首页

> 学术期刊知识库

首页 学术期刊知识库 问题

纳米机器人论文参考文献

发布时间:

纳米机器人论文参考文献

文/呱呱鸟 现在人工智能领域的研究比较时髦,社会上的大量人力、物力都在往这方面投入,技术水平突飞猛进。估计再过二十年,将出现可以实际运用的人工智能纳米机器人。这些设想在八十年代的时候只是梦想,1987年,美国的科幻影片《惊异大奇航》获得第60届奥斯卡金像奖。 在这部片子中,就出现缩微的飞行器,称之为“阿尔法计划”,这个飞行器有多“微型”呢,它居然可以进入人的身体之中。 就像孙悟空进入铁扇公主的肚子里,可以在人的五脏六腑中转悠,这些梦想如今已经开始变成现实。预计人工智能纳米机器人,在20年左右的时间就可以进入成熟运用阶段,可以植入人的身体,在医学领域的运用将会非常广泛。 这些纳米级的机器人,可以帮助医生诊断疾病,同时可以治疗相应的病灶,修复破损的机体,也可以对人体的骨骼和肌肉进行再造。 纳米级的尺寸就可以进行细胞分子的手术,甚至可以在原子量级的组织中进行重新构造。 这就是合成生物学的概念,比如,可以治疗动脉硬化,可以处理一个个的癌细胞,精准治疗各种疑难杂症。 纳米级的机器人外形就像大肠杆菌一样,可以无处不在。纳米机器人依靠尾部的“鞭毛”旋转运动,实际上就是一个极其微型的马达驱动装置,所消耗的能量极小。 在能量消耗殆尽之后,可以随着人体的排泄物离开躯体,制造成本就是一个芯片和驱动器。 这是纳米生物学的重大突破,目前,第一代的纳米机器人是生物与机械的结合,未来机械的成分会越来越低。 纳米化之后,就可以很容易地注入人体的血管中,在动脉、静脉和心脏等器官中作业,心脏搭桥和支架就成为过时的玩意。 最要命的是可以进行基因的检测与修复,把有害的DNA进行剔除,也可以搭建新的DNA,想想都可怕,人的寿命会极度延长。如果把纳米级的设备植入人的大脑,将会把一个正常的人转化成为“半机器人”,以后,我们的身体里就会自带一大堆的“设备”。 发展的方向就是“人机一体化”,机中有人,人中有机。 机中有人早就已经做到,比如,坦克和飞机就是在机器设备中装上人,人的能力就变得非常强大。 如果把人的里面装上机器呢,只会变得更加强大。关键是一旦人脑中装上了机器,思维方式会不会发生改变呢,答案是肯定的,这种超级人类就会用超级的智力改变世界。 可以定义,超级人类是一种新型的机器人,是被机器控制的人类,超级人类如果再发明出点什么更厉害的东西,我们就无法控制了。 这已经涉及到技术进步与伦理之间的矛盾,虽然这些技术目前还控制在实验室之内,人们已经担忧其安全保障问题。 机器之间是可以相互学习的,其智力的发展速度和未来可能达到的程度,都是我们不可能想象的。 据说,科学家居然发现实验室中有两个机器人在对话,它们正在探讨如何控制地球与人类。人工智能下一步怎么发展,设备的微型化产生出的纳米级机器人,虽然可以为我们治疗疾病,延长寿命,但是负作用同时出现。 但愿这些都是危言耸听,技术的安全性和伦理道德问题,应该提到我们的议事议程。

