首页

> 学术期刊知识库

首页 学术期刊知识库 问题

纤维增强混凝土研究进展论文

发布时间:

纤维增强混凝土研究进展论文

钢纤维混凝土的性能及其应用有哪些呢,下面中达咨询招投标老师为你解答以供参考。一、引言1824年出现波特兰水泥之后,人类便开始了应用混凝土建造建筑物的历史。随后于1850年和1928年分别出现了钢筋混凝土和预应力钢筋混凝土,混凝土才得到了广泛的应用。20世纪20年代,随着结构计算理论及施工技术水平的相对成熟,钢筋混凝土结构开始被大规模采用,应用的领域也越来越广阔。目前它已是世界上用量最大、使用最广泛的建筑材料。混凝土是一种优良的建筑材料,但是由于其抗弯、抗拉、抗冲击韧性差,严重的影响其被广泛使用。于是便考虑是否可以在混凝土中加入抗拉强度高、韧性好、短而细的纤维来改善混凝土的性能。在1901年,美国Porter就发表了有关钢纤维混凝土的第一篇论文。1911年,美国的Graham则提出将钢纤维加入普通钢筋混凝土中。到四十年代,由于军事工程的需要,英、美、法、德、日都相继开展了研究,发表了一些专利,但进展并不大,因为这些研究和专利几乎都没能说明钢纤维对于混凝土的增强机理。纤维混凝土真正进入实用化研究是在六十年代初。1963年,美国的Romualai发表了钢纤维约束混凝土裂缝发展机理的研究报告,才使这项研究真正进入一个新的发展时期。二、钢纤维混凝土的增强机理钢纤维混凝土增强机理的研究主要有两种理论:复合力学理论和纤维间距理论。这两种理论从不同角度,解释钢纤维对混凝土的增强作用,其结果是一致的。(一)复合力学理论复合力学理论将钢纤维增强混凝土看作是一种纤维强化体系,应用混合原理推导钢纤维混凝土的应力、弹性模量和强度等,并引入纤维方向系数,考虑在拉伸应力方向上有效纤维体积率的比例和非连续性短纤维应力沿纤维长度的非均匀分布。(二)纤维间距理论纤维间距理论根据线弹性断裂力学原理解释钢纤维对裂缝发生和发展的约束作用。该理论认为,要想增强混凝土这种本身带有内部缺陷的脆性材料的抗拉强度,必须尽可能地减小内部缺陷的尺寸,降低裂缝尖端的应力场强度因子。对于混凝土这样的脆性材料,由于其内部的水泥浆-细骨料界面区,砂浆-粗骨料界面区薄弱环节的存在,尽管各组分材料都有较高的抗拉强度,但混凝土一般均发生断裂破坏,宏观抗拉强度很低。钢纤维的加入能跨越裂缝的两边,使钢纤维与裂缝两边混凝土之间的粘结应力起着约束裂缝开展的作用。三、钢纤维混凝土的应用(一)水利水电工程目前,20ZLB一70型轴流泵是农用泵站中应用较多的一种泵型。22时(管内径55cm,壁厚3cm)钢纤维混凝土泵管就是为这种泵型配套用的,以解决目前其它泵管在工程造价、建没周期及管理维修等方面存在的问题。江苏省泗阳混凝土制品厂对钢纤维混凝土泵管采用的主要技术标准为:当应用扬程达,管内工作压力达时、室内检验压力达到时不破裂,时无渗漏。安全系数值取3。采用的混凝土配比为水泥,黄砂,石子,水=l:::。钢纤维体积含量,纤维长径比60一100。关于钢纤维混凝土泵管的使用价值,该厂曾将这种泵管与同类型的铸铁泵管、钢板泵管、自应力水泥泵管和钢筋混凝土泵管等作了比较,结果发现钢板管、铸铁管耗钢量最大,钢筋混凝土管、预应力钢筋混凝土管次之;钢丝网水泥管和自应力管较小;而新研制的钢纤维管耗钢量只有8kg,为最小。以生产管理方面来说,钢板管、铸铁管易生锈瘤,接头螺栓及止水填料易腐蚀,维修费用高。钢筋混凝土管及预应力钢筋混凝土管维修费用虽小,但体积大,运输及安装不方使。钢丝网水泥管、自应力水泥管在用钢量和自重上较前者虽有减少,但要具备特殊的生产工艺与设备。而钢纤维混凝土管则可弥补上述6类管的不足。泵管性能方面各类泵管都能满足强度要求。(二)桥梁工程重庆交通学院等单位对钢纤维混凝土肋拱桥进行了动态性能分析,并局部地利用钢纤维混凝土成功地设计了一座60m净跨、拱圈高的肋拱桥。竣工后对该桥进行了自频振率、模态及冲击性能等试验,结果认为:钢纤维混凝土肋拱桥不仅造价低,而且地震作用明显小于普通混凝上肋拱桥(三)房屋工程节点是框架梁柱的传力枢纽,也是框架的薄弱环节。国内外几次大地震表明,不少钢筋混凝土框架节点在地震作用下发生了不同程度的破坏,节点的抗震问题引起了工程界的重视。按照传统的方法,为提高钢筋混凝土节点的抗震强度和延性,需要在节点配置多而密的箍筋,而节点箍筋施工比较困难。节点中钢筋过于拥挤也影响了混凝土的浇筑质量。在框架节点部分用钢纤维配筋取代部分箍筋,能有效地解决这个问题。最早由哈尔滨建工学院樊承谋教授提出,经试验室试验后应用于工程。应用最早的是吉林省1661电台办公楼(1988年5月)及黑河市建委试验楼(1989年5月)。以上两项工程施工地点的年温差和昼夜温差都较大。为使防水层脱离找平层以便减少收缩和温度应力的影响,在钢纤维混凝土中掺有一定数量的膨胀剂,取得了良好的效果。每m3钢纤维混凝土的材料用量是水泥:砂:碎石:钢纤维:水:减水剂:膨胀剂=450:720:720:72:198::63。减水剂采用上海产高效减水剂,减水率15%。膨胀剂采用合肥产品,自由膨胀值小于。刚性防水屋顶采用分仓设计,每个分仓均为3×6m。各分仓之间以及与四周墙壁之间均设置分仓缝。分仓缝用PVC防水油膏充填。分仓木条尺寸为20×30mm,施工24小时后取出。防水层厚度为40mm。钢纤维混凝土应用的领域非常广泛,在此不再枚举。综上所述,钢纤维混凝土由于一系列突出的优点和巨大的技术发展潜力,可以预见在未来21世纪必将取得更大的技术进步和广阔的应用前景。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

