首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数学发展史的研究论文

发布时间:

数学发展史的研究论文

人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前

中国古代是一个在世界上数学领先的国家大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” ,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报..

[4].数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

研究数的发展史论文

对数学教学的几点思考 进入新世纪以后,我们面临的问题很多,其中最关键的就是怎样使产业升级,在这方面起重要作用是人才。究竟需要什么样的人才呢,专家们指出需要以下四种素质的人才:第一,有新观念;第二,能够不断从事技术创新;第三,善于经营和开拓市场;第四、有团队精神。为此数学教学中应加强学生这四个方面能力的培养。 一、在数学教学中培养学生的新观念、新思想 新观念中不仅包含对事物的新认识、新思想,而且包含一个不断学习的过程。为此作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。在数学史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的关系。主张把代数与几何相结合,把量化方法用于几何研究的新观点,从而创立解析几何学。作为数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。 例 已知 a>=0,b>=0, 且 a+b=1, 求证 (a+2) (a+2) +(b+2) (b+2)>=25/2 证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a>=0,b>=0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。证法如下:在平面直角坐标系内取直线段 x+y=1,(0=<x>=1), (a+2) (a+2) +(b+2) (b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到一直线的距离是这点与该直线上任意一点之间的距离的最小值。而 d*d=( -2-2-1|)/2=25/2, 所以(a+2) (a+2) +(b+2) (b+2)>=25/2。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。 二、在数学教学中培养学生的创新能力 创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始至终地参与这一探索过程,发展学生创新能力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。 三、在数学教学中培养学生经营和开拓市场的能力 一切数学知识都来源于现实生活中,同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。为此数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。 四、 在数学教学中培养学生团队精神 团队精神就是一种相互协作、相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如我又在讲授球的体积公式时,课前我让20名学生用厚厘米的纸板依次做半径为10、、9 …… 厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让40名学生用厚厘米的纸板依次做半径为10、、 …… 、厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生认识到只有齐心协力才能达到成功的彼岸。数学教学具有不仅使学生学知,学做;而且使学生学共同生活,学共同发展的目标任务。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

数的结构

许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。

因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题。

把数学的发展写下来。

数学──自然科学之父,起源于用来计数的自然数的伟大发明。

人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念

后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。

大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式──农耕生活。

他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。只有“一”、“二”、“三”、“多”,已远远不够用了。底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚──在树木或者石头上刻痕划印来记录流逝的日子。

数的诞生 数学——自然科学之父,起源于用来计数的自然数的伟大发明。 若干年以前,人类的祖先为了生存,往往几十人在一起,过着群居的生活。他们白天共同劳动,搜捕野兽、飞禽或采集果薯食物;晚上住在洞穴里,共同享用劳动所得。在长期的共同劳动和生活中,他们之间逐渐到了有些什么非说不可的地步,于是产生了语言。他们能用简单的语言夹杂手势,来表达感情和交流思想。随着劳动内容的发展,他们的语言也不断发展,终于超过了一切其他动物的语言。其中的主要标志之一,就是语言包含了算术的色彩 人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念。连续几天“无”兽可捕,就没有肉吃了,“有”、“无”的概念便逐渐加深。 后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。有些酋长虽是长者,却说不出他捕获过多少种野兽,看见过多少种树,如果问巫医,巫医就会编造一些词汇来回答“多少种”的问题,并煞有其事地吟诵出来。然而,不管怎样,他们已经可以用双手说清这样的话(用一个指头指鹿,三个指头指箭):“要换我一头鹿.你得给我三枝箭。”这是他们当时没有的算术知识。 大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式——农耕生活。他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。特别是在尼罗河谷、底格里斯河与幼发拉底河流域发展起更复杂的农业社会时,他们还碰到交纳租税的问题。这就要求数有名称。而且计数必须更准确些,只有“一”、“二”、“三”、“多”,已远远不够用了。 底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚,那儿产生过一种文化,与埃及文化一样,也是世界上最古老的文化之一。美索不达米亚人和埃及人虽然相距很远,但却以同样的方式建立了最早的书写自然数的系统——在树木或者石头上刻痕划印来记录流逝的日子。尽管数的形状不同,但又有共同之处,他们都是用单划表示“一”。 后来(特别是以村寨定居后),他们逐渐以符号代替刻痕,即用1个符号表示1件东西,2个符号表示2件东西,依此类推,这种记数方法延续了很久。大约在5000年以前,埃及的祭司已在一种用芦苇制成的草纸上书写数的符号,而美索不达米亚的祭司则是写在松软的泥板上。他们除了仍用单划表示“-”以外,还用其它符号表示“+”或者更大的自然数;他们重复地使用这些单划和符号,以表示所需要的数字。 公元前1500年,南美洲秘鲁印加族(印第安人的一部分)习惯于“结绳记数”——每收进一捆庄稼,就在绳子上打个结,用结的多少来记录收成。“结”与痕有一样的作用,也是用来表示自然数的。根据我国古书《易经》的记载,上古时期的中国人也是“结绳而治”,就是用在绳上打结的办法来记事表数。后来又改为“书契”,即用刀在竹片或木头上刻痕记数.用一划代表“一”。直到今天,我们中国人还常用“正”字来记数.每一划代表“一”。当然,这个“正”字还包含着“逢五进一”的意思。