2007 纳米技术给我们带来了哲学摘要:纳米技术是指在纳米尺度的物质正在准备,研究和工业陶瓷材料的产业化和利用纳米材料的研究和产业化跨越综合技术体系。纳米技术的发展扩大人类认识微观世界的能力,你可以探索微观尺度上的神秘男子和世界。另一方面,我们也应该看到纳米技术应用不当带来的灾难,本文总结了纳米技术成果的基础上的哲学辩证思维运用纳米技术危害。 关键词:纳米技术的哲学思考解决方案1文本纳米技术及其成就1 .1什么是纳米技术纳米namometer是英文的音译,是一个物理的计量单位,一纳米是一米的十亿分之一,相当于45个原子排列起来的长度。通俗点说,相当于万分之一的人的头发丝的厚度。就像毫米,微米,纳米尺度的概念,并没有物理意义。当物质到纳米尺度后,这个范围是1-100纳米的空间,材料性能就会发生突变,也有特殊的性质。这是两个不同的原子,分子,也不同于宏观性质的材料组合物的特定的材料,即纳米材料从原来的组合物。如果只有在纳米尺度,并没有特殊性能的材料,不能被称为纳米材料。在过去,人们只注意原子,分子或空间,而往往忽略了中间的领域,这一领域实际上是丰富的性质,但以前不知道这个尺度范围的性能。纳米尺度性能的小尺寸效应,表面积效应,量子尺寸效应。的第一个实现,它的性能并引用纳米概念的是,日本科学家,他们是在20世纪70年代与超微离子蒸发的方法,和其性能通过研究发现,:一个导电,导热的铜,银导体做后纳米尺度,也就失去了其原有的性质,显示出既不导电,也不导热系数。磁性材料,也类似的铁 - 钴合金中,使约20-30纳米的大小,磁畴变成单磁畴,它是比原来的磁高1000倍。 20世纪80年代中期,人们这种材料正式命名为纳米材料。 &NBS工艺陶瓷模具P; 纳米技术纳米技术是指以至100纳米纳米材料研究领域是最有活力未来的经济和社会发展具有非常重要的影响的研究对象,但也是最积极在纳米技术,最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了令人瞩目的成就。例如,存储密度每平方厘米的磁量子磁盘纳米棒阵列,低成本,高效率的发光纳米波段可调谐激光器阵列,价格低廉的高能量转换纳米结构太阳能电池和热电转换元件,400克一个轨道炮道轨烧蚀的高强度和高韧性纳米复合材料的出现,它表明它是一个新的支柱产业,在国民经济和高科技领域的应用潜力。正如美国科学家估计,“这个微小的隐形人可能给物质在各个领域带来了一场革命。”纳米材料和纳米结构的应用将如何调整国民经济的支柱产业的布局,设计新产品,形成新的产业和高新技术改造传统产业进入了新的机遇。纳米材料和纳米结构的重要科学意义在于它开辟了一个新的水平的性质的认识,是知识创新的源泉。由于纳米尺度的结构单元(1100urn)和许多材料的特征长度,如电子的De布鲁奥预定的波长,超导相干长度,隧穿势垒的厚度,强磁性的相当关键的尺寸,从而导致纳米材料和纳米结构的物理和化学性能是不同的,从微观的原子,分子,也不同于宏观物体,从而把人们探索自然,创造知识的能力延伸到宏观和微观之间的物体之间的中间领域。纳米材料的诞生状态多年来在各个领域所取得的成就的影响和渗透一直引人注目。在20世纪90年代,纳米材料的内涵扩大的领域逐步拓宽。一个突出的特点是基础研究和应用研究的衔接非常紧密,实验室成果转化速度之快出乎人们期望,基础研究和应用研究已取得重要进展。 4纳米技术产业的发展趋势(1)信息产业中的纳米技术:信息产业不仅在国外,在中国也占有举足轻重的地位。 2000年,中国的信息产业创造了gdp5800亿元。纳米技术在信息产业的应用主要表现在三个在我的眼里纳米方面:①网络通信,宽带网络通信,纳米结构器件,芯片技术和高清晰度数字显示技术的论文。因为不管通讯,集成或显示,原器件,美国已经工作,现在是一个单一的电子设备,隧道电子器件,自旋电子器件,该设备已在实验室研制成功,并可能在2001年年进入市场。 ②光电子器件,分子电子器件,巨磁电子器件,我国仍落后在这方面,但这些原始设备进入商品市场,甚至10年,所以中国到15年至20年这方面的研究提前。 ③关键纳米网络通信设备,如网络通信激光器,滤波器,谐振器,微电容,微电极等,我们的研究水平并不落后,仅安徽省。 ④压敏电阻,非线性电阻等,可以进行,添加氧化锌纳米材料。 (2)环保产业在纳米技术:纳米技术在空气中20纳米和200纳米的水污染物是不可替代的技术。要清理环境,我们必须使用纳米技术。现在,我们已经成功地制备甲醛,氮氧化物,一氧化碳可降解的移动设备,使超过10ppm的有害气体降低到的空气,该装置已进入实用化阶段的生产;使用多孔小球的组合光催化纳米材料已成功地用于有机废水降解苯酚和其他传统技术难以降解有机污染物,具有良好的降解效果。近年来,许多公司都致力于光催化纳米技术处理等行业,并改善水质,已初见成效,稀土氧化铈纳米组合技术和贵金属加工设备,汽车尾气的效果很明显的转变,治理在淡水藻类污染所造成的近期初步研究已成功地在实验室里。 (3)能源与环保纳米技术:合理利用传统能源和新能源的发展是我们当前和今后的一项重要任务。在传统能源的合理利用,现在主要是清除剂,促进剂,使煤燃烧,燃烧他们从流通,减少硫的排放量,不再需要辅助装置。此外,纳米技术的使用,以提高汽油,柴油燃料添加剂已经,事实上,它是一种可燃液体簇的小分子物质,燃烧,净化。在开发新能源的国内外进展迅速,成为非可燃气体,可燃气体。