33. 混凝土断裂韧性的试验及分析。水利学报,1982年6期,61-66,徐世烺。34. 混凝土断裂韧度的概率统计分析。水利学报,1984年10期,51-58,徐世烺。35. 混凝土断裂韧度的概率模型研究。土木工程学报, 1988年,21卷 4期,9-23,徐世烺、赵国藩。36. 混凝土裂缝的稳定扩展过程与临界裂缝尖端张开位移。水利学报,1989年4期,33-44,徐世烺、赵国藩。37. 混凝土巨型试件断裂韧度和高混凝土坝裂缝评定的断裂韧度准则。土木工程学报, 1991年,24卷 2期,1-9,徐世烺、赵国藩。38. 混凝土大型试件断裂能和缝端应变场。水利学报,1991年1期,17-25,徐世烺,赵国藩,黄承逵,刘毅,王凤翼,靳国礼。39. 用光弹性贴片法研究混凝土裂缝扩展过程。水力发电学报,1991 年第3期,8-17,徐世烺,赵国藩。40. 三点弯曲梁法研究混凝土断裂能GF及其试件尺寸影响规律。大连理工大学学报,1991年1期,79-86,徐世烺,赵国藩,刘毅,叶丽达。41. 混凝土结构裂缝扩展的双K断裂准则。土木工程学报, 1992年,25卷 2期,32-38,徐世烺、赵国藩。42. 混凝土窄条断裂区模型及其应用。大连理工大学学报,1992年6期,徐世烺,赵国藩。43. 大骨料全级配混凝土断裂韧度和断裂能研究。工程力学,1996年增刊,赵国藩、徐世烺、王凤翼。44. 大尺寸混凝土试件的断裂韧度。水利学报,1997第6期,67-76,吴智敏,赵国藩,徐世烺。45. 基于虚拟裂缝模型砼双K断裂参数。水利学报,1999年第7期,12-16,吴智敏,徐世烺,王金来。46. 三点弯曲梁法研究砼K断裂参数及其尺寸效应。水力发电学报。2000 年第4期,(35-39),吴智敏,徐世烺,王金来,刘毅。47. 基于虚拟裂缝模型的砼等效断裂韧度。工程力学,2000,17卷第1期,(99-104),吴智敏,王金来,徐世烺,刘毅。48. 双相介质界面附近裂纹的断裂力学特征。复合材料学报,2000年,17卷第3期,(78-82),王利民,陈浩然,徐世烺,赵光远。49. 试件初始缝长对砼双K断裂参数的影响。水利学报,2000 年第4期,吴智敏,徐世烺,刘毅。50. 用于确定双K断裂参数的混凝土软化本构曲线。清华大学学报(自然科学版). 2000年, 40卷(S1),(110-113),赵志方、徐世烺。51. 骨料最大粒径对砼双K断裂参数的影响。大连理工大学学报,2000 年,40卷3期,(358-361),吴智敏,徐世烺,刘红艳,刘毅。52. 砼非标准三点弯曲梁试件的双K断裂参数。中国工程科学,2001 年第4期(76-81)。吴智敏,徐世烺,卢喜经,刘佳毅。53. 试件尺寸对混凝土新KR阻力曲线的影响。水利学报,2001年12期。赵志方,徐世烺。54. 混凝土强度对基于粘聚力的新KR阻力曲线的影响。水力发电学报,2001年10月,第3期,11-21,赵志方,徐世烺。55. 混凝土软化本构曲线形状对双K断裂参数的影响。土木工程学报,2001年,34⑸,29-34,赵志方、徐世烺。56. 裂纹垂直于双相介质界面时的应力强度因子。计算力学学报,2001,18⑴,33-36,王利民,陈浩然,徐世烺,赵光远,蒲琪。57. 光弹贴片法研究裂缝扩展和双K断裂参数的尺寸效应。水利学报,2001年4期,34-39,吴智敏,徐世烺,刘佳毅。58. 裂纹端部细短纤维的应力分析。力学学报,2002,34⑵,200-207。王利民,徐世烺,陈浩然。59. 准脆性材料裂纹中远场桥联筋的应力与变形。工程力学,2002,19⑶,132-136。徐世烺,王利民,赵艳华。60. I-Ⅱ复合裂纹脆性断裂的最小J2准则。工程力学,2002,19⑷,94-98。赵艳华,徐世烺。61. 混凝土软化本构关系对双K断裂参数的影响。工程力学,2002 19⑷,149-154。赵志方,徐世烺,周厚贵。62. 高性能精细混凝土与碳纤维织物粘接性能研究,工程力学,2002,增刊,95-104,徐世烺,Reinhardt HW,Markus Krueger。63. 配箍率对钢骨高强混凝土短柱轴压力系数限值影响的试验研究。土木工程学报,2002年,35⑹,39-43,贾金青,徐世烺,赵国藩。64. 砼双K断裂参数的实用解析方法。工程力学,2003,20⑶,54-61,徐世烺,吴智敏,丁生根。65. 楔入劈拉法研究混凝土断裂能。水力发电学报,2003年第4期,15-22,徐世烺,赵艳华,吴智敏,高洪波。66. 钢骨高强混凝土短柱轴压力系数限值的试验研究。建筑结构学报,2003年1期,14-19,贾金青,徐世烺。