研究数学发展历史论文范文

数学──自然科学之父,起源于用来计数的自然数的伟大发明。人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式──农耕生活。他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。只有“一”、“二”、“三”、“多”,已远远不够用了。底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚──在树木或者石头上刻痕划印来记录流逝的日子。后来(特别是以村寨定居后),他们逐渐以符号代替刻痕公元前1500年,南美洲秘鲁印加族(印第安人的一部分)习惯于“结绳记数”

把数学的发展写下来。

数学──自然科学之父,起源于用来计数的自然数的伟大发明。

人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念

后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。

大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式──农耕生活。

他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。只有“一”、“二”、“三”、“多”,已远远不够用了。底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚──在树木或者石头上刻痕划印来记录流逝的日子。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

数的结构

许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。

因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题。

离散数学发展史论文

数 学 概 览数学是研究现实世界中数量关系和空间形式的科学。简单地说,就是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。在不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率的一般方法。    虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。    早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支。    开平方和开立方是解最简单的高次方程所必须用到的运算。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。    在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究。形的研究属于几何学的范畴。古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的。规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具。    墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题。例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理);5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。    中国几何学以测量和计算面积、体积的量度为中心任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几何的产生。欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何。18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河。高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理。此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。这些都使几何学面目一新。在现实世界中,数与形,如影之随形,难以分割。中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑。二次、三次方程的产生,也大都来自几何与实际问题。至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化。    在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽。十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用。在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史上的一件大事。    在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。    十八世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。由于自然界的客观规律大多是以微分方程的形式表现的,所以微分方程的研究一开始就受到很大的重视。    微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了现代的微分几何。19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。对客观世界中随机现象的分析,产生了概率论。第二次世界大战军事上的需要,以及大工业与管理的复杂化产生了运筹学、系统论、控制论、数理统计学等学科。实际问题要求具体的数值解答,产生了计算数学。选择最优途径的要求又产生了各种优化的理论、方法。    力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些数学知识。    十九世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展,也产生了把数学看作是一个整体的各种思潮和数学基础学派。特别是1900年,德国数学家希尔伯特在第二届国际数学家大会上的关于当代数学重要问题的演讲,以及三十年代开拓的,以结构概念统观数学的法国布尔巴基学派的兴起,对二十世纪数学的发展产生了巨大、深远的影响,科学的数学化一语也开始为人们所乐道。    数学的外围向自然科学、工程技术甚至社会科学中不断渗透扩大,并从中吸取营养,出现了一些边缘数学。数学本身的内部需要也孽生了不少新的理论与分支。同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。    在数学的蓬勃发展过程中,数与形的概念不断扩大且日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。如把函数看成是某种空间的一个点之类。这种做法之所以行之有效,归根结底还是因为数学家们已经熟悉了那种简易的数学运算与图形关系,而后者又有着长期深厚的现实基础。而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。因此如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。    由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用。理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的。    但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。计算方法的优越有助于对实际问题的具体解决。由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。而在古希腊则着重思维,追求对宇宙的了解。由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。    中国的数学体系在宋元时期达到高峰以后,开始陷于停顿且几至消失。而在欧洲,经过文艺复兴运动、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。机器的使用,不论中外都由来已久。但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。    在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。解析几何与微积分的诞生,成为数学发展的一个转折点。17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。    20世纪出现了各种崭新的技术,产生了新的技术革命,特别是电子计算机的出现,使数学又面临了一个新的时代。这一时代的特点之一就是部分脑力劳动的逐步机械化。与17世纪以来以围绕连续、极限等概念为主导思想与方法的数学不同,由于计算机研制与应用的需要,离散数学与组合数学开始受到重视。    计算机对数学的作用已不仅仅只限于数值计算,也开始更多的涉及符号运算(包括机器证明等数学研究)。为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。例如,代数几何是一门高度抽象化的数学,而最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。总之,数学正随着新的技术革命而不断发展

