首页

> 学术期刊知识库

首页 学术期刊知识库 问题

高考数学解题研究论文

发布时间:

高考数学解题研究论文

去CNKI中搜索去

不知道你需要哪一篇,你自己能上这个期刊网吗? 序号 篇名 作者 刊名 年/期 1 数列应用题的建模 尚鸿宾 数理化解题研究(高中版) 2008/08 2 等差数列应用3例 牛爱玲 数理天地(高中版) 2008/12 3 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一人教大纲) 2008/10 4 数列的应用 王思俭 考试(高考数学版) 2008/Z5 5 丰富多彩的图形数列应用题 赵艺川 高中数学教与学 2008/07 6 高考中常见数列应用问题模型例举 邓红旗 数理化学习 2008/04 7 利用列表法求解数列应用题 宗平芬 高中数学教与学 2008/02 8 新情境下的递推数列应用问题 胡志红 高考(数语英) 2007/11 9 再说斐波那契数列的应用 邹常志 中学生数学 2007/20 10 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一版) 2007/11 11 例说函数和数列应用题的数学化 廖东明 数学爱好者(高考版) 2007/04 12 构建数学模型解数列应用性问题 陈路飞 数学爱好者(高考版) 2006/02 13 数列应用题中的递推关系常见类型解析 黄爱民 中学数学月刊 2005/09 14 考点11 递推数列及数列的应用 中学数学 2005/Z1 15 等比数列应用题错解二例 李钟春 中学数学杂志 2005/07 16 建立递推关系 速解数列应用题例析 张照平 数理化学习(高中版) 2005/13 17 数列应用题中的几种常见递推关系 管春鸾 高中数学教与学 2005/07 18 数列应用题 李玉群 中学生数理化(高中版) 2005/04 19 数列应用问题例谈 李坤 第二课堂(高中版) 2005/05 20 新理念 新设计——谈等比数列的应用案例的设计和实践 林风 中学数学月刊 2005/01