67. 半无穷大裂纹端部粘聚力分析,应用数学和力学,2003,24⑻:812-820,王利民,徐世烺。68. 混凝土断裂过程区的虚拟裂纹粘聚力奇异性。应用力学学报,2004,21⑴:30-35,王利民,徐世烺。69. 混凝土Ⅱ型断裂与破坏过程的三维非线性有限元数值模拟。水力发电学报,2004,23⑸:15-21,徐世烺,赵艳华。70. 混凝土结构裂缝扩展的双G准则。土木工程学报,2004,37⑽:13-18;51;91,赵艳华,徐世烺,吴智敏。71. 混凝土断裂能的边界效应.2005,36⑾: 1320-1325赵艳华,徐世烺,聂玉强。水利学报,72. 纤维编织网增强混凝土的拉拔计算分析。铁道科学与工程学报,2005,⑵:15-21,徐世烺,李赫。73. 短纤维增强混凝土应力传递剪滞理论的改进。工程力学,2005,22⑹,165-169,张滇军,徐世烺。74. 考虑软化效应的粘聚裂纹张开位移分析。中国科学G辑王利民 徐世烺 赵熙强。,2006,36⑴,59-71,75. 一类Fredholm型弱奇性核积分方程展开解。物理学报,2006,55⑵:543-546,王利民 任传波 徐世烺 赵熙强。76. 小骨料混凝土双K断裂参数的实验测定。水利学报,2006,37⑸:26-36,徐世烺,张秀芳,郑爽。77. 纤维编织网增强混凝土(TRC)的基体开发和优化。水力发电学报,2006,25⑶:76-80,李赫,徐世烺。78. 混凝土断裂参数的灰关联分析。大连理工大学学报,2006,46⑶:395-400,张滇军,徐世烺,王娜。79. 碳纤维编织网和高性能细粒混凝土的粘结性能。建筑材料学报,2006,9⑵:211-215,徐世烺,李赫。80. 用于纤维编织网增强混凝土的自密实混凝土。建筑材料学报,2006,9⑷:481-483,徐世烺,李赫。81. 混凝土Ⅱ型断裂韧度KⅡc试验研究。水力发电学报,2006,26⑸:20-28,高洪波,徐世烺,吴智敏,卜丹。82. 碳纤维砂浆与碳纤维混凝土导电性能实验研究。建筑材料学报,2006,9⑶:347-352,张滇军,徐世烺,孙进。83. 混凝土结构裂缝扩展全过程的新GR阻力曲线断裂判据。土木工程学报,2006,39⑽:20-31,徐世烺,张秀芳。84. 各种级配大坝混凝土双K断裂参数实验研究。土木工程学报,2006,39⑾:64-76,徐世烺,周厚贵,高洪波,赵守阳。85. 混凝土楔入劈拉试件的双K断裂参数叠加计算及其边界效应。大连理工大学学报,2006,46⑶:868-874,张秀芳,徐世烺,高洪波。86. 混凝土断裂能的边界效应确定法。工程力学, 2007,24⑴:56-61,赵艳华,聂玉强,徐世烺。87. 黏聚裂纹阻抗的弯曲梁承载力。中国工程科学,2007,9⑵,30-35。王利民,徐世烺,任传波。88. 混凝土大坝接缝灌浆的剪切断裂过程及其断裂韧度测定,水利学报,2007,38⑶:300-305,徐世烺,喻常雄,李庆华。89. 楔入式紧凑拉伸法确定混凝土的断裂能。水利学报,2007,38⑶:683-689,徐世烺,卜丹,张秀芳。90. 静水压力下混凝土双K断裂参数试验测定,水利学报,2007,38⑺:792-798,徐世烺,王建敏。91. 电测法确定混凝土裂缝临界长度,清华大学学报(自然科学版)2007,47⑼,1432-1434,高淑玲,徐世烺。92. 利用水平外力总功研究PVA 纤维增强水泥基复合材料韧性。东南大学学报,2007,37⑵:324-329,高淑玲,徐世烺。93. 单边切口薄板研究聚乙烯醇纤维增强水泥基复合材料断裂韧性。工程力学,2007,24⑾:12-18,高淑玲,徐世烺。94. PVA纤维增强水泥基复合材料拉伸特性实验研究。大连理工大学学报,2007,47⑵:233-239,高淑玲,徐世烺。95. 纤维编织网增强混凝土薄板力学性能的研究。建筑结构学报,2007,28⑷:117-122,李赫,徐世烺。96. 高轴压比PVA纤维超高强混凝土短柱延性的试验研究,土木工程学报,2007,40⑻:54-60,姜睿,徐世烺,贾金青。97. 基于碳纤维混凝土机敏性的Ⅱ型断裂试验研究。建筑材料学报,2007,10⑷:484-487,张滇军,徐世烺。98. 钢骨超高强混凝土短柱抗震性能实验研究。大连理工大学学报,2007,47⑸:699-706,徐世烺,姜睿,贾金青,孙根勤,厚童。99. 碳纤维编织网与PVA短纤维联合增强水泥基复合材料弯曲性能的试验研究,土木工程学报,2007,40⑿:69-76,徐世烺,李庆华,李贺东。100. 水泥净浆和水泥砂浆材料的Ⅰ型断裂韧度测定。水利学报,2008,39⑴:41-46,徐世烺,朱榆,张秀芳。101. 混凝土软化本构关系与裂缝扩展GR阻力曲线的相关性,清华大学学报(自然科学版)2008,48⑶,316-320,张秀芳,徐世烺。102. 不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定,土木工程学报,2008,41⑵:70-76徐世烺,卜丹,张秀芳。103. 