首页

> 学术期刊知识库

首页 学术期刊知识库 问题

cvpr论文大主题

发布时间:

cvpr论文大主题

遗传算法是一种计算机科学中的优化算法,用于在搜索空间中找到最佳解决方案。关于将遗传算法应用于图像匹配的论文,有一篇具有里程碑意义的经典论文是由. Holland和他的同事提出的。该论文题目为"Adaptation in Natural and Artificial Systems",是由. Holland在1975年发表于美国国家科学院学报上的。这篇论文介绍了遗传算法的基本思想,并提出了将遗传算法应用于图像匹配问题的方法。具体而言,Holland等人提出了一种基于遗传算法的图像匹配算法,该算法使用基因编码表示图像特征,通过进化运算(如选择、交叉、变异等)来搜索最优匹配。这是遗传算法在图像匹配问题上的第一个应用,为后续研究提供了重要的启示。需要注意的是,虽然该论文并没有直接提到图像匹配这个术语,但它为后来的图像匹配问题提供了基础和思路,被认为是遗传算法应用于图像匹配问题的奠基之作。

遗传算法在图像匹配领域的应用可以追溯到1994年的一篇论文,题为“基于遗传算法的图像匹配”。该论文由美国佐治亚理工大学的. DeBonet等人发表在CVPR会议上。该论文提出了一种基于遗传算法的图像匹配方法,该方法可以在多个图像中找到相似的目标。此后,遗传算法在图像匹配领域得到了广泛应用。

一篇cvpr能进大厂。

“一篇cvpr能进大厂。看你说的教职是什么。如果是顶级大学比如985,找教授级别的,别想了,至少5篇才有机会。如果是顶级大学研究员、博后啥的,有机会的。只要你的导师推你你就可以去,当然前提是你的导师要足够强,在领域里面有足够的影响力。

如果是次级一点的比如211,教授级别的还是找不到,研究员倒是不用那么看出身也有机会。但研究员/博后这些都是要看产出的。论文压力又大,实验室琐事又多,工资还少。

国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是ICCV和ECCV),近年来每年有约1500名参加者,收录的论文数量一般300篇左右。本会议每年都会有固定的研讨主题,而每一年都会有公司赞助该会议并获得在会场展示的机会。

cvpr会议概况

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。

CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议 。在巴西教育部的排名中排名为A1。基于微软学术搜索(Microsoft Academic Search)2014年的统计,CVPR中的论文总共被引用了169,936次。

香港中文大学教授汤晓鸥率领的团队在全球范围内做出了大量深度学习原创技术突破:2012年国际计算视觉与模式识别会议(CVPR)上仅有的两篇深度学习文章均出自其实验室;

2011—2013年间在计算机视觉领域两大顶级会议ICCV和CVPR上发表了14篇深度学习论文,占据全世界在这两个会议上深度学习论文总数(29篇)的近一半。他在2009年获得计算机视觉领域两大最顶尖的国际学术会议之一CVPR最佳论文奖,这是CVPR历史上来自亚洲的论文首次获奖。

遗传算法应用于图像匹配的最早论文是由美国科学家戴维·戈德伯格(David Goldberg)在1988年发表的论文《基于遗传算法的图像匹配》("Genetic Algorithms in Search, Optimization, and Machine Learning")中,提出了一种利用遗传算法进行图像匹配的方法。该方法主要是利用遗传算法对图像特征进行编码,并通过遗传算法的交叉、变异等操作,对不同的图像特征进行优化,从而实现图像匹配的目的。这篇论文的发表标志着遗传算法在图像处理领域中的首次应用,为后来的相关研究奠定了基础。同时,该论文也表明了遗传算法在解决复杂优化问题中的潜力和优越性,成为了现代遗传算法应用领域的开山之作。

cvpr论文查重

一篇cvpr能进大厂。

“一篇cvpr能进大厂。看你说的教职是什么。如果是顶级大学比如985,找教授级别的,别想了,至少5篇才有机会。如果是顶级大学研究员、博后啥的,有机会的。只要你的导师推你你就可以去,当然前提是你的导师要足够强,在领域里面有足够的影响力。

