告诉你拟就会写吗。不如我给你写得了
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。
幺正矩阵表示的就是厄米共轭矩阵等于逆矩阵。对于实矩阵,厄米共轭就是转置,所以实正交表示就是转置矩阵等于逆矩阵。实正交表示是幺正表示的特例。
定义
若一n行n列的复数矩阵U满足
其中
为n阶单位矩阵,
为U的共轭转置,则U称为酉矩阵(又译作幺正矩阵、么正矩阵。英文:Unitary Matrix, Unitary是归一或单位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置
为其逆矩阵:
若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似,
酉矩阵U不改变两个复向量的内积:
扩展资料:
若U为n阶方阵,则下列条件等价:
(1)U是酉矩阵
(2)
是酉矩阵
(3)U的列向量构成内积空间C上的一组标准正交基
(4)U的行向量构成内积空间C上的一组标准正交基
酉矩阵的特征值都是模为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值为±1。
酉矩阵是正规矩阵,由谱定理知,酉矩阵U可被分解为
其中V是酉矩阵,
是主对角线上元素绝对值为1的对角阵。
对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。
酉矩阵的相关性质:设有矩阵 ,则(1)若 是酉矩阵,则 的逆矩阵也是酉矩阵;(2)若 是酉矩阵,则 和也是酉矩阵;(3)若 是酉矩阵,则 ;(4) 是酉矩阵的充分必要条件是,它的 个列向量是两两正交的单位向量。酉方阵在量子力学中有着重要的应用。酉等价是标准正交基到标准正交基的特殊基变换。
如果QQ*=I,其中Q*表示Q的共轭转置,I是单位阵,那么称Q是酉阵。实的酉阵即正交阵。
假设M是一个m×n阶矩阵,其中的元素全部属于域 K,也就是 实数域或复数域。如此则存在一个分解使得M = UΣV*,其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。) 奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。
毕业论文每个学校都会不同的审核标准,一般来说:首先毕业论文肯定会有论文的前提和背景,或者做这篇论文的意义与作用接着就是论文所需要的一些基础知识和一些定理、推论。(矩阵变换的过程与结论)本科毕业不可能要求您做出什么创新的东西,最后至于应用的那部分:数学一般和物理力学联系的比较精密,你可以到图书馆看看,有那些物理结论的证明过程中利用到“矩阵初等变换”,然后通过自己所学的数学语言表达出来就可以了!
写毕业论文不是很难,主要看对平时知识的掌握和平时的积累。
从文体而言,它也是对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。
学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生学习所达到的学业水平。
毕业论文的基本教学要求是:
1、培养学生综合运用、巩固与扩展所学的基础理论和专业知识,培养学生独立分析、解决实际问题能力、培养学生处理数据和信息的能力。
2、培养学生正确的理论联系实际的工作作风,严肃认真的科学态度。
3、培养学生进行社会调查研究;文献资料收集、阅读和整理、使用;提出论点、综合论证、总结写作等基本技能。
毕业论文是毕业生总结性的独立作业,是学生运用在校学习的基本知识和基础理论,去分析、解决一两个实际问题的实践锻炼过程,也是学生在校学习期间学习成果的综合性总结,是整个教学活动中不可缺少的重要环节。
以上内容参考:百度百科-毕业论文
写论文因人而异,一篇毕业论文的诞生,不仅需要掌握自己领域的技巧,还需要将知识、逻辑思维和写作技巧结合在一起,最后还要修改论文。目前,大多数学校论文的方向仅限于图书知识。没有实践能力,就很难理解这一点的深层含义,也就不可能把理论运用到实践中去,有些学生撰写仓促,导致出现许多的问题。 在平时和课堂做研究的时候不做笔记不收集素材,的确现在的大学生在大学生活中除了吃饭,睡觉和打游戏,都在浪费大学的学习时间。当然你没有一点写作技巧。毕业前,你才想起你还有些毕业论文,你就知道麻烦来了,花很短的时间去阅读各种写作材料和写作技巧,然后急急忙忙的开始写论文,格式要求等等一切都是未知的,导致你最后写出来的论文根本不符合逻辑。所以通过对论文的撰写和复习,学生不仅可以看到论文的不足之处,而且可以使学校和研究生招生单位更好地了解每个学生的专业水平和工作态度。
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。
埃尔米特矩阵又称自共轭矩阵、Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等(然而矩阵A的共轭矩阵并非Hermite阵)。
自共轭矩阵是矩阵本身先转置再把矩阵中每个元素取共轭得到的矩阵。Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),实对称阵是Hermite阵的特例。
扩展资料:
共轭矩作为正规阵,因此共轭矩阵不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。
n阶共轭方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。
参考资料来源:百度百科-共轭矩阵
共轭矩阵又称Hermite阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称,即是ai,j=a*j,i。