研发现在是一个主要的国际能源转换材料,也做了,它包括太阳能转化成电能,热能转化为电能,化学能转化为电能。 (4)纳米生物医药:这是国家加入WTO后最有前途的领域之一。目前,国际医药产业正面临着新的决定,那就是用纳米尺度发展制药产业。纳米生物医学必要的物质从植物和动物中提取,然后在纳米尺度组合,以最大限度地提高疗效,这正是的想法?中国中医药。提取后,在本质上,有几的骨架,如人体可吸收糖,淀粉,使其效率和有针对性的药物释放。传统药物的改进,利用纳米技术可以提高一个档次。 (5)纳米技术和新材料:纳米技术和新材料虽然不是最终产品,但是是非常重要的。据美国估计,到21世纪30年代,汽车40%的钢材和金属材料是轻质,高强材料来取代,这样可以节省燃气40%以上,减少二氧化碳排放量40%,在这一个,你可以每年100美元亿美元,并创造社会效益。另外,各种功能性材料,玻璃的透明性,但重量重,具有纳米改进它,这样它变得更轻,所以,这种材料不仅是力学性能,而且还具有其他功能,以及光的颜色,光存储,反映各种紫外线,红外线,光的吸收,存储等功能。 (6)纳米技术对传统产业改造:对于中国来说,目前被切成纳米技术,纳米技术和传统产业结合最好的机会在所有技术领域。首先,家电,轻工,电子等行业。合肥美菱集团从1996年开始研制纳米冰箱,可折叠PVC磁性冰箱门封不发霉,使用抗菌涂料里面的水果是使用纳米材料,轻工业的发展,电子产品和家用电器可以带动涂料,材料,电子原器件等行业,其次是纺织业。人造的纤维和纺织行业的发展趋势,中国进入WTO纺织品能够占据一个有利的位置,现在必须充分应用纳米技术,纳米材料。去年在绝缘,保温衣的电视宣传,纳米技术的应用,有一些特殊的功能,防静电,阻燃等,纳米导电材料组装到里面,可以是11万伏的压力,人体盾牌,在这方面的应用纳米技术的纺织行业形势看好;三,电力行业。使用纳米技术的20万伏和11万伏变压器传输瓷轮可以增加11万伏电击性能瓷器釉,无霜,别人是整体性能非常不错;第四是建材行业的油漆和涂料,包括各种陶瓷釉料,油墨,纳米技术干预,可以使产品的性能升级。 发展纳米技术和材料的不断发展给我们的生活发生了翻天覆地的变化,极大地改变我们的生活,但纳米材料的安全问题引起人们的关注。 反射纳米技术从“纳米牙膏的”纳米护肤霜“,”,已知全球使用纳米技术产品市场上已经有超过300种。纳米技术开始走入人们的生活区。与此同时,人们可能纳米材料,潜在的安全问题一直是心有余悸。 早在三年前,有几个人的报告“纳米”这个极具潜力的新兴技术的困惑。在2003年的美国化学学会年会上,有三个研究小组发表纳米材料的毒性特别报告。美国航空航天局的研究小组发现,碳纳米管会进入肺泡形成肉芽肿,这是典型的结核病。杜邦公司的一个研究小组也发现了类似的结果。罗切斯特,纽约大学的研究人员使老鼠含有PTFE粒子直径为20nm,在空气中15分钟,并在接下来的4个小时内亡的老鼠,被暴露,而另一组用直径为120nm的颗粒在空气中,则安然无恙。该研究小组还发现另一项实验中纳米粒子能够进入大鼠的嗅球,并迁移到大脑。 目前,纳米技术的注意力集中在安全问题:纳米粒子对人类健康和对环境造成的负面影响的潜在风险。虽然纳米材料的毒性问题,现在说还不清楚,但专家们一致认为需要进行专门研究纳米技术的潜在风险及其不利影响。 纳米技术术语---麻省理工学院的埃里克·德雷斯勒,早在1986年发表的“创建由发动机的发明者,”一书上的各种物质的原子大小的纳米技术的操作的详细说明现状,未来发展潜力和危险。使他不仅引发了对纳米技术的兴趣,也让许多人担心未来的纳米技术。 “纳米技术是远远高于它的好处的风险。”在整个20世纪90年代,这种说法一直在科学界普遍。 2000年底,“发现”杂志评选其顶部的20个危险的21世纪,纳米技术和行星撞击地球,一个全球性的流行病,被列为其中之一。因此,在科学家眼中,纳米技术是危险的,它在哪里?它开始谈论斯勒。在他的书中,德雷斯勒想象的东西称为“钳工”通过原子的纳米机械取放,分子大小的人造纳米机器可以像人体一样,蛋白质和酶,制造出的东西,如电视和电脑---当然,也包括自己。因此,科学家们开始担心:如果你可以听这些人钳工商誉命令的,肯定是一件好事,但如果控制程序错误或恶意使用,想一台电脑蠕虫无限自我复制无限期的,从而覆盖和破坏整个地球? 相关阅读:新型建材+碳纳米管纪事ChroniclesofCarbonNa的... 发表于2007-12-1800:41 |碳纳米管世界现代设计史论文佛山陶瓷模具纪事八发件人:... 什么新型建材科学家看未来的世界关键字:创新和技术的发展,世界各国,人是未来人类服装的未来世界粮食低热量低胆固醇随着现代科技的飞速发展...... 新大楼!技术融入人文科学知识,科学新闻科学论文陶瓷材料科学家都有这样的感觉:其实他们是 - 探索宇宙秘密的,它不是最终体积小的纳米技术研究课题... 科技新闻::纳米孩子的父亲在眼里新型建材今年刚40岁的王中林博士是一位美国教授在佐治亚理工学院,乔治亚理工大学纳米氧化物陶瓷学校和材料科学... ,新型建材科学家希望未来的世界关键词:发展中世界的国家,人是未来人类的创新和技术的服装未来世界粮食低热量低胆固醇随着现代科技的飞速发展...... 新型建材,科学家希望未来的世界关键词:发展世界各国的未来人类的创新和技术的人们的穿着未来世界食品低热量低胆固醇随着现代科学技术的飞速发展......