如何写好数学教育论文华南师范大学数学系 何小亚一、数学教育论文的基本结构标题(论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)作者名(单位名、省、市、邮政编码)摘要:[ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]关键词:(关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)引言(开头语)1. 选题的原因和重要性。2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。3. 本课题研究的目的、方法、计划。4. 本课题研究的意义和价值。几种常见的开头方法:1.内容范围开头法,即说明本文要论述的内容范围;2.问题开头法,即以数学问题或研究对象所存在的问题的方式开头;3.设问开头法,即以设问的形式把论文要论述的中心内容表达出来;4.目的开头法,即直接把论文要达到的目的告诉读者;5.背景开头法,即阐述所研究课题的历史背景;6.结论开头法,即直接阐述论文的的主要结论。正文1 …………………………2 …………………结论与讨论(结束语)结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。下列情况可以省略结论部分:1. 前言部分已对结论进行了概括;2. 结论已不言自明;3. 验证性的论文;4. 商榷、反驳、补充性的论文。附录附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。参考文献参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。引用文献为期刊,可仿下面的例子书写:[1] 何小亚. 数学应用题认知障碍的分析[J].上海教育科研,2001,6:41-43.[5] 何小亚. 建构良好的数学认知结构的教学策略[J].数学教育学报. 2002,11(1):25.引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:[2] 赵振威,黄熙宗,范叙保,等. 中学数学解题研究[M]. 江苏:江苏教育出版社,1998. 96-104.引用文献为报纸,可仿下例书写:[8] 谢希德. 创造学习的新思路[N]. 人民日报,1998—12—25(10)上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。一、问题的提出(背景、问题、你要研究什么问题……)二、术语界定(术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)三、研究的现状(综述同行(相关文献)的研究情况)(谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行.。四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)五、研究方法(你的方法属文献研究、比较研究、定性研究)六、研究结果就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。七、研究结论(根据“五、研究结果”得出的结论)八、研究展望(研究的不足/存在的问题/进一步值得研究的问题)二、数学教育论文的选题1.学习研究数学教育文献数学教育类期刊Educational Studies in Mathematics(荷兰);Journal for Research in Mathematics Education(美);Mathematics Teaching(英);Mathematics Teacher(美);《课程. 教材. 教法》(人民教育出版社)《数学教育学报》(天津师范大学等)《数学通报》(中国数学会,北京师范大学);《数学教学》(华东师范大学);《中学数学》(湖北大学);《中学数学教学参考》(陕西师范大学);《中学数学研究》(华南师范大学)。2.把握数学教育研究的新动向及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。3.研究课程标准和新教材九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材4.研究学生学习数学的过程和教学方法5.研究初等数学问题对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。三、注意事项1.结合自己的兴趣特长选择研究课题2.注意文献资料的取舍围绕课题选择文献资料,选择的材料应具有典型性(代表性)、实践性、理论性和新颖性3. 构思与布局在总体构思论文的框架结构时,要注意从整体上思考如何提出问题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。4. 修改和定稿初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。5. 注意创新论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。6.不容易被刊用的稿件的特点(1) 论述的经验、方法是众所周知的;(2) 所列举的数据有为自己评功摆好的嫌疑;(3) 选用的例证陈旧;(4) 仅仅是例证的堆砌,缺少深刻的理论分析;(5) 概念不清,逻辑推理出错;(6) 结论的推导冗长而应用面狭窄;(7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;(8) 文章过长(超过5000字)。附件四:研究课题举例一、一般性的研究课题1. 中学数学课程标准的分析研究2. 关于高考数学命题及答卷的研究3. 数学开放题研究4. 数学应用题研究5. 优秀数学教师的教育思想及教学艺术评析6. 数学教学改革实验研究7. 数学差生的成因与教学对策8. 学生数学能力评价研究9. 数学教育中的素质教育内涵10. 中学数学教学与学生创新意识培养11. 中学数学教学与学生应用意识培养12. 数学课程评价的理论与实践13. 数学语言教学研究14. 数学思想方法的教学研究15. 中学数学作业处理16. 运用数学方法论指导数学教学17. 中学生数学阅读能力的调查研究18. 中学生数学语言能力的调查研究19. 