如果是次级一点的比如211,教授级别的还是找不到,研究员倒是不用那么看出身也有机会。但研究员/博后这些都是要看产出的。论文压力又大,实验室琐事又多,工资还少。

国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是ICCV和ECCV),近年来每年有约1500名参加者,收录的论文数量一般300篇左右。本会议每年都会有固定的研讨主题,而每一年都会有公司赞助该会议并获得在会场展示的机会。

cvpr会议概况

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。

CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议 。在巴西教育部的排名中排名为A1。基于微软学术搜索(Microsoft Academic Search)2014年的统计,CVPR中的论文总共被引用了169,936次。

香港中文大学教授汤晓鸥率领的团队在全球范围内做出了大量深度学习原创技术突破:2012年国际计算视觉与模式识别会议(CVPR)上仅有的两篇深度学习文章均出自其实验室;

2011—2013年间在计算机视觉领域两大顶级会议ICCV和CVPR上发表了14篇深度学习论文,占据全世界在这两个会议上深度学习论文总数(29篇)的近一半。他在2009年获得计算机视觉领域两大最顶尖的国际学术会议之一CVPR最佳论文奖,这是CVPR历史上来自亚洲的论文首次获奖。

cvpr三个weak accept,总分6分能中。

CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。

cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。

cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。

cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。

cvpr的评分等级:

1、CVPR是计算机视觉领域最高级别的会议(CCFA类会议),收录的论文代表了计算机视觉领域的最新发展方向和最高研究水平。

2、cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。

3、而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。

cvpr论文模板

大名鼎鼎的DenseNet,17年CVPR的best paper(当然有争议是后话),不得不读。黄高博士的扛鼎之作,之前在读他的Snapshot-Ensembles时感觉就很舒服,整个文章逻辑很清楚,实验对比做的也十分全面,相信这篇best paper更是没有问题,会给读者一种爽的感觉。

2852次。绝对值很高,但相比其他经典网络,ResNet,GoogLeNet之类,有些差距。

本篇在16年8月挂到arXiv上,中了2017年CVPR,是继16年何大神的ResNet之后,第二个华人的best paper, 这里 有个作者本尊的talk,现场讲解。一作Gao Huang(黄高)05年北航的本科生(GPA第一),15年清华博士毕业(读了6年。。),后来在康奈尔待了3年做博后,此刻在清华作青椒,本篇是在康奈尔时的工作。二作刘壮(同等贡献)也是碉堡,现在在伯克利做博士生,之前是清华姚班的(13级),发这篇文章时还在清华,也就是说 本科生 。。。最近以一作的身份新发了一篇《Rethinking the Value of Network Pruning》,中了19年的ICLR,同时也是18年NIPS的best paper award。。这个世界太疯狂了,这都不是潜力股了,而是才华横溢溢的不行了。

官方实现在这里:

黄高个人主页在这里:

刘壮个人主页在这里:

先前的研究中说明只要网络包含短路连接,基本上就能更深,更准确,更有效的训练。本文基于这个观察,引入了密集卷积网络(DenseNet),它以前馈方式将每个层连接到所有层。传统的卷积网络L层有L个连接,而DenseNet有 个直接连接。对于每一层,它前面所有层的特征图都当作输入,而其本身的特征图作为所有后面层的输入(短路连接被发挥到极致,网络中每两层都相连)。DenseNet具有几个引入注目的优点: 可以缓解梯度消失问题,加强特征传播,鼓励特征重用,并大幅减少参数数量。

随着CNN变得越来越深,一个新的研究问题出现了:随着输入信息或梯度通过多层,它在到达网络结尾(或开始)处就消失了。ResNets和Highway Networks通过恒等连接将信号从一层传输到下一层。Stochastic depth通过在训练期间随机丢弃层来缩短ResNets,以得到更好的信息和梯度流。FractalNets重复组合几个并行层序列和不同数量的卷积块,以获得较深的标准深度,同时在网络中保持许多短路径。尽管上述方法的网络结构都有所不同,但它们有一个共同特征:创建从早期层到后期层的短路径。