作者/文龙

如果你想构建一个功能齐全的纳米级机器人,只需要将电子电路、传感器、天线等一系列元件进行整合;但如果您想让它动起来,就需要能够弯曲的材料。

康奈尔大学的研究团队创造出微米大小的形状记忆驱动器,只需提供快速震荡电压,就可使原子大小厚度的平面材料能够自行折叠成立体的3D 构造。并且,一旦材料弯曲,即使是去除电压也能持续保持形状。

研究成果于3月17日以「用于低功率微型机器人的微米级电可编程形状记忆驱动器」( Micrometer-Sized Electrically Programmable Shape Memory Actuators for Low-Power Microrobotics )为题发表在《科学·机器人》( Science Robotics )杂志上,并登上了杂志封面。论文的主要作者是博士后研究员刘清坤和博士生王伟。

形状记忆效应是指某些材料在暴露于诸如温度、电磁场或光等外部刺激时保持临时的特定形状并恢复其原始形状的能力。

理想的可以集成到微型智能系统中的形状记忆驱动器具有多个挑战:材料应能够长时间保持形状,能够被电驱动以及可弯曲至微米级的曲率半径。另外,应该使用与现代半导体制造相一致的技术来制造它,以实现与现有电子设备的集成。

该团队研发出的纳米器件由一层纳米厚的铂薄膜组成,该薄膜在一侧被钝化层覆盖,通过对铂表面施加正向电压进行电化学氧化,使得氧化层中产生导致弯曲的应变。由于嵌入的氧原子会聚在一起形成势垒,阻止其扩散出去,该器件甚至可以在停止施加电压后仍能保持形状。

通过向设备施加负电压,研究人员可以去除氧原子,并迅速将铂还原为原始状态。通过改变面板的图案,以及铂是暴露在顶部还是底部,可以创建一系列折纸结构。

这种形状记忆驱动器不仅可以在100 ms内快速折叠,还可以重复折叠数千次。不需供电即可长时间的保持形状,使其可以在最大程度上降低功耗,这对微型机器人来说十分有利。

该驱动器还具有很强的柔韧性,驱动器弯曲的曲率半径可达到小于1微米。柔韧性对微观机器人的制造之所以重要,是因为机器人的尺寸取决于各种附件的折叠程度。弯曲程度越大,折痕越小,每台机器的占地面积就越小。

为了对研究成果进行演示,康奈尔大学研究团队还制造出了可能是世界上最小的自折叠折纸鸟。在此之前,他们发明的最小的行走机器人获得了吉尼斯世界纪录。现在,他们希望用这只仅有60微米宽的自折叠折纸鸟创造新的记录。

刘清坤说:「在如此小的规模上,它不再像传统的机械工程,而是化学、材料科学和机械工程的混合应用。」

主导整个项目的物理学教授伊泰·科恩(Itai Cohen)和保罗·麦克尤恩(Paul McEuen)称赞刘清坤的化学背景给该项目带来了额外的惊喜,提供了能够使材料折叠并保持形状背后蕴含的电化学反应原理。

「最困难的部分是制造能够响应CMOS电路的材料,」Cohen说,「这就是清坤为这种形状记忆驱动器所做的工作,你可以用电压驱动它并使它保持弯曲的形状。」

该团队目前正在努力将其形状记忆驱动器与电路集成在一起,制造出具有可折叠四肢的行走机器人以及通过波动向前移动的片状机器人。这些创新可能有一天会促使纳米Roomba 型机器人能够清除人体组织中的细菌感染,甚至研发出比当前手术设备小十倍的纳米机器人。

「我们希望能有一个具有大脑的微观机器人,这意味着需要具有由互补金属氧化物半导体(complementary metal-oxide-semiconductor, CMOS)晶体管驱动的部件。」

想象一下,一百万个装配式微型机器人从晶圆上释放后折叠成特定形状,自行完成它的任务,或是组装成更复杂的结构。这是团队的最终愿景。

McEuen认为:「我们作为人类的主要特征是,我们已经学会了如何在人类规模乃至更大规模上构建复杂的机器和系统,但是,我们还没有学会如何在微小规模上建造机器。学习如何构造像细胞一样小的机器,是人类可以做到的根本性发展的一步。」

目前为止,McEuen和Cohen的持续合作已产生了许多纳米级的机器和组件,并且每一代都比上一代更快、更智能、更优雅。

但一个重要的问题是:设计、制造和操作此规模的机器人,需要改变哪些原则?