共轭矩阵又称Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 对于 A = \{ a_{i,j} \} \in C^{n \times n} 有: a_{i,j} = \overline{a_{j,i}},其中\overline{(\cdot)}为共轭算符。 记做: A = A^H \quad 例如: \begin 3&2+i\\ 2-i&1 \end 就是一个Hermite阵。 显然,Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。 性质 若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是Hermite阵。 可逆的Hermite阵A 的逆矩阵A-1仍然是Hermite阵。 如果A是Hermite阵,对于正整数n,An是Hermite阵. 方阵C 与其共轭转置的和C + C^*是Hermite阵. 方阵C 与其共轭转置的差C - C^*是skew-Hermite阵。 任意方阵C 都可以用一个Hermite阵A 与一个skew-Hermite阵B的和表示: C = A+B \quad\mbox\quad A = \frac(C + C^*) \quad\mbox\quad B = \frac(C - C^*). Hermite阵是正规阵,因此Hermite阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着Hermite阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。 n阶Hermite方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。 如果Hermite阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。 Hermite序列 Hermite序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n): \Im(a_0) = 0 \quad \mbox \quad a_k = \overline{a_} \quad \mbox k=1,2,\dots,n. 若n 是偶数,则an/2是实数。 实数序列的离散傅里叶变换是Hermite序列。反之,一个Hermite序列的逆离散傅里叶变换是实序列。
埃尔米特矩阵又称自共轭矩阵、Hermite阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等(然而矩阵A的共轭矩阵并非Hermite阵)。自共轭矩阵是矩阵本身先转置再把矩阵中每个元素取共轭得到的矩阵。
Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵,如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。
扩展资料:
推论:
1)n阶埃尔米特矩阵A为正定矩阵的充要条件是A的所有特征值大于0。
2)若A是n阶埃尔米特矩阵,其特征值对角阵为V,则存在一个酉矩阵U,使AU=UV。
3)若A是n阶埃尔米特矩阵,其弗罗伯尼范数的平方等于其所有特征值的平方和。
4)斜埃尔米特矩阵为A的共轭转置为-A,斜埃尔米特矩阵的特征值全是实数。更进一步,斜埃尔米特矩阵都是正规矩阵。因此它们是可对角化的,它们不同的特征向量一定是正交的。
很多应用啊。。。比如工程上的,控制上的。你可以多看看书,上面都有应用的例子。比如应用数值线性代数,控制论中的矩阵计算等等。。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!
1. 圆锥曲线的性质及推广应用
2. 经济问题中的概率统计模型及应用
3. 通过逻辑趣题学推理
4. 直觉思维的训练和培养
5. 用高等数学知识解初等数学题
6. 浅谈数学中的变形技巧
7. 浅谈平均值不等式的应用
8. 浅谈高中立体几何的入门学习
9. 数形结合思想
10. 关于连通性的两个习题
11. 从赌博和概率到抽奖陷阱中的数学
12. 情感在数学教学中的作用
13. 因材施教因性施教
14. 关于抽象函数的若干问题
15. 创新教育背景下的数学教学
16. 实数基本理论的一些探讨
17. 论数学教学中的心理环境
18. 以数学教学为例谈谈课堂提问的设计原则
1. 网络优化
2. 泰勒公式及其应用
3. 浅谈中学数学中的反证法
4. 数学选择题的利和弊
5. 浅谈计算机辅助数学教学
6. 论研究性学习
7. 浅谈发展数学思维的学习方法
8. 关于整系数多项式有理根的几个定理及求解方法
9. 数学教学中课堂提问的误区与对策
10. 中学数学教学中的创造性思维的培养
11. 浅谈数学教学中的“问题情境”
12. 市场经济中的蛛网模型
13. 中学数学教学设计前期分析的研究
14. 数学课堂差异教学
15. 一种函数方程的解法
16. 积分中值定理的再讨论
17. 二阶变系数齐次微分方程的求解问题
18. 毕业设计课题(论文主题等)
19. 浅谈线性变换的对角化问题
1. 浅谈奥数竟赛的利与弊
2. 浅谈中学数学中数形结合的思想
3. 浅谈中学数学中不等式的教学
4. 中数教学研究
5. XXX课程网上教学系统分析与设计
6. 数学CAI课件开发研究
7. 中等职业学校数学教学改革研究与探讨
8. 中等职业学校数学教学设计研究
9. 中等职业学校中外数学教学的比较研究
10. 中等职业学校数学教材研究
11. 关于数学学科案例教学法的探讨
12. 中外著名数学家学术思想探讨
13. 试论数学美
14. 数学中的研究性学习
15. 数字危机
16. 中学数学中的化归方法
17. 高斯分布的启示