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。目录简介名称来源数学的意义数学史数学研究的各领域数学的分类数学的五大分支数学分支数学分类数学的发展史国外数学名家阿基米德高斯牛顿莱布尼茨中国古代数学发展史中国古代数学的萌芽中国古代数学体系的形成中国古代数学的发展中国古代数学的繁荣中西方数学的融合中国古代著名数学家及其主要贡献刘徽(生于公元250年左右)祖冲之(公元429年—公元500年)中国古代其他著名数学家及其主要贡献以华人数学家命名的研究成果数学名言数学中有关的名词现代数学衍生品简介 名称来源数学的意义 数学史数学研究的各领域数学的分类 数学的五大分支 数学分支 数学分类数学的发展史国外数学名家 阿基米德 高斯 牛顿 莱布尼茨中国古代数学发展史 中国古代数学的萌芽 中国古代数学体系的形成 中国古代数学的发展 中国古代数学的繁荣 中西方数学的融合中国古代著名数学家及其主要贡献 刘徽(生于公元250年左右) 祖冲之(公元429年—公元500年) 中国古代其他著名数学家及其主要贡献以华人数学家命名的研究成果数学名言数学中有关的名词现代数学衍生品展开 编辑本段简介名称来源 数学【shù xué】(■;希腊语:μαθηματικ?)西方源自于古这一词在希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。编辑本段数学的意义 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 编辑本段数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。编辑本段数学的分类 离散数学 模糊数学数学的五大分支 1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学数学分支 1.算术 2.初等代数 3.高等代数 4. 数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学数学分类 符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。编辑本段数学的发展史 世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”编辑本段国外数学名家阿基米德 阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。高斯 数学天才——高斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。牛顿 牛顿是英国物理学家和数学家。 在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。一天在树下闲坐,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有贡献。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 浩瀚的真理海洋,却还完全是个谜。”莱布尼茨 戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。编辑本段中国古代数学发展史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。

如何抉择搬家公司呢?下面给大家指出多少点: (一)通常我们都是通过互联网来得悉搬家公司的电话,与搬家公司接洽!在搬家公司的网站上会留有搬家公司的电话,如果咱们知道搬家公司的网址就能够直接输入域名拜访搬家网站。然而,相信大局部人都是不知道搬家公司的网址的,即便你有过搬家的阅历,信任你也不会记下请过搬家的搬家公司的网站(电话也不必定也还记者,除非先前的搬家公司对你个人来说十分满足,有保存的电话号码);那么在不晓得网站的情形下我们都会去应用搜索引擎了查找搬家公司网站与电话,北京婚庆。那下面我就以百度搜寻来举例: 大部门的人都愿望能找个既便宜服务又好的搬家公司,北京搬家公司,然而大家在搜索搬家公司时都会使用地区+搬家公司哪家好、地域+搬家公司哪廉价等等这些要害词,这时候你就搜到很准确匹配的百度问答的这个题目(在这里我就不发图了)点击进去之后仔细的友人就会发明问答的时光有点错误劲的处所。答复与作为最佳谜底的时间不会超过1分钟!这就是阐明很可能这个问题是由枪手在操作的,他们是在自问自答,通过这种方式来推广自己罢了!所以我提示大家须要留神!大家不要贪小便宜,省得最后受伤的仍是本人! 那么我们该如何筛选搜索得出的结果,我们都会优先选择搜索成果的第一页(能在搜索第一页的搬家公司网站都是比较花心理的),在挑网站的时候我们看搬家公司的名称,是否是比较著名的或者是大品牌的搬家公司,不外这也是有点难辨别得出虚实的,因为在目前的搬家公司很多都是山寨,都是些小公司打着至公司的品牌者网友市民,那么在这滥竽充数的搬家市场怎么找到正规的搬家公司呢?那么下面就告知大家几个技能(1)热词搜索排名是否靠前,越靠前越好;(2)搬家公司网站域名是否简短,北京婚礼策划,越短越好;(3)搬家公司的网站描写是否清楚合乎自己想要的,还有是否呈现良多最好最便宜这些强调词(前面有提到过,这都是很假的)!那么就推举一个比拟标准的如下图:在挑选搬家品牌的同时也可以先搜下该公司是否有负面消息,有被投诉的,有被网友反映不好的也尽量不要选。 也不一定要选大品牌的,由于仿冒的许多,只有找到合适自己就行!这次就写到这,下次我将会在如何准确的取舍搬家公司(二)中教大家如何辨认正规的搬家网站,盼望我写的这些对大家有所辅助,谢谢大家的浏览!