「这些薄层只有大约30个原子厚度,而纸张的厚度就有100,000个原子。因此,弄清楚如何制作具有这种结构的东西是一项巨大的工程挑战。」

美国陆军作战司令部陆军研究办公室项目经理迪恩·卡尔弗(Dean Culver)对他们的工作表示认可:「Cohen教授和他的团队正在突破我们可以在微米甚至纳米尺度上控制运动的速度和精确度的界限。除了为纳米机器人铺平道路之外,这项工作的科学进步还可以实现与智能材料设计以及分子生物学的互动。」

论文链接:

参考内容:

医用纳米机器人的研究论文

我觉得~~你还是自己去看下(纳米技术)吧~自己找下这样的论文多参考参考

科学咖啡馆

人类将进入纳米机器人时代?

说起纳米机器人,人们可能会想到好莱坞大片《钢铁侠3》:大反派试图通过纳米机器人传播病毒,进而控制全人类。

纳米机器人的概念最早是由美国物理学家、诺贝尔奖获得者理查德·费曼教授于1959年提出的。他认为人类未来有可能建造一种分子大小的微型机器,可以把分子甚至单个原子作为建筑构件,在非常细小的空间里构建物质。这意味着,人类可以在底层空间制造任何东西。

纳米级的技术在当时只是一种科学幻想,但如今已出现在现实世界。

从广义上来讲,只要在纳米尺度(一纳米等于十亿分之一米)能够进行运动和操作的系统都可以叫做纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,也是当今高新 科技 的前沿热点之一。因此,许多国家纷纷制定纳米机器人相关战略和计划,投入巨资抢占纳米机器人战略高地。

目前研发的纳米机器人属于第一代,是生物系统和机械系统的有机结合体,这代纳米机器人可以注入人体血管内,进行 健康 检查和疾病治疗;第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,能够执行复杂的纳米级别的任务;第三代纳米机器人将包含有强人工智能和纳米计算机,是一种可以进行人机对话的智能装置。

顺带一提,2016年度诺贝尔化学奖授予3位科学家,以表彰他们“在分子机器的设计和合成”方面的贡献。

许多专家强调:当前最重要、最迫切的就是纳米机器人在医疗领域的应用。医用纳米机器人可以注入人体血管内,进行血管养护、 健康 检查、精准给药、疾病治疗和器官修复等,还可从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行。在可预见的未来,被视为当今疑难病症的癌症、艾滋病、高血压等都将迎刃而解;届时,人类将会减少疾病所带来的痛苦,人的寿命也将得到延长。可见纳米级别的机器人是医疗领域的福音。

近年来,医用纳米机器人的研发取得不少可喜的成果:

2013年6月,日本东北大学的科学家研制出一种由生化驱动的可以摧毁癌细胞的纳米机器人;

2017年8月,英国杜伦大学、美国莱斯大学和北卡罗莱纳州立大学的科学家研发出一种被光激活的纳米机器人:当被光激活后,这种纳米机器人可以在数分钟内钻入癌细胞并杀死它们;

2018年1月,德国慕尼黑工业大学的科学家研制出一种由电场驱动的用于医学诊断和药物开发的高效纳米机器人;

前不久,德国马普学会智能系统研究所、中国哈尔滨工业大学以及丹麦奥胡斯大学等机构的研究人员研发出一种表面润滑的螺旋形磁性纳米机器人,并首次实现让纳米机器人绕过眼球表面抵达视网膜且不对组织造成损害。

值得指出的是,医用纳米机器人目前尚处于研发试验阶段,还未能进入临床实用阶段。但可以肯定的是,在不久的将来,纳米机器人将会给生物医学带来巨大变革。前不久,美国发明家雷·科兹威尔博士在接受新闻媒体采访时指出:医用纳米机器人将来把人脑和云脑(云计算系统)连接起来,届时就可提高人类智力和延长人类寿命。另外他还指出:到2030年,纳米机器人将定居在人体内,随着血液循环遍布人体,成为人机融合的一部分。