本文提出一个简单的连接模式:为了确保网络中各层之间的最大信息流, 将所有层(匹配特征图大小)直接相互连接 。为了保持前向传播性质,每个层从所有前面的层获得附加输入,并将其自身特征图传递给所有后续层。

至关重要的是,与ResNets相比,在传递给下一层之前, 不是通过求和来合并特征,而是通过concat来合并特征 。因此, 层有 个输入,包括所有先前卷积块的特征图。其特征图被传递到后续所有 层。这在L层网络中引入了 个连接,而不是传统架构的L个连接。正是因为这种密集连接模式,所以称本文方法为密集连接网络( Dense Convolutional Network DenseNet)。

相比传统卷积网络,这种密集连接模式有有一点可能违反直觉的是,它需要更少的参数,因为无需重新学习冗余的特征图。本文提出的DenseNet架构显式区分了添加到网络的信息和保留的信息。DenseNet的层非常窄(如每层只有12个滤波器),只给网络的"集体知识"增加一小组特征图,并保持其余的特征图不变。

除了更好的参数利用率之外,DenseNet的一大优势是它改善了整个网络中的信息流和梯度,使得网络更易于训练。每层都可以直接访问损失函数和原始输入信号的梯度( 我屮,这不就是GoogLeNet当时为解决梯度消失而在中间层引入分类器那种ugly办法的替代吗 ),从而导致隐式的深度监督。这有助于训练更深的网络。

与DenseNet相似的级联结构早在1989年就提出来了。。Adanet的提出差不多是与DenseNet并行的,跨层连接也相似(话说竞争真激烈。。)

本文作者提出的另一个网络Stochastic depth说明并非所有层都需要,在深度残差网络中存在大量冗余的层。本文的部分灵感也来源于此。

相比从极深或极宽的架构中提取表示能力,DenseNet是通过 特征重用 来利用网络的潜力,得到易于训练和高参数效率的压缩模型。相比从不同层拼接特征的Inception网络,DenseNet更简单有效(看来Inception因其结构复杂性没少被批判)。

定义 为单张输入图像,网络由 层组成,每一层实现非线性变换 ,其中 为层的索引号。 可以是BN,ReLU,Pooling,Conv等操作的复合函数,定义 层的输出为 。

传统的层连接: 。ResNets增加了跳跃连接: 。ResNets的一个优势是梯度可以通过恒等函数直接从后面的层流向前面的层。然而,恒等函数和 的输出通过加法合并,有可能会阻碍网络的信息流。

本文引入与ResNets不同的连接模式:从任意层到所有后续层的直接连接(图1)。结果就是,第 层接收所有之前层的特征图作为输入: 。为了便于实现,concat 的多个输入为单一张量。

受ResNet v2启发,定义 为三个连续运算的复合函数:BN,ReLU,3 x 3 Conv

当特征图的大小改变时,concat运算是不可能的,然鹅,卷积网络的一个关键组成部分就是下采样层,通过它可以改变特征图大小。为了便于在架构中进行下采样,将网络划分为多个密集连接的密集块(dense blocks),如图2所示。

将密集块之间的层称为过渡层(transition layers),它们进行卷积和池化。本文实验中的过渡层由BN,1 x 1卷积和 2 x 2平均池化组成。

如果每个函数 生成 个特征图,它后面跟着的 层有 个输入特征图,其中 是输入层的通道数。DenseNet和现有网络架构的一个重要区别是DenseNet可以有非常窄的层,如 。本文将超参数 定义为网络的成长率(growth rate)。对此的一种解释是,每一层都可以访问其块中所有前面的特征图,即,网络的『集体知识』。可以将特征图视为网络的全局状态。每一层增加自己的 个特征图到这个状态。成长率反映了每层由多少新信息对全局状态有贡献。全局状态一旦写入,就可以被网络中的任何地方访问,而不像传统网络那样,无需从一层复制到另一层。(全文精华应该就是这一段了)