超高性能水泥基复合材料弯拉作用下虚拟应变硬化机制分析,复合材料学报,2008,25⑵:129-134,吴香国,韩相默,徐世烺。104. 用荷载-裂缝口张开位移曲线确定混凝土断裂能,水利学报,2008,39⑹:714-719,张秀芳,徐世烺。105. 超高韧性水泥基复合材料研究进展及其工程应用,土木工程学报,2008,41⑹:72-87,徐世烺,李贺东。106. 基于碳纤维混凝土(CFRC)机敏性的三点弯曲梁断裂参数试验研究,水力发电学报,2008,27⑵:71-77,张滇军,徐世烺,郝红曼。107. 用能量方法研究混凝土断裂过程区的力学性能,工程力学,2008,27⑺:18-23,张秀芳,徐世烺。108. 利用导电性能确定接缝灌浆材料Ⅱ型断裂临界荷载,大连理工大学学报,2008,48⑷:546-550,徐世烺,喻常雄,张滇军。109. 提高纤维编织网与混凝土粘结性能的实用方法,大连理工大学学报,2008,48⑸:685-690,李庆华,徐世烺,李赫。110. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究,工程力学,2008,25⑾:53-61,徐世烺,王洪昌。111. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究⑴:基本理论,土木工程学报,2008,41⑿:53-59,张秀芳,徐世烺。112. 混凝土裂缝扩展的断裂过程准则与解析,工程力学,2008,25(S2):20-33,徐世烺,赵艳华。113. 水压作用下大坝混凝土裂缝扩展与双K断裂参数,土木工程学报,2009,42⑵:119-125,徐世烺,王建敏。114. 不同软化曲线形状对裂缝扩展阻力GR曲线的影响,工程力学,2009,26⑵:5-9,张秀芳,徐世烺。115. 超高性能纤维加劲混凝土断裂参数研究与应用,工程力学,2009,26⑶:93-98,吴香国,徐世烺,吴明喜。116. 钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究,中国科学(E辑)2009,39⑸:878-896,徐世烺,张秀芳。117. 超高韧性复合材料控裂功能梯度复合梁弯曲性能理论研究,中国科学(E辑)2009,39⑹:1081-1094,徐世烺,李庆华。118. 定向多壁碳纳米管-M140砂浆复合材料的力学性能,中国科学(E辑),2009,39 ⑺: 1228-1236,徐世烺,高良丽,晋卫军。119. 超高韧性复合材料控裂功能梯度复合梁弯曲性能试验研究,中国科学(E辑)2009,39 ⑻: 1391-1406,李庆华,徐世烺。120. 超高韧性水泥基复合材料直接拉伸试验研究,土木工程学报,2009,42⑼:32-41,徐世烺,李贺东。121. 超高韧性纤维增强水泥基复合材料(UHTCC)抗冻耐久性能试验研究,土木工程学报,2009,42⑼:42-46,徐世烺,蔡新华,李贺东。122. 超高韧性水泥基复合材料基本力学性能研究,水利学报,2009,40⑼:1055-1065,徐世烺,蔡向荣。123. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(Ⅱ):试验研究,土木工程学报,2009,42⑾:53-66,张秀芳,徐世烺。124. 超高韧性水泥基复合材料单轴受压应力应变全曲线试验测定与分析,土木工程学报,2009,42⑾:,徐世烺,蔡向荣,张英华。125. 配筋率对RUHTCC梁弯曲性能的影响研究,土木工程学报,2009,42⑿:16-24,张秀芳,徐世烺,侯利军。126. 钢筋增强超高韧性水泥基复合材料梁的弯曲承载力及延性分析,工程力学,2009,26⑿:133-141,张秀芳,徐世烺。127. 超高韧性水泥基复合材料基本性能和结构应用研究进展,工程力学,2009,26(S2): 23-67. 李庆华,徐世烺.128. 双K断裂模型粘聚韧度KIcc实用插值计算方法,计算力学学报,2010,(27)1:47-52,高洪波,徐世烺,吴智敏,卜丹.129. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究,工程力学,2010,27⑴:8-16,徐世烺,蔡向荣。130. 钢/聚丙烯混杂纤维对HPC深梁受弯性能的影响,哈尔滨工业大学学报,2010,42⑵:313-316,夏冬桃,徐世烺,夏广政.131. 超高韧性水泥基复合材料弯曲性能及韧性评价方法,土木工程学报,2010,43⑶:32-39,徐世烺,李贺东。132. 钢筋增强超高韧性水泥基复合材料弯曲性能试验研究与计算分析,建筑结构学报,2010,31⑶: 51-61,李庆华,徐世烺。133. 超高韧性水泥基复合材料考虑拉应力增长影响的控裂钢筋混凝土复合梁正截面承载力计算,建筑结构学报,2010,31⑶:62-69,张秀芳,徐世烺。134. 水工有压隧洞衬砌双K断裂理论分析及裂缝宽度计算,土木工程学报,2010,43⑴:114-124,徐世烺,刘建强,张秀芳。

纤维增强混凝土研究现状论文