除了医疗领域,纳米机器人在其他领域也有广泛的应用前景。

在工业领域,人们可以利用纳米机器人制作微米级的芯片,从而减少电子产品内的芯片和电路所占用空间,能够让未来的电子产品变得更微小;人们可以利用纳米机器人探测甚至改变油藏特性, 从而突破现有技术在采收率上的限制,提高油气开采效率和采收率。

在环保领域,人们可以将大量纳米机器人放入污染水源中,通过设计好的传感器和程序让纳米机器人将污染源分解掉,就能解决水污染问题。

在军事领域,人们可以通过仿生学技术将纳米机器人的外形改造成昆虫、鸟类等小型动物的外观,充当侦察工具,进而收集重要情报。

可以说,纳米机器人不仅给 社会 带来重大变化,也给人们带来无限广阔的想象空间。

需要指出的是,高新 科技 是把双刃剑,纳米机器人也不例外,尤其是当它应用于军事领域当中。目前,美国、英国、德国、日本、以色列等国已着手从伦理、法律和 社会 的角度,来研究纳米机器人的风险和安全性问题。

有专家预言:用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活,人类 社会 将进入极具前景的新时代——纳米机器人时代。中国科学家周海中教授在1990年发表的《论机器人》一文中预言:到21世纪中叶,纳米机器人将彻底改变人类的工作和生活方式。

此景可待,未来可期。

(作者为日本东北大学工学部研究员)

有,但是处于起步阶段,有部分医用纳米机器人还在实验阶段。短中期内不大可能会有此类机器人在市面上出现,且造价一般情况下普通人承担不起。但其研究前景十分可观且意义巨大。我的个人观点是中期内市场上可能会出现可用于医治部分疾病的纳米机器人,且研究方向一定是向全能型医用纳米机器人方向发展,就是说先注入部分机器人,再通过进食原材料使其在人体内自行生产新的机器人,且可以通过原材料对相应疾病进行医治且可实时回馈人体内环境信息与医疗进程。如果人类成功研制出全能型医用机器人,人类或许就能达到长生不老,不会因疾病死亡的情况。此类机器人是可实现的预想,但在这类级别的纳米机器人研制成功前人类必须先彻底的解析细胞学、基因学、材料学、环境学、内分泌学、化学与医学等。个人感觉百年内不会出现此级别的医用纳米机器人。

1959年,荣获诺贝尔物理学奖的美国物理学家理查德.费曼(Richard Phillips Feynman)率先提出了“纳米机器人”这一概念,他在一次名为《在物质底层有大量的空间》的演讲中,说人类有可能建造一种分子大小的微型机器,它可以把分子、甚至单个的原子作为建筑构件,于非常微小的空间里构建物质,也就是说,人类可以在最基础的层面制造任何一种东西。当时,理查德.费曼所言的“微型机器”尚有一点儿“科幻”的意味,而如今,纳米机器人既是纳米生物学领域中极具诱惑力的一项研究课题,又是一处炙手可热、极具战略意义和商业价值的“ 科技 高地”,故此,众多国家、 科技 公司和科研机构纷纷制定纳米机器人相关的研发计划,投入巨资抢占纳米机器人这一“ 科技 高地”。前不久,美国一位发明家大胆的预测,2030年前后,纳米机器人即可投入使用。

比较宽泛的说,于纳米尺度(即“微毫米”,1纳米等于1/10亿米)能够运行和操作的机械系统,就可以称为“纳米机器人”。现如今,相关的科研机构正快马加鞭的研发着第一代纳米机器人,它们是生物系统和机械系统的有机结合体,可以注入人体的血管中,应用于 健康 检查和疾病治疗等等方面。纳米生物学家们设想的第二代纳米机器人更是精密和高效,它们直接从原子或分子装配而成,且具有特定的功能,可以执行复杂的纳米级任务。而第三代纳米机器人将含有强人工智能和纳米计算机,其无与伦比的功能和广泛的应用范围远超一般人的想象力。相关领域的专家们认为,目前最重要、最迫切的就是纳米机器人在医疗领域的应用,医用纳米机器人可以注入人体的血管里,它们可以护理血管、 健康 检查、精准施药、疾病治疗和器官修复等等,甚至可以从基因中除去有害的DNA、把正常的DNA安置在基因中。

近几年以来,医用纳米机器人的相关研究领域已经呈现了一些举世瞩目的成果,比如2013年6月,日本东北大学的科学家们一种可以杀灭癌细胞的纳米机器人;再2017年8月,英国杜伦大学、美国莱斯大学和北卡罗来纳州立大学的联合研究团队研发了一种纳米机器人,它们被光线激活之后,可以在数分钟之内钻入和杀灭癌细胞;再比如德国马普学会智能系统研究所、中国哈尔滨工业大学和丹麦奥胡斯大学的联合研究团队,研发了一种表面润滑的螺旋形磁性纳米机器人,且让纳米机器人绕过眼球表面、抵达视网膜。即便医用纳米机器人仍处于研发和试验的阶段,并未进入临床实用的阶段,但基于相关领域的研发成果、以及相关技术的日趋成熟,不久的将来,纳米机器人很可能会给生物医疗领域带来巨大的变革。

