域端。开关频率由MOSFET的开关时间所决定,为了提高开关效率,使超过其极限值,在实用中可采用多相开关方式等效提高开关频率的方法。但是,相数也有限制。另外,变化的原因仅在于负载一侧,让截止频率尽量低也非常有效。为达到此目的,使用电气双层电容滤波器可能是今后的发展方向。当然,为此必须考虑怎样同时降低双层电容器的等效串联电阻和等效串联电感。(5)便携式设备与燃料电池对于手提电脑、手机、数码相机等便携式电器,电源是出问题最多的部分。便携式设备的电源一直以来是传统电池的天下,传统电池在轻便与长时使用性方面,还不能充分满足用户的要求。为此,由固体高分子材料构成的燃料电池最近引起了大家的关注。燃料电池是以甲醇为燃料,铂为催化剂,其构造为电极间夹电解质膜,能量密度可做到锂电池的10倍。100°C以下的工作温度包括在常温下可以发电,单节电压大概为1~2V。本来用氢作燃料最理想,但从实用出发,用甲醇和铂催化剂的组合较方便。不过其对于负载变化的跟随性有问题,因此为保护电极,需要与电容组合使用。燃料电池的优点是维护方便,可长时间使用。电能不足时,仅补充燃料即可,不需要长时间充电。以上就低压、大电流开关电源为中心,对开关电源的未来技术发展方向进行了论述。按照摩尔定律,每18个月IC的集成度会增加2倍,因此很难断定电压会降低到何种程度为止。如果这种趋势无限制的持续下去,可以预想对电源的要求会越来越高。要满足这些要求,首先以开发新的半导体和电容为前提,另外从电路角度来建立元器件微细结构模型也可能成为解决问题的关键点。因此,今后在各种层面上打破学科界线进行协同研究的必要性会越来越高。8. 低电压、大电流DC-DC变换器模块
电力电子技术的发展与展望研究作者:王娟武 班级:机设0918 专业:机电设备维修与管理 学号:0918316 学院:安徽水电学院 日期:2010年12月当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。�现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。一..电力电子技术的发展历史1. 整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。2. 逆变器时代七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。3. 变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。2. 现代电力电子的应用领域 计算机高效率绿色电源高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 通信用高频开关电源通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/、48V/20A扩大到48V/200A、48V/400A。因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 直流-直流(DC/DC)变换器DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。 不间断电源(UPS)不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有、lkVA、2kVA、3kVA等多种规格的产品。 变频器电源变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。 高频逆变式整流焊机电源高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。 大功率开关型高压直流电源大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到以上,功率可达100kW。自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。 国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为。 电力有源滤波器传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有。电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。二..现代电力电子技术在电力系统中的应用1. 发电环节电力系统的发电环节涉及发电机组的多种设备 ,电力电子备的应用以改善这些设备的运行特性为主要目的。(l)大型发电机的静止励磁控制静止励磁采用晶闸管整流自并励方式具有结构简单 、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。(2)水力、风力发 电机的变速恒频励磁水力发电的有效功率取决干水头压力和流量,当水头的变化幅度较大时 (尤其是抽水蓄能机组) ,机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。(3)发电厂风机水泵的变频调速发电厂的厂用电率平均为 8%,风机水泵耗电量约占火电设备总耗电量的6 5%且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。2. 输电环节电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改 善了电力网的稳定运行特性。(1)直流输电 ( HVDC)和轻型直流输电( HVDC L i g ht )技术 直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。l 9 7 0年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。