数学学习方式的调查研究20. 数学交流能力的调查研究二、 高中数学新课程教学方面的研究课题(一)在新课程理念下对原有内容的教学研究1. 函数教学研究2. 向量教学研究3. 立体几何教学研究4. 解析几何教学研究5. 导数及其应用教学研究6. 概率与统计的教学研究7. 不等式教学研究8. 三角恒等变换教学研究(二)对新增内容的教学研究9. 算法教学研究10. 统计案例教学研究11. 框图、推理与证明教学研究12. 选修系列3教学研究13. 选修系列4教学研究(三)双基与能力教学研究14. 新课程理念下高中数学双基教学设计研究15. 关于培养学生抽象、概括能力的研究16. 关于合情推理与演绎推理在培养学生思维能力中的作用的研究17. 数学新课程实施中学生自主学习的研究18. 数学教学中培养学生自我监控能力的研究19. 关于《标准》中课程内容与要求的科学性、可行性的研究20. 数学文化对于促进学生数学学习的研究21. 数学教学中渗透数学探究、研究性学习的研究三、高中数学新课程的评价课题1. 对学生数学学习过程评价的研究2. 体现新课程理念的模块终结性评价工具与方法的开发3. 对选修系列3、选修系列4读书报告的评价4. 对数学探究、数学建模的评价5. 高中新数学课程课堂教学评价6. 高中数学教师专业化发展评价7. 数学新课程理念下的高考命题研究8. 数学教学中情感、态度、价值观的评价9. 关于过程性评价与终结性评价有机结合的研究四、高中数学新课程的信息技术研究课题1. 信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用2. 网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)3. 信息技术与研究性学习的融合4. 运用信息技术手段,改变学生学习方式(结合具体内容研究)5. 信息技术对评价的形式与内容带来的影响6. 以信息技术为主要手段的数学课程和教学资源库的建立7. 信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进8. 运用信息技术手段,展示数学知识的发生和发展过程的案例研究9. 信息技术与数学课程内容整合的案例开发五、高中数学新课程的课程资源研究课题1. 算法的背景与实例的收集与积累2. 概率与统计的背景与实例的收集与积累3. 导数及其应用的背景与实例的收集与积累4. 关于高中数学选修系列3课程资源的开发与积累5. 关于高中数学选修系列4课程资源的开发与积累6. 现行高中数学新教材的比较研究7. 数学新课程资源的拓广与应用8. 网上数学资源的拓广与利用9. 数学教学软件的研制与开发10. 数学教学资源的传播与信息共享六、高中数学新课程的研究性学习(数学建模、数学探究)1. 如何指导学生选择数学探究、数学建模的课题2. 数学探究、数学建模活动与课堂教学的关系研究3. 研究性学习对培养学生能力的作用中学数学教材、教学研究的问题1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。3.统计与概率内容的系统设计及案例交流。4.课题学习的系统设计及案例交流。5.整理与复习的系统设计及案例交流。6.几何内容的系统设计及案例交流。7.发展学生推理能力的系统设计及案例交流。8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。9.信息技术对课程内容选择、呈现以及教师专业发展的影响。10.如何体现数学的文化价值,不只局限于数学史。11.教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)12.教材怎样才能更好地体现数学的特点及学生的认知特点。13.建立数学模型与数学的双基教学。14.如何处理教材“留白”和学生自学(阅读)之间的关系。15.教材“留白”与教师发展空间之间的关系。16.对评价的思考与实践。附二:教学设计模板课题名称:×××××××教学年级:×年级设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)一、教学内容分析1.教学主要内容2.教材编写特点本节课内容在单元中的地位,本节课教材编写的意图及特点等。3.教材内容的数学核心思想4.我的思考下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。二、学生分析1.学生已有知识基础(包括知识技能,也包括方法)2.学生已有生活经验和学习该内容的经验3.学生学习该内容可能的困难4.学生学习的兴趣、学习方式和学法分析5.我的思考:下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。调研中可以将学生测验、访谈、小组观察等结合起来。三、学习目标(以学生为主语)1. 知识与技能2. 过程与方法(数学思考、解决问题)3. 情感态度价值观说明:1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。四、教学活动教学活动就是为学习目标的实现所设计的活动。包括1.活动内容2.活动的组织与实施说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。3.活动的设计意图说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。4. 活动的时间分配预设说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。可以参考下面的表格形式,也可以用文档的形式。活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配五、教学效果评价目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。以下几点供教师思考:(1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。(2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?(3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。(4) 教学是需要设计的,最后达到寓教于“无形”之中。(5) 设计应该考虑单元或更大的范围。