钢纤维混凝土的性能及其应用有哪些呢,下面中达咨询招投标老师为你解答以供参考。一、引言1824年出现波特兰水泥之后,人类便开始了应用混凝土建造建筑物的历史。随后于1850年和1928年分别出现了钢筋混凝土和预应力钢筋混凝土,混凝土才得到了广泛的应用。20世纪20年代,随着结构计算理论及施工技术水平的相对成熟,钢筋混凝土结构开始被大规模采用,应用的领域也越来越广阔。目前它已是世界上用量最大、使用最广泛的建筑材料。混凝土是一种优良的建筑材料,但是由于其抗弯、抗拉、抗冲击韧性差,严重的影响其被广泛使用。于是便考虑是否可以在混凝土中加入抗拉强度高、韧性好、短而细的纤维来改善混凝土的性能。在1901年,美国Porter就发表了有关钢纤维混凝土的第一篇论文。1911年,美国的Graham则提出将钢纤维加入普通钢筋混凝土中。到四十年代,由于军事工程的需要,英、美、法、德、日都相继开展了研究,发表了一些专利,但进展并不大,因为这些研究和专利几乎都没能说明钢纤维对于混凝土的增强机理。纤维混凝土真正进入实用化研究是在六十年代初。1963年,美国的Romualai发表了钢纤维约束混凝土裂缝发展机理的研究报告,才使这项研究真正进入一个新的发展时期。二、钢纤维混凝土的增强机理钢纤维混凝土增强机理的研究主要有两种理论:复合力学理论和纤维间距理论。这两种理论从不同角度,解释钢纤维对混凝土的增强作用,其结果是一致的。(一)复合力学理论复合力学理论将钢纤维增强混凝土看作是一种纤维强化体系,应用混合原理推导钢纤维混凝土的应力、弹性模量和强度等,并引入纤维方向系数,考虑在拉伸应力方向上有效纤维体积率的比例和非连续性短纤维应力沿纤维长度的非均匀分布。(二)纤维间距理论纤维间距理论根据线弹性断裂力学原理解释钢纤维对裂缝发生和发展的约束作用。该理论认为,要想增强混凝土这种本身带有内部缺陷的脆性材料的抗拉强度,必须尽可能地减小内部缺陷的尺寸,降低裂缝尖端的应力场强度因子。对于混凝土这样的脆性材料,由于其内部的水泥浆-细骨料界面区,砂浆-粗骨料界面区薄弱环节的存在,尽管各组分材料都有较高的抗拉强度,但混凝土一般均发生断裂破坏,宏观抗拉强度很低。钢纤维的加入能跨越裂缝的两边,使钢纤维与裂缝两边混凝土之间的粘结应力起着约束裂缝开展的作用。三、钢纤维混凝土的应用(一)水利水电工程目前,20ZLB一70型轴流泵是农用泵站中应用较多的一种泵型。22时(管内径55cm,壁厚3cm)钢纤维混凝土泵管就是为这种泵型配套用的,以解决目前其它泵管在工程造价、建没周期及管理维修等方面存在的问题。江苏省泗阳混凝土制品厂对钢纤维混凝土泵管采用的主要技术标准为:当应用扬程达,管内工作压力达时、室内检验压力达到时不破裂,时无渗漏。安全系数值取3。采用的混凝土配比为水泥,黄砂,石子,水=l:::。钢纤维体积含量,纤维长径比60一100。关于钢纤维混凝土泵管的使用价值,该厂曾将这种泵管与同类型的铸铁泵管、钢板泵管、自应力水泥泵管和钢筋混凝土泵管等作了比较,结果发现钢板管、铸铁管耗钢量最大,钢筋混凝土管、预应力钢筋混凝土管次之;钢丝网水泥管和自应力管较小;而新研制的钢纤维管耗钢量只有8kg,为最小。以生产管理方面来说,钢板管、铸铁管易生锈瘤,接头螺栓及止水填料易腐蚀,维修费用高。钢筋混凝土管及预应力钢筋混凝土管维修费用虽小,但体积大,运输及安装不方使。钢丝网水泥管、自应力水泥管在用钢量和自重上较前者虽有减少,但要具备特殊的生产工艺与设备。而钢纤维混凝土管则可弥补上述6类管的不足。泵管性能方面各类泵管都能满足强度要求。(二)桥梁工程重庆交通学院等单位对钢纤维混凝土肋拱桥进行了动态性能分析,并局部地利用钢纤维混凝土成功地设计了一座60m净跨、拱圈高的肋拱桥。竣工后对该桥进行了自频振率、模态及冲击性能等试验,结果认为:钢纤维混凝土肋拱桥不仅造价低,而且地震作用明显小于普通混凝上肋拱桥(三)房屋工程节点是框架梁柱的传力枢纽,也是框架的薄弱环节。国内外几次大地震表明,不少钢筋混凝土框架节点在地震作用下发生了不同程度的破坏,节点的抗震问题引起了工程界的重视。按照传统的方法,为提高钢筋混凝土节点的抗震强度和延性,需要在节点配置多而密的箍筋,而节点箍筋施工比较困难。节点中钢筋过于拥挤也影响了混凝土的浇筑质量。在框架节点部分用钢纤维配筋取代部分箍筋,能有效地解决这个问题。最早由哈尔滨建工学院樊承谋教授提出,经试验室试验后应用于工程。应用最早的是吉林省1661电台办公楼(1988年5月)及黑河市建委试验楼(1989年5月)。以上两项工程施工地点的年温差和昼夜温差都较大。为使防水层脱离找平层以便减少收缩和温度应力的影响,在钢纤维混凝土中掺有一定数量的膨胀剂,取得了良好的效果。每m3钢纤维混凝土的材料用量是水泥:砂:碎石:钢纤维:水:减水剂:膨胀剂=450:720:720:72:198::63。减水剂采用上海产高效减水剂,减水率15%。膨胀剂采用合肥产品,自由膨胀值小于。刚性防水屋顶采用分仓设计,每个分仓均为3×6m。各分仓之间以及与四周墙壁之间均设置分仓缝。分仓缝用PVC防水油膏充填。分仓木条尺寸为20×30mm,施工24小时后取出。防水层厚度为40mm。钢纤维混凝土应用的领域非常广泛,在此不再枚举。综上所述,钢纤维混凝土由于一系列突出的优点和巨大的技术发展潜力,可以预见在未来21世纪必将取得更大的技术进步和广阔的应用前景。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