(2)柔性交流输电 ( FACTS)技术 FA CTs技术的概念问世20世纪8 0 年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压 及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪9 0年代以来,国外在研究开发的基础上开始将FA CTS技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。3. 配电环节配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率 、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力 ( Cu s t o m Po we r ) 技术或DFACTS技术,是在F ACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以DFACTS设备理解为F AC TS 设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着 电力电子器件价格的不断降低,可以预期D F A C TS设备产品将进入快速发展期。三.电力电子技术的发展展望1. 新型电力电子器件在用新型半导体材料制成的功率器件中,最有希望的是碳化硅(SiC)功率器件。它的性能指标比砷化镓器件还要高一个数量级。碳化硅与其它半导体材料相比,具有下列优异的物理特点:高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数,以及高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合下是极为理想的半导体材料。在同样的耐压和电流水平下,SiC器件的漂移区电阻仅为硅器件的1/200,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的低得多。而且,SiC器件的开关时间可达10ns量级,并具有十分优越的FBSOA。SiC可以用来制造射频和微波功率器件、各种高频整流器、MESFETs、MOSFETs和JFETs等。SiC高频功率器件已在Motorola开发成功,并应用于微波和射频装置。GE公司正在开发SiC功率器件和高温器件(包括用于喷气式引擎的传感器)。西屋公司已经制造出了在26GHz频率下工作的甚高频的MESFET。ABB公司正在研制高功率、高电压的SiC整流器和其它SiC低频功率器件,用于工业和电力系统。理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。可是,SiC材料和功率器件的机理、理论、制造工艺均有大量问题需要解决,它们要真正给电力电子技术领域带来又一次革命,估计还需要至少10年左右的时间。2. 新能源电力电子技术在新能源发电技术和电能质量控制技术及节能技术方面有很广阔的发展间。其中风力发电和太阳能发电最受关注,而电力电子技术正是风力发电和太阳能发电的核心技术之一,这给电力电子工程师提供了千载难逢的发展机遇 ,广大 电力电子工程师务可以住这一机遇乘势而上,促进电力电子技术的发展。同时,由于一方面电力电子装置和电弧炉等装置的的大量应用,使得电能质量日益下降,另一方面用 户对电能质量的要求越来越高人们对以有源电力滤波器为代表的电能质量控制装置日益重视,研究开发越来越多。此外,由于电力系统电动机(约占发电量的6 0 % 以上 ) 和照明电源( 约占发电量的 1 0~1 5 %的大量采用,电力电子装置对无功功率和电力谐波都可有很好的补偿作用,因此,电力电子技术被称为节能的技术。目前,由于化石能源日渐枯竭,因此 ,电力电子技术在节能方面受到很大程度的重视,并且发展十分迅速。3. 电动车辆中国人多地大石油少,现在中国每年已进口许多石油。在21世纪前半叶,地球上的石油天然气资源日益减少,以至早晚会用尽。特别在中国国情下,城市交通以发展电动车辆为主是必然的趋势。大城市间的磁悬浮列车、城市内的电动高架列车和地铁列车、个人用电动自行车和电动汽车将构成未来的交通网络的主角。其中,大有电力电子产品的用武之地。磁悬浮列车的磁悬浮电源和直线电动机的变频调速;城市高架列车和地铁列车中异步电动机的变频调速;电动自行车和电动汽车中永磁无刷电机的外转子调速,在今后十年里会有很大的发展。这里,电动自行车和电动汽车的普及必须解决无刷电机及其控制器、环保电池、快速充电器和充电站网络服务等几方面的问题。现在看来,在中国推广电动自行车替代摩托车作为代步工具技术上正在趋于成熟。这里必须采用镍-氢电池组和锂离子电池组,消除常规铅-酸电池对环境的污染。这种价格尚偏贵的电池组可以采用向电动自行车用户出租使用的方式,实行由间距合理的电池充电站统一充电和用户自行充电相结合的办法。铅-酸电池与锂离子电池(如36V,10AH)相比,前者重12 kg,后者仅 kg。电动汽车的发展又是电力电子未来的潜在大市场。首先是高能量密度的清洁电池的突破。比较有希望的是燃料电池,它的起动和稳定运行都要用电力电子产品与之配套。其牵引系统方案中令人最感兴趣、并已有工业应用前景的,要属安装在四个车轮中的外转子盘式永磁无刷直流电动机驱动了。这种电机结构的优化设计、高性能控制调速传动,以及四台电机转动的协调运转,将为电动汽车的舒适运行,零半径转弯提供技术保证。今后十年将是电动汽车实用化发展的关键时期,电力电子产业可以也应该为此做出相应的研究开发工作,积极迎接这个庞大市场的到来。结束语:电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的各个工业部门。毫无疑问,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。参 考 文 献(1)林渭勋. 浅谈半导体高频电力电子技术.电力电子技术选编,浙江大学,1992(384-390)(2)付宇明 张辉. 电力电子技术在电力系统中的应用.信息技术,2000(162)(3)王兆安. 我国电力电子技术的新进展..逆变器世界,2008(32)(4) 陈虹. 电气学科导论. 北京:机械工业出版社,2005