数学高考题研究论文

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

数学是思维的体操,这足以说明数学的灵活多变的特点.在高考中,数学往往是重点的拉分对象,因此,学习数学不可马虎. 如果说数学是一座大厦,那么概念,定理等就是它的根基了,试想,没有根的东西,有怎能健康成长呢?所以学习数学应该从概念、定理入手,扎扎实实地巩固好基础.认认真真地理解一个概念或定理比模模糊糊地做题来得更有效. 要想数学好,方法要妙.学习数学重要的是参加实战,把学到的“理”用之于实题.从而达到“读书破万卷,下笔若有神”的境界.但,过分卖力的时候,动作往往容易变形,在题海冲击出的混沌中,并不能获得多少好处.学习数学有时可偷一下懒,别人的规律,法则,在对其进行充分认识,理解后,把其变为己用,“它山之石,可以攻玉”,这种方法往往能取得较好的效果.做题,实际上是一个透过现象认识本质的过程,知道题目的真正意图,知识在题目中的运作,那就免了“踏破铁鞋”的损失.学会总结,是数学学习中的另一金钥匙.总结每一阶段的学习,归纳一下方法规律,研究一下策略,总会比无头苍蝇见效. 归根到底,只有分析能力提高到一定程度,才能在题目面前轻车熟路,不过还要重视努力与学习方法的有机结合,数学也是三只手指拿的田螺——拿稳了.

需要什么级别的论文,百度搜索“精英资料”,上面有关于高数的论文。

查询百度文库可获得大量文献

数理化解题研究期刊高中

结构不严谨。因为结构不严谨,所以数理化解题研究被停刊。《数理化解题研究》由哈尔滨学院于1997年创办的月刊,分初中版和高中版。

《基础化学实验》

O(∩_∩)O~投稿邮箱是 《数理化解题研究》是省级教育类杂志,月刊,有初中版和高中版。国际刊号ISSN:1008-0333,国内刊号CN:23-1413/G4,邮发代号: 14-271(高中版),邮发代号: 14-271(初中版)。如果作者要投稿,将稿件投如邮箱,留下电话,会有编辑和作者进行联系。

在中学数学中最厉害的期刊有:

1、《福建中学数学》:福建师范大学数学系2、《数学教学》:华东师范大学(上海中山北路3663号)3、《中学数学》:湖北大学4、《中学数学教学参考》:陕西师范大学5、《中学数学教与学》:江苏,扬州大学瘦西湖校区。6、《中学数学教育》(初中版)(中国教育学会中学数学教学专业委员会会刊)辽宁沈阳市皇姑区宁山中路15号

其他普通期刊:

1、《高中数理化》国家级期刊,知网收录。教育部主管,刊期:22年 9-12月,主要栏目:学习辅导、复习指南、思路方法、专题精析、巧解妙算、自我检测、高专模拟。

2、《数学学习与研究》省级期刊,知网收录。主要栏目:数学天地、专题研究、解题技巧、创新思路、交流平台、学习心得、德育渗透、教材分析、教法感悟、教学管理、教学艺术、学习方法、课改前沿、师生关系、本刊专稿等。

数学解题研究杂志

《中国科教创新导刊》《数学大世界》《数学学习与研究》《数理化解题研究》《理科考试研究》等等可以发表。可进我空间参考参考

只要是关于教育之类就可以啦。只要是适合你文章的期刊。

《解题研究》是奥博丛书之一,作者单墫,由上海教育出版社出版。本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。这套奥博丛书,其中就有若干或许可以称为解题秘籍。

本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论应用数学领域内不同方向问题与发展的交流平台,

《应用数学进展》是一本关注应用数学领域最新进展的国际中文期刊,主要刊登数学的各种计算方法研究,数学在统计学、计算机等方面应用的学术讠仑文和成果评述。

数学解题研究类论文

论小学生解题能力什么是解题能力?构成解题能力的基本要素有哪些?它是怎样形成发展的?长期以来,正是由于对这些基本理论问题无法作出明确回答,才使得应用题教学难以有突破性的发展,使得应用题教学心理研究长期陷于困顿。显然,要改革当前应用题教学体制,优化应用题教学系统,推进应用题教学心理研究,就必须首先在理论上揭示小学生解题能力的实质、构成要素及形成发展规律。本文试作探讨。长期以来,应用题教学心理研究虽对解题能力的实质没有作出明确回答,但纵观哲学与心理学文献,有关能力问题的讨论已有了相当长的历史。这些有关一 般能力的基本观点,影响着人们对解题能力的基本看法。人们关于解题能力实质的日常看法,大致可以分为四类。1.因素论观点。把解题能力看作是某些一般能力因素(如理解能力、分析能力、综合能力、运算能力等)的综合体,试图通过对解题能力的因素分析或经验分析,探讨影响解题活动的一般能力因素。2.先验论观点。解题能力是与个体经验无关,并先于个体经验而存在的实体,把能力看作是主宰活动的非物质心理实体的官能,或把它看作是遗传而来的个人禀赋。3.经验论观点。经验论观点与先验论观点相对,解题能力是个体在解题过程中习得的知识经验,提出解题能力即解题知识。4.“合金”论观点。从对能力形成发展条件的研究出发,认为解题能力是先天秉赋和后天解题活动成果的融合物(亦即“合金”)。上述四种观点能否正确反映解题能力的实质呢?本文认为,首先,解题能力属于特殊能力。根据唯物辩证法,一般能力虽然大致地概括了特殊能力,但却不能完全代替特殊能力。因素论观点用一般能力来界定特殊能力的本质,否认了特殊能力的特殊本性及其形成发展的特殊规律,因而并不能正确地揭示解题能力的实质。该论点反映在教学上,实质是形式训练说的翻版,导致了教师用一般能力的训练取代解题能力这一特殊能力的培养。第二,解题能力在本性上是调节解题活动的个体心理特性,按照辩证唯物主义观点,个体心理特性虽不完全排斥生理因素或先天因素对能力形成、发展的影响作用,但究其本性则是人类有机体与环境相互作用过程中,通过主体能力的反映活动,在头脑里构建起来的心理形成物,属于经验范畴。先验论观点把解题能力看成是先天的、固定不变的实体,夸大了遗传在能力发展中的作用,因而常常把学生解题能力的暂时低下看成是该学生无法提高能力的根据,这种唯心主义和形而上学论断在教学中是十分有害的。第三,解题能力作为个体心理特性,对解题活动的调节应该具有一定的稳定性。经验论观点不仅抹煞了解题知识与技能的不同调节作用,缩小了能力实质的内涵,而且忽视了能力作为活动调节机制的稳定性能,把能力简化成了知识实在。该观点在教学中表现为教师以解题知识的传授代替对学生解题能力的培养,直接影响了应用题教学的效能。第四,对能力形成、发展条件的认识不同于关于能力实质的观点,前者要解决的是影响能力的形成、发展因素的问题,而后者要解决的是能力是什么的问题。“合金”论观点虽然较好地解决了能力形成、发展的条件问题,却并没有揭示出解题能力的真正实质。那么,解题能力的实质到底是什么呢?我认为,解题能力是解题活动稳定的调节机制。就其本质而言,是类化了的解题经验,即概括化、系统化的解题知识和解题技能。我把这一对解题能力实质的基本观点简称为类化经验观点。解题能力实质的类化经验观大致包含了以下几个含义:①从本性上说,小学生解题能力是一种个体心理特性,因而在原则上属于经验范畴;②从功能上说,小学生解题能力是解题活动的内在调节机制;③从结构上说,它是解题知识和技能组成的经验实体;④从性能上说,它对解题活动的调节具有稳定性,因而是一种类化经验,即概括化、系统化的解题经验;⑤从类别上说,它是解题这一特殊活动的内在调节机制,属于特殊的数学能力。要全面认识解题能力的实质,还必须看到,小学生解题能力并非是单一的类化经验,而是一个由不同层次和不同类型解题能力组成的层级系统。在这个层级系统中,按所调节的活动对象的复杂性和数量性质的不同,包括简单应用题、复合应用题和分数应用题三个不同层次的解题能力。这些能力在经验的概括水平上存在明显差异。按所调节活动类型的不同,每一层次的解题能力又包含了算术法和代数法两种不同类型的解题能力,它们在经验的概括水平上大致相仿,但在经验的构成要素上却有所不同。这些不同层次、不同类型的解题能力,究其实质仍是类化经验,只是经验的含义有所变化。因此,解题能力的层级系统实质是类化经验的层级系统。在树立了解题能力的类化经验观和层级系统观的基础上,为深化解题能力的认识,为应用题教学改革提供更多、更具体的指导,还必须对能力的构成要素作进一步的分析,确定构成能力的具体知识和技能成分。