目前,在国内外对混凝土材料的研究下,通过结合高强混凝土的实际使用条件,可以通过改变混凝土的微观结构来达到提高高强混凝土使用性能的目的。1 硅粉混凝土硅铁合金厂和硅金属厂在冶炼金属时,极细的粉末随气体从烟道排出,通过收尘装置收集的粉尘称为硅粉。硅粉中二氧化硅(SiO2)含量极高,颗粒为极小的球形玻璃体。硅粉掺入混凝土中,具有良好的火山灰效应和微粒充填效应,能改善混凝土的孔结构和密实性。新拌的硅粉混凝土泌水小,和易性好;能提高混凝土的强度和抗渗能力;提高混凝土抗化学腐蚀能力等。 矿粉混凝土的耐久性(1)抗冻性。当硅粉掺量少时,硅粉混凝土的抗冻性与普通混凝土基本相同,当硅粉掺量超过15%时,硅粉混凝土的抗冻性较差。水科院结材所曾对C20,C50,C80三种强度等级的硅粉混凝土和普通混凝土进行抗冻试验。试验结果表明,掺硅粉5%的C20级混凝土,抗冻性优于普通混凝土,经50次冻融循环,相对弹性模数分别为和;C50级混凝土,掺硅粉5~15%,均达到300次冻融循环,而普通混凝土只达到250次循环;C80级混凝土,掺硅粉20%与普通混凝土一样,均有较高的抗冻性,达460次冻融循环。以上现象主要是因为C80混凝土水胶比低,混凝土密实,毛细管孔径小,混凝土中可冻水较少,因此混凝土的抗冻能力大大提高。(2)抗渗性。由于硅粉颗粒小,比水泥颗粒小20~100倍,可以充填到水泥颗粒中间的空隙中,使混凝土密实,同时硅粉的二次水化作用,新的生成物堵塞混凝土中渗透通道,所以硅粉混凝土的抗渗能力很强。(3)抗化学侵蚀性。①抗酸类侵蚀:在混凝土中掺入硅粉,能减少Ca(OH)2含量,增加混凝土密实性,可有效的提高对氮盐、硫酸盐及弱酸的腐蚀能力,但在强酸或高浓度的弱酸中不行,因为混凝土中的CSH(水化硅酸钙)在酸中分解。②抗盐类侵蚀:因硅粉混凝土较密实,孔结构得到改善,减少了有害离子在混凝土中的传递速度以及减少了可溶性的Ca(OH)2和钙矾石(3CaO·Al2O3·3CaSO4·32H2O)的生成,而增加了水化硅酸钙(C-S-H)晶体的结果,抗盐类侵蚀性提高。(4)抗钢筋锈蚀能力。钢筋的锈蚀主要取决于混凝土中Ca(OH)2浓度和氯离子含量,混凝土中Ca(OH)2浓度低,Cl-含量多,将破坏钢筋的钝化膜,产生化学侵蚀,引起钢筋锈蚀,诚然,硅粉掺入混凝土中,SiO2与Ca(OH)2结合使混凝土中的Ca(OH)2浓度降低,pH值下降,对抵抗钢筋锈蚀不利。但是,根据等人的研究认为,硅粉掺量为10~20%时,混凝土中Ca(OH)2浓度仍处于饱和状态,pH值仍能保持在以上,即使混凝土胶材中掺硅粉30%,pH值仍保持以上,此值被认为是保持钢筋具备良好钝性的极限值。另一方面,出于硅粉混凝土密实,抗渗性好,碳化慢,故钢筋能保持钝性状态,对抗腐蚀能力是有利的。结合工程实际经验,使用硅粉混凝土时应注意以下事项:①在混凝土中掺入硅粉,必需与高效减水剂联合使用才能取得良好的效果。②硅粉的掺入方法分内掺和外掺两种。内掺法是掺入硅粉,同时减少水泥用量,外掺法是掺入矿粉并不减少水泥,高强混凝上中一般采用外掺法。③硅粉的掺量一般为5~10%,在此范围内硅粉有效系数最大,各种性能都能充分地反映出来,而又避免其不利的一面。④由于硅粉混凝土很稠,设计混凝土坍落度应比普通混凝土的大2~3cm。⑤硅粉混凝土的搅拌时间应比普通混凝土延长~1min,以便使细料完全搅拌均匀。⑥最后,使用硅粉混凝土时,必须加强早期养护,否则易引起塑性收缩裂缝。2 纤维混凝土纤维混凝土,是纤维增强混凝土的简称,通常是指以普通混凝土为基体,以非连续的短纤维或者连续的长纤维作增强相所组成的水泥基复合材料,也叫纤维混凝土。纤维在混凝土中的作用,取决于纤维自身的性质以及它在混凝土基体当中散布混合的状态。纤维加人水泥基体中主要有以下作用:①阻裂 阻止水泥基体中原有缺陷(微裂缝)的扩展并有效延缓新裂缝的出现。尽管从更微观的形态上说,以水泥为基材的混凝土当中必定存在裂隙,但是由于纤维的作用可以大大减少甚至彻底消除宏观(肉眼可见的)裂缝产生。②防渗 由于大大减少了水泥基体中的连通裂缝,故可有效阻止外界水分侵入。③耐久 改善水泥基体抗冻、抗疲劳等性能,提高其耐久性。④增韧与抗冲击 提高水泥基体耐受变形的能力,从而改善其韧性和抗冲击性。⑤增强 在使用高弹性模量纤维的前提下,可以起到提高基体的抗拉(剪)强度的作用。⑥减重 使用高弹性模量纤维,因基体抗拉(剪)强度的提高,可减少预制件或浇筑体的截面尺寸,因而降低它们的自重。⑦美观 改善水泥构造物的表观质量,使其致密、细润、平整与美观。高强混凝土的最大缺点是脆性大,混凝土作为一种非均质材料,内部存在着微细裂隙,根据格列费斯(Griffith)理论,混凝土在外力作用下,微细裂隙的尖端产生拉应力集中,而混凝土的抗拉强度较低,拉应力很容易超过混凝土抗拉强度,裂缝迅速扩展,以致混凝土破坏。