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

数学发展史论文1000字

中国古代数学的成就与衰落数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250()”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到<π<,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》[2卷]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷]是介绍西方三角学的著作。此外在数学方面鲜有较大成就取得,中国古代数学自此便衰落了。

中国数学发展史 中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。 (三)属于几何方面的材料 自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。 祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。 (四)属于三角方面的材料 三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。 刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出、15o、、30o、45o等的正弦函数值。 在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。 十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。 在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。

你把你需要的留下,把不需要的删去!一.古埃及数学 埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。例如基底直角的误差与底面正方形两边同正北的偏差都非常小。 现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。 埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。埃及算术主要是加法,而乘法是加法的重复。他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是 1的分数)的和。莱因德纸草书用很大的篇幅来记载2/n(n从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用 作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。 总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。 二.美索不达米亚数学 西亚美索不达米亚地区(即底格里斯河与幼发拉底河流域)是人类早期文明发祥地之一。一般称公元前19世纪至公元前6世纪间该地区的文化为巴比伦文化,相应的数学属巴比伦数学。这一地区的数学传统上溯至约公元前二千年的苏美尔文化,后续至公元1世纪基督教创始时期。对巴比伦数学的了解,依据于19世纪初考古发掘出的楔形文字泥板,有约300块是纯数学内容的,其中约200块是各种数表,包括乘法表、倒数表、平方和立方表等。大约在公元前1800~前1600年间,巴比伦人已使用较系统的以60为基数的数系(包括60进制小数)。由于没有表示零的记号,这种记数法是不完善的。 巴比伦人的代数知识相当丰富,主要用文字表达,偶尔使用记号表示未知量。 在公元前1600年前的一块泥板上,记录了许多组毕达哥拉斯三元数组(即勾股数组)。据考证,其求法与希腊人丢番图的方法相同。巴比伦人还讨论了某些三次方程和可化为二次方程的四次方程。 巴比伦的几何属于实用性质的几何,多采用代数方法求解。他们有三角形相似及对应边成比例的知识。用公式 (с为圆的周长)求圆面积,相当于取π=3。 巴比伦人在公元前 3世纪已较频繁地用数学方法记载和研究天文现象,如记录和推算月球与行星的运动,他们将圆周分为360度的做法一直沿用至今。 三.玛雅数学 对于玛雅数学的了解,主要来自一些残剩的玛雅时代石刻。对这些石刻上象形文字的释读表明:玛雅人很早就创造了位值制的记数系统,具体记数方式又分两种:第一种叫横点记数法;第二种叫头形记数法。横点记数法以一点表示1,以一横表示5,以一介壳状 表示0,但不是0符号。 迄今所知道的玛雅数学知识就是如此,其中只显示加法和进位两种。关于形的认识,只能从玛雅古建筑中体会到一些。这些古建筑从外形看都很整齐划一,可以判断当时玛雅人对几何图形已有一定的知识。 四.印度数学 印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。由于河谷文化的象形文字至今不能解读,所以对这一时期印度数学的实际情况了解得很少。 印度数学最早有文字记录的是吠陀时代,其数学材料混杂在婆罗门教和印度教的经典《吠陀》当中,年代很不确定,今人所考定的年代出入很大,其年代最早可上溯到公元前10世纪,最晚至公元前3世纪。 由几何计算导致了一些求解一、二次代数方程问题,印度用算术方法给出求解公式。 耆那教的经典由宗教原理、数学原理、算术和天文等几部分构成,流传下来的原始经典较少,不过流传一些公元前5世纪至公元后2世纪的注释。 公元773年,印度数码传入阿拉伯国家,后来欧洲人通过阿拉伯人接受了,成为今天国际通用的所谓阿拉伯数码。这种印度数码与记数法成为近世欧洲科学赖以进步的基础。中国唐朝印度裔天文历学家瞿昙悉达于718年翻译的印度历法《九执历》当中也有这些数码,可是未被中国人所接受。 由于印度屡被其他民族征服,使印度古代天文数学受外来文化影响较深,除希腊天文数学外,也不排除中国文化的影响,然而印度数学始终保持东方数学以计算为中心的实用化特色。与其算术和代数相比,印度人在几何方面的工作显得十分薄弱,最具特色与影响的成就是其不定分析和对希腊三角术的推进。

刘 徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为<π<,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈)密率22/7(≈),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。 明安图】(1692——1765) 清代蒙古族杰出数学家、天文学家。字静庵。蒙古正白旗(今内蒙古锡林郭勒盟正白旗)人,为蒙古族人。康熙九年(1670),被选入钦天监学习天文、历象和数学

相关百科

热门百科

首页
发表服务