[摘要]:在数学的学习中,数学概念的学习毫无疑问是重中之重。概念不清,一切无从谈起。概念的深层理解和精确把握,对数学问题的解决具有非常重要的作用。然而数学概念数量众多并且非常抽象,如何才能达到一个真正理解且深层记忆的效果呢?下面简述几种方法。[关键词]: 举例 温故 索因 联系 比喻 类比1、举例法:举例通常分成两种情况即举正面例子和举反面例子。举正面例子可以变抽象为形象,变一般为具体使概念生动化、直观化,达到较易理解的目的。例如在讲解向量空间的时候就列举了大量的实例。在解析几何里,平面或空间中从一定点引出的一切向量对于向量的加法和实数与向量的乘法来说都作成实数域上的向量空间;复数域可以看成实数域上的向量空间;数域F上一切m*n矩阵所成的集合对于矩阵的加法和数与矩阵的乘法来说作成F上一个向量空间,等等。举反面例子则可以体会概念反映的范围,加深对概念本质的把握。例如在讲解反比例函数概念的时候就可以举这样的一个例子。试判断下列关系式中的y是x的反比例函数吗? , , 。这就需要我们对反比例函数有本质的把握。什么是反比例函数呢?一切形如 的函数,本质是两个量乘积是一定值时,这两个量成反比例关系。 (1)中y和x-1成反比例关系,(2)中y+3和x成反比例关系。定义中要求k为常数当然可以是-1,所以(1),(2)不是,(3)是。2、温故法:不论是皮亚杰还是奥苏伯尔在概念学习的理论方面都认为概念教学的起步是在已有的认知的结构的基础上进行的。因此在教授新概念之前,如果能先对学生认知结构中原有的概念作一些适当的结构上的变化,再引入新概念,则有利于促进新概念的形成。例如:在高中阶段讲解角的概念的时候最好重新温故一下在初中阶段角的定义,然后从角的范围进行推广到正角、负角和零;从角的表示方法进行推广到弧度制,这样有利于学生思维的自然过渡较易接受。又如在讲解线性映射的时候最好首先温故一下映射的概念,在讲解欧氏空间的时候同样最好温故一下向量空间的概念。3、索因法:每一个概念的产生都具有丰富的背景和真实的原因,当你把这些原因找到的时候,那些鲜活的内容,使你不想记住这些概念都难。例如三角形的四个心:内心、外心、旁心和重心,很多同学总是记混这些概念。内心是三角形三个内角平分线的交点,因为是三角形内切圆的圆心而得名内心;外心是三角形三条边垂直平分线的交点,因为是三角形外接圆的圆心因而的名外心;旁心是三角形一个内角平分线和两个不相邻的外角平分线的交点,因为是三角形旁切圆的圆心而得名旁心;重心是三角形三条中线的交点,因为是三角形的重力平衡点而得名重心。当你了解了上述内容,你有怎么可能记混这些概念呢?又例如:点到直线的距离是这样定义的,过点做直线的垂线,则垂线段的长度,便是点到直线的距离。那么为什么不定义为点和直线上任意点连线的线段的长度呢?因为只有垂线段是最短的,具有确定性和唯一性。再如:我们之所以把n元有序数组也称为向量,一方面固然是由于它包括通常的向量,作为特殊的情形;另一方面也是由于它与通常的向量一样可以定义运算,并且有许多运算性质是共同的。像这样的例子还有很多,不再一一列举。4、联系法:数学概念之间具有联系性,任意数学概念都是由若干个数学概念联系而成,只有建立数学概念之间的联系,才能彻底理解数学概念。例如在学习数列的时候,我们不妨作如下分析:数列是按一定次序排列的一列数,是有规律的。那规律是什么呢?项与项数之间的规律、项与项之间的规律、数列整体趋势的规律。项与项数之间的规律就是我们说的通项公式,项与项之间的规律就是我们所说的递推公式,数列整体趋势的规律就是我们所说的极限问题。当项与项之间满足差数相等的关系时,数列被称为等差数列;当项与项之间满足倍数相等的关系时,数列就被称为等比数列。这样我们对数列这一章的概念便都了然于胸了。5、比喻法:很多同学概念不清的原因是觉得概念单调乏味、没有兴趣,从而不去重视它、深究它,所以我们在讲解概念的时候,不妨和生活相联系作些形象地比喻,以达到吸引学生提高学习兴趣的效果。例如:在讲解映射的时候,不妨把映射的法则比喻成男女恋爱的法则。两个人可以同时喜欢上一个人,但一个人不可以同时爱上两个人。这不正是映射的法则:集合A中的每一个元素在集合B中都唯一的像与之对应吗?又如函数可以理解为一个黑匣子或交换器,投入的是数产出的也是数;投入一个数只能产出一个数;但是当投入不同数的时候可以产出同一个数。再如:满足和的像等于像的和、数乘的像等于像的数乘的映射称之为线性映射。这不正像一个人怎么舞动他的影子就怎么舞动吗?所以有的时候把线性映射理解为“人影共舞”的映射。 6、类比法:在学习向量空间的时候,很多同学疑问重重。向量不就是那些既有大小又有方向的量吗?怎么连矩阵、连续函数、甚至线性变换也可以理解为向量呢?这一切是不是太不可思议了!但是当你作如下思考的时候,一切便顺理成章了。让小学生算一道5-7的题,他会说你这道题出错了,但是让一个初中生去算的话,他就会告诉你等于-2;当你让一个初中生对负数进行开平方运算,他会说不能对负数进行开平方。然而高中生却能够进行运算。这就说明了一个问题,随着年龄的增长和认识层次的提高,人们对于同一概念的理解和认识也在逐步的深入和扩大。正如数的概念由小学生的整数、分数和小数扩大为初中生的实数最后扩大为高中生的复数。同样对于向量的理解也就不能只限于既有大小又有方向的量,应该把这一观念转变过来。像这样的方法还有很多,不再一一列举。总之一句话:数学概念是重要的,分析概念是有趣的,在乐趣和玩赏中去理解概念是容易做到的.