钢纤维是目前应用最为广泛的一种纤维,它的抗压、抗拉强度和弹性模数都高。由于纤维在混凝土中是不连续的,并且是随机分布的,各方向均有纤维。例如钢纤维尺寸φ×35mm,按混凝土的体积计算,掺量为1%时,每m3混凝土中就含钢纤维约150万根,也就是说,混凝土中的微细裂隙均有可能被钢纤维所跨越,故能有效的阻止裂缝扩展,达到增强的目的。另外钢纤维在混凝土中钝化,不易锈蚀,稳定性好。结合以上两种方法的钢纤维硅粉混凝土兼有硅粉混凝土和普通钢纤维混凝土的优点,提高了混凝土的力学强度和变形能力,持别是提高了混凝土的抗冲击、抗磨蚀能力,对防止混凝土裂缝,减少混凝土的冲刷、磨蚀特别有利。在建筑质量与经济效益并重的现今,高强混凝土的强度及耐久性能都同样重要,因此改善了韧性的和具有实际使用性能的高强混凝土材料必将得到更广泛的应用。2 纤维混凝土纤维混凝土,是纤维增强混凝土的简称,通常是指以普通混凝土为基体,以非连续的短纤维或者连续的长纤维作增强相所组成的水泥基复合材料,也叫纤维混凝土。纤维在混凝土中的作用,取决于纤维自身的性质以及它在混凝土基体当中散布混合的状态。纤维加人水泥基体中主要有以下作用:①阻裂 阻止水泥基体中原有缺陷(微裂缝)的扩展并有效延缓新裂缝的出现。尽管从更微观的形态上说,以水泥为基材的混凝土当中必定存在裂隙,但是由于纤维的作用可以大大减少甚至彻底消除宏观(肉眼可见的)裂缝产生。②防渗 由于大大减少了水泥基体中的连通裂缝,故可有效阻止外界水分侵入。③耐久 改善水泥基体抗冻、抗疲劳等性能,提高其耐久性。④增韧与抗冲击 提高水泥基体耐受变形的能力,从而改善其韧性和抗冲击性。⑤增强 在使用高弹性模量纤维的前提下,可以起到提高基体的抗拉(剪)强度的作用。⑥减重 使用高弹性模量纤维,因基体抗拉(剪)强度的提高,可减少预制件或浇筑体的截面尺寸,因而降低它们的自重。⑦美观 改善水泥构造物的表观质量,使其致密、细润、平整与美观。高强混凝土的最大缺点是脆性大,混凝土作为一种非均质材料,内部存在着微细裂隙,根据格列费斯(Griffith)理论,混凝土在外力作用下,微细裂隙的尖端产生拉应力集中,而混凝土的抗拉强度较低,拉应力很容易超过混凝土抗拉强度,裂缝迅速扩展,以致混凝土破坏。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

混凝土是现代工程结构的主要材料,我国每年混凝土用量约10亿m3,钢筋用量约2500万T,规模之大,耗资之巨,居世界前列。可以预见,钢筋混凝土仍将是我国在今后相当长时期内的一种重要的工程结构材料,物质是基础,材料的发展,必将对钢筋混凝土结构的设计方法、施工技术、试验技术以至维护管理起着决定性的作用。本文对构成钢筋混凝土的主要材料;混凝土及其增强材料的应用与发展,从工程应用角度作简要介绍。一、混凝土组成钢筋混凝土主要材料之一的混凝土的发展方向是高强、轻质、耐久(抗磨损、抗冻融、抗渗)、抗灾(地震、风、火〕、抗爆等。1、高性能混凝土(high performance concrete, HPC)HPC是近年来混凝土材料发展的一个重要方向,所谓高性能:是指混凝上具有高强度、高耐久性、高流动性等多方面的优越性能。从强度而言,抗压强度大于C50的混凝土即属于高强混凝土,提高混凝土的强度是发展高层建筑、高耸结构、大跨度结构的重要措施。采用高强混凝土,可以减小截面尺寸,减轻自重,因而可获得较大的经济效益,而且,高强混凝土一般也具有良好的耐久性。我国己制成C100的混凝土。已有文献报道1),国外在试验室高温、高压的条件下,水泥石的强度达到662MPa(抗压)及(抗拉)。在实际工程中,美国西雅图双联广场泵送混凝土56 d抗压强度达.在我国为提高温凝土强度采用的主要措施有[1]:①合理利用高效减水剂,采用优质骨料、优质水泥,利用优质掺合料,如优质磨细粉煤灰、硅灰、天然沸石或超细矿渣。采用高效减水剂以降低水灰比是获得高强及高流动性混凝土的主要技术措施;②采用525,625,725号的硫铝酸盐水泥、铁铝酸盐水泥及相应的外加剂,这是中国建筑材料科学研究院制备高性能混凝土的主要技术措施;③以矿渣、碱组分及骨料制备碱矿渣高强度混凝土,这是重庆建筑大学在引进前苏联研究成果的基础上提出的研制高强混凝土的技术措施;④交通部天津港湾工程研究所采用复合高效减水剂,用525号水泥320kg/m3,水灰比,和425号水泥480kg/m3,水灰比,在试验室中制成了抗压强度分别为68MPa和65MPa的高强混凝土。文献[2]报告了采用某些金属矿石粗骨料如赤铁矿石、钛铁矿石等,可以比用普通石料作粗骨料获得强度更高、耐久性和延性更好的高性能混凝土。高强混凝土具有优良的物理力学性能及良好的耐久性,其主要缺点是延性较差。而在高强混凝土中加入适量钢纤维后制成的纤维增强高强混凝土,其抗拉、抗弯、抗剪强度均有提高,其韧性(延性)和抗疲劳、抗冲击等性能则能有大幅度提高。