1x1 conv非常有用(提升计算效率),本文也大用特用。本文定义DenseNet-B的 为 BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3)

为了使模型更紧凑,可以减少过渡层的特征图数量。如果密集块包含 个特征图,定义接下来的过渡层生成 个特征图,其中 表示压缩率。定义 的DenseNet为DenseNet-C,本位实验中设置为 。当同时使用瓶颈层和压缩过渡层时,定义模型为DenseNet-BC。

非ImageNet数据集采用同一个架构,由3个密集块构成。ImageNet的架构如表1所示

CIFAR SVHN ImageNet

所有网络都用SGD。

CIFAR和SVHN的batch size为64,epoch分别为300和40,初始学习率为,在50%和75%的epoch时分别除10。

ImageNet的batch size为256,90个epoch,初始学习率为,在30和60epoch时分别除10。

weight decay为 ,动量为。用He初始化。

对于CIFAR和SVHN,还在每个卷积层后接了dropout层(除第一个卷积层外),丢失率为。

看表2的最后一行

DenseNet可以利用更大更深模型表示能力的增长。

如图4所示

主要用DenseNet-BC和ResNet作比较。

表面上看,DenseNets和ResNets没什么不同,两个式子的差别仅仅是输入从加法变为concat,然而,这种看似很小的修改导致两种网络架构的行为明显不同。

因为鼓励特征重用,所以得到更紧凑的模型。

如图4所示。

对DenseNets准确率提升的一种解释是各个层通过短路连接从损失函数接收额外的监督(某种深度监督)。DenseNets用隐式的方式执行相似的深度监督:网络顶部的单个分类器通过最多两到三个过渡层为所有层提供直接监督。 然而,由于在所有层之间共享相同的损失函数,因此DenseNets的损失函数和梯度基本上不那么复杂。

和随机深度的对比,随机深度有点类似DenseNet:如果所有中间层都随机丢弃,那么在相同的池化层之间的任意两层都有可能直接连接。

DenseNet就是好,就是好啊就是好。在遵循简单的连接规则的同时,DenseNets自然地整合了恒等映射,深度监督和多样化深度的属性。

又是一篇没有什么数学公式的paper,越来越感觉深度学习像物理,很多结果都是基于做实验得到的。通过对实验的观察对比分析,找出实验中的缺陷不足,从而去改进,然后发paper。黄高博士的写作套路还是非常讨喜的,特别是开头的地方,娓娓道来,一步一步告诉你为什么要这么做,为什么要引入这一步。此外,DenseNets和作者本人的工作『随机深度』也有千丝万缕的关系,看来功夫做扎实了,沿着一条道路是可以出一系列成果的。

这是个好问题。。是要进一步衍生ResNet吗?

提出密集连接结构,将ResNet的跳跃连接发扬光大为两两连接

效果比ResNet还好,通过减少滤波器个数(文中称作成长率),参数量也下来了

感觉效果提升并没有那么明显,被后续出来的ResNeXt超过了

各种网络结构的实现:

黄高本人视频讲解:

作者本人的解答: CVPR 2017最佳论文作者解读:DenseNet 的“what”、“why”和“how”

DenseNet的3个优势:

CVPR论文可以说是世界顶级水平论文。

图片来源于网络

CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。这是一个一年一次的会议,举办地从来没有出过美国。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。

下面是前几年CVPR论文的接收情况:

图片来源于网络

cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。

在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议。

cvpr论文格式

CVPR是计算机视觉领域最高级别的会议(CCFA类会议),收录的论文代表了计算机视觉领域的最新发展方向和最高研究水平。cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席(areachair)决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。自然,cvpr论文的级别就可想而知了,cvpr论文什么级别,可以说其级别相当于顶级SCI期刊论文级别同等甚至更高。cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席(areachair)决定是否接收。所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。自然,cvpr论文的级别就可想而知了,cvpr论文什么级别,可以说其级别相当于顶级SCI期刊论文级别同等甚至更高。