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜。 走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误。 算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。 回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”

如何写数学论文 随着教育科研意识的不断提高,很多教师希望把自己培养成学者型教师,把自己的教育、教学研究成果写成论文. 根据本人的粗浅经历,我认为注意以下几点,与同事们讨论,旨在共同进步。 一、借鉴成果,博采众长——先粗保存,再归类保存,整理中顿生灵感 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息,特别是教育学、心理学方面的知识和信息,信息的采集形式多种多样,大致可以分为三类: (一)书面形式,比如各种书籍、报纸、刊物等; (二)口头形式,比如各种会议、听课、交流、咨询等; (三)电子形式,比如网络。 这些信息采集后的保存方式也各不相同,先粗保存。主要有四种方式: (1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容;(2)做摘记,写在本上;(3)复印或收藏;(4)电子信息存盘。 再归类保存。电脑的使用可以把这些宝贵的文献资料,全部化为电子信息存盘,并整理归类。整理归类的过程,即便是文字输入的过程都能够使你顿生灵感,我记得一位台湾女诗人创作了一首诗《一生都在整理一张书桌》,我想,做学问人都应该“一生都在忙碌中整理一张书桌”。这样为论文写作,提供了强大的理论支持和众多的珍贵例子,从而萌生对某一题材的进一步研究和发掘,撰写成了论文。所以论文不是谁刻意写出来的,有一点瓜熟蒂落的感觉,无病呻吟成不了好文章。 二、完备素材,厚积薄发——论文还自教研始,处处留心皆学问 “论文还自教研始”、“论文在研不在写”等观点,有一定的道理。“厚积”是基础,没有来源于实践的经验教训、数据统计等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面: (1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习、自己提高的过程; (2)课后反思; (3)作业记录,从学生作业中不但能发现具有共性的问题,还提示我们教研的改革方向; (4)考试总结; (5)解题分析,并从中探索解题规律和命题趋势; (6)调查反馈,可以用谈心、问卷等多种形式进行,从中反馈的信息是难得的写作素材; (7)成果质疑,学习他人但不要迷信,发现不足甚至是错误之处,理由不充分的就要敢于质疑; (8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度; (9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起.。 三、立足实践,提炼新意——“冷点”、“热点” 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的.正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手。论文的新意如何出?我认为有两点非常重要: 一是在主题上,立意新颖,视角独特; 二是在时间上,意识超前,创作及时。 四、从小到大,循序渐进——先文章、再论文,从小中见大好成文 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,初写者先尝试以下两个步骤: 第一步:练习写学习辅导类的文章.这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究,通常有1000字左右;要求与教学同步。 第二步,进行教学研究类论文的写作,先侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等。 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华,小中见大;论文篇幅不求长,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,应认真研读报刊风格。 五、技巧和经验——复制、删除、添加 当文思涌动,意欲写作时,先应确立文稿的题目,用小标题清晰地表达想写的几个方面。例如:我写《数学建构主义学习的探索和实践》一文时,根据建构主义学习的三大特征——自主学习、合作活动、个人体验,列出三个小标题,然后分别展开。 (1)为了借鉴别人的成果,有必要复制相关的文章段落,作为你的理论依据或论述的素材、旁例。但要讲究文德,切勿剽窃抄袭他人论文。这就要参考多遍文章,复制多款内容,不怕内容多,只怕内容不全,然后去粗取精,大刀阔斧地删除。留下的骨架再添加自己的思想,教学实践中的例证,自己平时积累的成果等,但文章一定要有更多自己的东西,这样才是真正自己的文章。 (2)做有心人。经常阅读,选择有关书刊放在床头、沙发边或办公桌上,只要有空经常翻阅。一旦有想法,及时记录,并经常向这个方向思考和研究,再参考他人成果必能成就自己的文章。坚持不懈,持之以恒,“功夫不负有心人”。 (3)抓住热点、冷点。例如:我写《数学探究性学习策略》(市一等奖),就是抓住新教材契机,对《课程标准》进行仔细地学习,结合平时的教学经验和资料收集完成的。另外,听课、听报告等,往往有许多新的思想、新的观念,同样是论文研究的好题材,例如:我写《数学建构主义学习的探索和实践》(市二等奖),所选择的内容就是计算机本科函授时,老师的讲课内容。当然,开始对这个问题还意识模糊,只觉得是一个好题材,但后来经过了许多文章的阅读,才清晰地认识了“建构主义学习”所具备的三个主要特征,于是文章头绪也理清了。再者,我写《学困生元认知的培养》(全国二等奖),就是偶然看到“元认知”的概念,是一种“对认知的认知”,再搜索引擎得相关资料,结合本人体验成文的。 以上所谈是我对初中数学论文写作的几点看法,希望能给朋友们带来一些帮助,所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一,同行们一定会写出比我更好的文章。

相关百科

热门百科

首页
发表服务