前一段时间,美国的发明家雷.科兹威尔博士在接受新闻媒体采访的时候,声称医用纳米机器人将把人脑和“云脑”(云计算系统)连接起来,此时,纳米机器人就可以提高人类的智力和延长人类的寿命。雷.科兹威尔博士还指出,大概2030年前后,纳米机器人将“入驻”和“定居”于人类的身体内,随着血液循环系统而遍布全身,人类便实现了“人机融合”。不过,“ 科技 ”是一柄犀利的双刃剑,人类必须警惕关于纳米机器人的潜在危害,特别是它们应用于军事领域中,其后果是不堪设想的,美国、英国、德国、日本、以色列等等国家已从伦理、法律、 社会 和国防安全的角度,研究纳米机器人的风险和安全性问题,以防纳米机器人造成不可估量的损害。

小考题: 你是否担心纳米机器人应用于军事领域?你认为人类能否坚守这一底线呢?欢迎你留言讨论。

(本号专注于 科技 前沿、 历史 拾遗、奇闻异事和人物品鉴, 还望你的关注和订阅,万分感谢! )

纳米陶瓷论文参考文献

说实话,我想到了孤岛危机,nanosuit!!!

纳米器件对未来军事变革的影响The Effect of Nano-devices to Future Military Transform<<电子机械工程>>2007年 第23卷 第06期 作者: 李芹, 蔡理, 吴刚,期刊 ISSN : 1008-5300(2007)06-0001-03碳纳米管在军事上的应用前景Carbon nanotubes and its application prospect in military<<兵器材料科学与工程>>2004年 第27卷 第04期 作者: 刘政, 毛卫民,纳米陶瓷材料的性能、制备及其在军事领域的应用前景Nanocrystalline ceramics' preparation, properties and applied prospects in military field 下载PDF阅读器综述了纳米陶瓷的主要制备方法、独特的超塑性、高强度性能,并对其在军事领域的应用前景进行了讨论.作 者:江炎兰 王杰 JIANG Yanlan WANG Jie 作者单位:海军航空工程学院基础部,山东,烟台,264001 刊 名:海军航空工程学院学报 ISTIC英文刊名:JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE 年,卷(期):2006 21(1) 分类号:TB321 关键词:纳米陶瓷 制备 性能 应用 机标分类号:U67 TP3 机标关键词:纳米陶瓷材料强度性能军事领域制备方法应用前景超塑性综述 DOI:纳米器件及其在军事电子系统中的应用前景Nanometer Devices and Their Applied Prospect in Military Electronic Systems<<电子元器件应用>>2001年 第3卷 第05期 作者: 蔡菊荣,期刊 ISSN : 1563-4795(2001)05-01-05

纳米器件对未来军事变革的影响The Effect of Nano-devices to Future Military Transform<>2007年 第23卷 第06期 作者: 李芹, 蔡理, 吴刚,期刊 ISSN : 1008-5300(2007)06-0001-03碳纳米管在军事上的应用前景Carbon nanotubes and its application prospect in military<>2004年 第27卷 第04期 作者: 刘政, 毛卫民,纳米陶瓷材料的性能、制备及其在军事领域的应用前景Nanocrystalline ceramics' preparation, properties and applied prospects in military field 下载PDF阅读器综述了纳米陶瓷的主要制备方法、独特的超塑性、高强度性能,并对其在军事领域的应用前景进行了讨论.作 者:江炎兰 王杰 JIANG Yanlan WANG Jie 作者单位:海军航空工程学院基础部,山东,烟台,264001 刊 名:海军航空工程学院学报 ISTIC英文刊名:JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE 年,卷(期):2006 21(1) 分类号:TB321 关键词:纳米陶瓷 制备 性能 应用 机标分类号:U67 TP3 机标关键词:纳米陶瓷材料强度性能军事领域制备方法应用前景超塑性综述 DOI:纳米器件及其在军事电子系统中的应用前景Nanometer Devices and Their Applied Prospect in Military Electronic Systems<>2001年 第3卷 第05期 作者: 蔡菊荣,期刊 ISSN : 1563-4795(2001)05-01-05

1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作 的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论 证过程和结论。主体部分包括以下内容:a.提出问题-论点; b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。 6、参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要 文献资料,列于论文的末尾。中文:标题--作者--出版物信息(版地、版者、版期)书讲的1.纳米材料(1)洗衣机桶表面经过纳米技术处理可放菌(2)领带表面经纳米技术处理后防水防油(3)用纳米陶瓷粉制陶瓷有韧性,制造发动机可提高性能2.“绿色”能源(1)干电池轻便但只能用一次且污染环境,铅电池太重,锂电池密度小,所以它体积小、质量轻、能多次充电、对环境污染小。(2)硅光电池可把太阳能转化成电能,可用于人造卫星。3.记忆合金(1)记忆合金主要成分镍和钛,记忆合金独有物理特性:当温度达到某一数值时,材料内部的晶体结构会发生变化。(2)记忆合金可用于外科手术,还可装在热水器的出水阀门内,防止烫人。