全称:IEEE Conference on Computer Vision and Pattern Recognition 中文:IEEE国际计算机视觉与模式识别会议国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是ICCV和ECCV),近年来每年有约1500名参加者,收录的论文数量一般300篇左右。第一届CVPR会议于1985年在旧金山举办,后面每年都在美国本土举行。 近几年录取率25%左右,自2001年开始每年在会议上进行演讲的论文[oral]通过率锐减为10%以下,2006年这一数字以来更是低于5%(一个重要原因是由于论文数量过多,大部分的6~8页长篇论文在会议期间只要求做海报[poster]展示)。在各种学术会议统计中,cvpr被认为有着很强的影响因子和很高的排名。

雷锋网 AI 科技评论按: 百度研究院、华中科技大学、悉尼科技大学联合新作——关于无监督领域自适应语义分割的论文《 Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation》被 CCF A 类学术会议 CVPR2019 收录为 Oral 论文 。该论文提出了一种从「虚拟域」泛化到「现实域」的无监督语义分割算法,旨在利用易获取的虚拟场景标注数据来完成对标注成本高昂的现实场景数据的语义分割,大大减少了人工标注成本。 本文是论文作者之一罗亚威为雷锋网 AI 科技评论提供的论文解读。 论文地址: 1.问题背景 基于深度学习的语义分割方法效果出众,但需要大量的人工标注进行监督训练。不同于图像分类等任务,语义分割需要像素级别的人工标注,费时费力,无法大规模实施。借助于计算机虚拟图像技术,如3D游戏,用户可以几乎无成本地获得无限量自动标注数据。然而虚拟图像和现实图像间存在严重的视觉差异(域偏移),如纹理、光照、视角差异等等,这些差异导致在虚拟图像上训练出的深度模型往往在真实图像数据集上的分割精度很低。 2. 传统方法 针对上述域偏移问题,一种广泛采用的方法是在网络中加入一个域判别器Discriminator (D),利用对抗训练的机制,减少源域Source (S)和目标域Target(T)之间不同分布的差异,以加强原始网络(G)在域间的泛化能力。方法具体包括两方面: (1)利用源域的有标签数据进行有监督学习,提取领域知识: 其中Xs,Ys为源域数据及其对应标签。 (2)通过对抗学习,降低域判别器(D)的精度,以对齐源域与目标域的特征分布: 其中XT为目标域数据,无标签。 3.我们针对传统方法的改进 以上基于对抗学习的传统域适应方法只能对齐全局特征分布(Marginal Distribution),而忽略了不同域之间,相同语义特征的语义一致性(Joint Distribution),在训练过程中容易造成负迁移,如图2(a)所示。举例来说,目标域中的车辆这一类,可能与源域中的车辆在视觉上是接近的。因此,在没有经过域适应算法之前,目标域车辆也能够被正确分割。然而,为了迎合传统方法的全局对齐,目标域中的车辆特征反而有可能会被映射到源域中的其他类别,如火车等,造成语义不一致。 针对这一问题,我们在今年CVPR的论文中,向对抗学习框架里加入了联合训练的思想,解决了传统域适应方法中的语义不一致性和负迁移等键问题。具体做法见图2(b),我们采用了两个互斥分类器对目标域特征进行分类。当两个分类器给出的预测很一致时,我们认为该特征已经能被很好的分类,语义一致性较高,所以应减少全局对齐策略对这些特征产生的负面影响。反之,当两个分类器给出的预测不一致,说明该目标域特征还未被很好地分类,依然需要用对抗损失进行与源域特征的对齐。所以应加大对齐力度,使其尽快和源域特征对应。 4.网络结构 为了实现上述语义级对抗目标,我们提出了Category-Level Adversarial Network (CLAN)。 遵循联合训练的思想,我们在生成网络中采用了互斥分类器的结构,以判断目标域的隐层特征是否已达到了局部语义对齐。在后续对抗训练时,  网络依据互斥分类器产生的两个预测向量之差(Discrepancy)来对判别网络所反馈的对抗损失进行加权。网络结构如下图3所示。  图3中,橙色的线条表示源域流,蓝色的线条表示目标域流,绿色的双箭头表示我们在训练中强迫两个分类器的参数正交,以达到互斥分类器的目的。