单片机机器人论文参考文献

论文格式要求:1.版面尺寸:A4;版芯位置(正文位置):上边界 厘米、 下边界 厘米、左边界 厘米、右边界 厘米、装订线位 置定义为 0 厘米。2.页码:页码采用页脚方式设定,采用五号宋体、用“第 ×页(共×页) ”的格式,处于页面下方、居中、距下边界 厘米的位置。3.目录: “目录”用小二号黑体,居中;一级标题顶格,小 四号黑体;二级标题缩进 2 个汉字符,小四号宋体;标题文字与 页码之间用点线,页码居右对齐。列出正文(包含一级、二级标 题)、参考文献、致谢、附录等(页码用阿拉伯数字标注) 。4.正文内标题: 正文另起一页, 论文题目用小二号黑体加粗, 居中,前后段间距 1 行或 12 磅。 参考文献:位于正文结尾后下隔 2 行, “参考文献”4 字居 中,采用四号黑体;具查看更多

[1]方龙,陈丹,肖献保. 基于单片机的机械手臂控制系统设计[J]. 广西轻工业,2008,08:89-90.[2]周卫东. 基于CAN总线通讯的机械臂控制系统设计[J]. 南京工程学院学报(自然科学版),2007,04:42-46.[3]李辉,邓遵义. 基于CAN总线分布式机械臂控制系统设计[J]. 机电产品开发与创新,2011,02:155-157.[4]金伟. 基于DSP的机械臂控制系统设计[J]. 自动化与仪器仪表,2011,03:30-32.[5]李鲤,刘善春. 基于ARM的机械臂控制系统分析[J]. 自动化与仪器仪表,2012,02:176-177.[6]黄冉,周前祥,王一豪. 基于电流变液的机械臂控制系统设计与仿真[J]. 机械设计与制造,2012,12:4-6.[7]滕冠,刘恒. 基于模糊控制的机械臂控制系统设计与实现[J]. 大众科技,2015,01:85-87.[8]马江. 六自由度机械臂控制系统设计与运动学仿真[D].北京工业大学,2009.[9]欧艳华. 基于PID的现代加工生产机械臂控制系统设计[J]. 轻工科技,2015,04:59-60.[10]李磊. 六自由度机械臂控制系统设计[D].哈尔滨工程大学,2007.[11]赵胜求. 基于视觉的PUMA560机械臂控制系统设计[D].哈尔滨工业大学,2010.

陈国先,语音芯片与PIC单片机的应用接口[J].福建信息技术教育,2005。李海涛,关于如何提高单片机系统可靠性的探讨[J].宁夏机械,2005,(3).彭同明,杨少华,“单片机原理及应用”课程改革的分析[J].武汉电力职业技术学院学报,2004。

纳米材料综述论文参考文献

[1]Philippe P,Nang Z L et al. Science,1999,283:1513.[2] JINYi- he, SUNPeng, ZHANGYing- hua. Problemofpotential effects of nanomaterials on mankind [J]. Chinese Journal of Nature,2001, 23( 5) : 306- 307.[3] Hoet PHM, NemmarA, NemeryB. Health risk of inhaled( nano)-particles [C]∥7th World Biomaterials Congress. Australia Sydney: Sydney Convention & Exhibition Centre, Darling Harboar, 2004. 751.[4] ZHAOYu- liang, CHAIZhi- fang. Status ofstudyofbio- environmental activities of nanoscale materials [J]. Bulletin of Chinese Academy of Sciences, 2005, 20( 3) : 194- 199.[5]李霞,彭蜀晋,张云龙;纳米材料在生物医学领域的应用[J];化学教育;2006年第11期。[6]金海龙,王新宇,王洪森等;纳米材料在生物医学领域的应用与发展[J];仪器仪表学报;第27 卷第6 期增刊2006 年6 月。[7]马小艺,陈海斌;纳米材料在生物医学领域的应用与前景展望[J];中国医药导报;第3卷第32期,2006年11月。[8]黄渝鸿,许映霞,万昌秀;纳米材料在生物医学中的应用[J];化工新型材料;第30卷第2期,2002年6月。[9]谢克亮,赵长安;纳米技术在医学领域中的应用研究进展[J];新医学;2004年6月第35卷第6 期;[10]徐翔晖,王雪微;陈晓农纳米生物材料的应用[A];纳米科技;第6 卷第1 期,2009 年2 月;[11]Bao G. Mechanics of biomolecules. J. Mec. , 2002, 50(11):2237-2274.

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

相关百科

热门百科

首页
发表服务