源域流和传统的方法并无很大不同,唯一的区别是我们集成了互斥分类器产生的预测作为源域的集成预测。该预测一方面被标签监督,产生分割损失(Segmentation Loss),如式(3)所示: 另一方面,该预测进入判别器D,作为源域样本。 绿色的双箭头处,我们使用余弦距离作为损失,训练两个分类器产生不同的模型参数: 目标域流中,集成预测同样进入判别器D。不同的是,我们维持两个分类器预测的差值,作为局部对齐程度的依据 (local alignment score map)。该差值与D所反馈的损失相乘,生成语义级别的对抗损失: 该策略加大了语义不一致特征的对齐力度,而减弱了语义一致的特征受全局对齐的影响,从而加强了特征间的语义对齐,防止了负迁移的产生。 最后,根据以上三个损失,我们可以得出最终的总体损失函数: 基于以上损失函数,算法整体的优化目标为: 在训练中,我们交替优化G和D,直至损失收敛。 5. 特征空间分析 我们重点关注不常见类,如图4(a)中黄框内的柱子,交通标志。这些类经过传统方法的分布对齐,反而在分割结果中消失了。结合特征的t-SNE图,我们可以得出结论,有些类的特征在没有进行域迁移之前,就已经是对齐的。传统的全局域适应方法反而会破坏这种语义一致性,造成负迁移。而我们提出的语义级别对抗降低了全局对齐对这些已对齐类的影响,很好的解决了这一问题。 6. 实验结果  我们在两个域适应语义分割任务,即GTA5 -> Cityscapes 和 SYNTHIA -> Cityscapes 上进行了实验验证。我们采用最常见的Insertion over Union作为分割精度的衡量指标,实验结果如下。从表1和表2中可以看出,在不同网络结构(VGG16,ResNet101)中,我们的方法(CLAN)域适应效果都达到了 state-of-the-art的精度。特别的,在一些不常见类上(用蓝色表示),传统方法容易造成负迁移,而CLAN明显要优于其他方法。 表 1. 由虚拟数据集GTA5 迁移至真实数据集 Cityscapes 的域适应分割精度对比。  表 2. 由虚拟数据集SYNTHIA 迁移至真实数据集 Cityscapes 的域适应分割精度对比。 第二个实验中,我们了展示隐空间层面,源域和目标域间同语义特征簇的中心距离。该距离越小,说明两个域间的语义对齐越好。结果见图 5。 最后,我们给出分割结果的可视化效果。我们的算法大大提高了分割精度。 7. 总结 《Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation》引入了联合训练结合对抗学习的设计,在无监督域适应语义分割任务中取得了较好的实验结果。该算法能应用前景广泛,比如能够很好地应用到自动驾驶中,让车辆在不同的驾驶环境中也能保持鲁棒的街景识别率。 最后 CVPR 2019 Oral 论文精选汇总,值得一看的 CV 论文都在这里(持续更新中)CVPR 2019 即将于 6 月在美国长滩召开。今年有超过 5165 篇的大会论文投稿,最终录取 1299 篇,其中 Oral 论文近 300 篇。为了方便社区开发者和学术青年查找和阅读高价值论文,AI 研习社从入选的 Oral 论文中,按应用方向挑选了部分精华论文,贴在本文,打开链接即可查看~

研究生cvpr论文

CVPR论文可以说是世界顶级水平论文。

图片来源于网络

CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。这是一个一年一次的会议,举办地从来没有出过美国。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。

下面是前几年CVPR论文的接收情况:

图片来源于网络

cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。

在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议。

可以。发表论文在个人晋升、评奖、毕业等领域都可以发挥一定的作用。在研究生和博士生的学术生涯中,发表cvpr是一个常见的要求,奖学金的评估也是如此事实上,获得奖金是次要的,CVPR论文给作者带来的好处绝对不能用金钱来衡量。

相关百科

热门百科

首页
发表服务