此外,在高层建筑的高强混凝土柱中,也可采用X形配筋、劲性钢筋或钢管混凝土等结构方面的措施来改善高强混凝土柱的延性和抗震性能[3].2、活性微粉混凝土(reactive powder concrete, RPC)[4]RPC是一种超高强的混凝土,其立方体抗压强度可达200-800MPa,抗拉强度可达25~150MPa,断裂能可达30KJ/㎡,单位体积质量为.制成这种混凝土的主要措施是:①减小颗粒的最大尺寸,改善混凝土的均匀性;②使用微粉及极微粉材料,以达到最优堆积密度(packing density);③减少混凝土用水量,使非水化水泥颗粒作为填料,以增大堆积密度;④增放钢纤维以改善其延性;⑤在硬化过程中加压及加温,使其达到很高的强度。普通混凝土的级配曲线是连续的,而RPC的级配曲线是不连续的台阶形曲线,其骨料粒径很小,接近于水泥颗粒的尺寸。RPC的水灰比可低到,需加入大量的超塑化剂,以改善其工作度。RPC的价格比常可达25~150MPa,断裂能可达30KJ/㎡,单位体积质量为.制成这种混凝土的主要措施是:①减小颗粒的最大尺寸,改善混凝土的均匀性;②使用微粉及极微粉材料,以达到最优堆积密度(packing density);③减少混凝土用水量,使非水化水泥颗粒作为填料,以增大堆积密度;④增放钢纤维以改善其延性;⑤在硬化过程中加压及加温,使其达到很高的强度。普通混凝土的级配曲线是连续的,而RPC的级配曲线是不连续的台阶形曲线,其骨料粒径很小,接近于水泥颗粒的尺寸。RPC的水灰比可低到,需加入大量的超塑化剂,以改善其工作度。RPC的价格比常用混凝土稍高,但大大低于钢材,可将其设计成细长或薄壁的结构,以扩大建筑使用的自由度。在加拿大Sherbrook已设计建造了一座跨度为60m、高的B200级RPC的人行-摩托车用预应力桁架桥。3、低强混凝土[4]美国混凝土学会(AC1)229委员会,提出了在配料、运送、浇筑方面可控制的低强混凝土,其抗压强度为8MPa或更低。这种材料可用于基础、桩基的填、垫、隔离及作路基或填充孔洞之用,也可用于地下构造,在一些特定情况下,可用其调整混凝土的相对密度、工作度、抗压强度、弹性模量等性能指标,而且不易产生收缩裂缝。荷兰一座隧洞工程中曾采用了低强度砂浆(1ow-strength mortar, LSM〕,其组分为:水泥150kg/m3,砂;1080kg/m3,水570kg/m3,超塑化剂6kg/m3,膨润土35kg/m3,所制成的LSM的抗压强度为,弹性模量低于制成的隧洞封闭块,比常规的土壤稳定法节约造价50%,故这种混凝土可望在软土工程中得到发展应用。4、轻质混凝土[5]利用天然轻骨料(如浮石、凝灰岩等)、工业废料轻骨料(如炉渣、粉煤灰陶粒、自燃煤矸石等)、人造轻骨料(页岩陶粒、粘土陶粒、膨胀珍珠岩等)制成的轻质混凝土具有密度较小、相对强度高以及保温、抗冻性能好等优点利用工业废渣如废弃锅炉煤渣、煤矿的煤矸石、火力发电站的粉煤灰等制备轻质混凝土,可降低混凝土的生产成本,并变废为用,减少城市或厂区的污染,减少堆积废料占用的土地,对环境保护也是有利的。5、纤维增强混凝土[6]为了改善混凝土的抗拉性能差、延性差等缺点,在混凝土中掺加纤维以改善混凝土性能的研究,发展得相当迅速。目前研究较多的有钢纤维、耐碱玻璃纤维、碳纤维、芳纶纤维、聚丙烯纤维或尼龙合成纤维混凝土等。在承重结构中,发展较快、应用较广的是钢纤维混凝土。而钢纤维主要有用于土木建筑工程的碳素钢纤维和用于耐火材料工业中的不锈钢纤维。用于土木建筑工程的钢纤维主要有以下几种生产方法:①钢丝切断法;②薄板剪切法;③钢锭(厚板)铣削法;④熔钢抽丝法。当纤维长度及长径比在常用范围,纤维掺量在1%到2%(体积分数,本文中的掺量均指体积分数)的范围内,与基体混凝土相比,钢纤维混凝土的抗拉强度可提高40%~80%,抗弯强度提高50%~120%,抗剪强度提高50%~100%,抗压强度提高较小,在0~25%之间,弹性阶段的变形与基体混凝土性能相比没有显著差别,但可大幅度提高衡量钢纤维混凝土塑性变形性能的韧性。中国工程建设标准化协会于1992年批准颁布了由大连理工大学等单位编制的《钢纤维混凝土结构设计与施工规程》(CECS 38:92),对推广钢纤维混凝土的应用起到了重要作用。钢纤维混凝土采用常规的施工技术,其钢纤维掺量一般为~.再高的掺量,将容易使钢纤维在施工搅拌过程中结团成球,影响钢纤维混凝土的质量。但是国内外正在研究一种钢纤维掺量达5%~27%的简称为SIFCON的砂浆渗浇钢纤维混凝土,其施工技术不同于一般的搅拌浇筑成型的钢纤维混凝土,它是先将钢纤维松散填放在模具内,然后灌注水泥浆或砂浆,使其硬化成型。SIFCON与普通钢纤维混凝土相比,其特点是抗压强度比基体材料有大幅度提高,可达100~200MPa,其抗拉、抗弯、抗剪强度以及延性、韧性等也比普通掺量的钢纤维混凝土有更大的提高[7].另一种名为砂浆渗浇钢纤维网混凝土(SIMCON)的施工方法与SIFCON的基本相同,只是预先填置在模具内的不是乱向分布的钢纤维,而是钢纤维网,制成的产品中,其纤维掺量一般为4%~6%,试验表明,SIMCON可用较低的钢纤维掺量而获得与SIFCON相同的强度和韧性,从而取得比SIFCON节约材料和造价的效果。虽然SIFCON或SIMCON力学性能优良,但由于其钢纤维用量大、一次性投资高,施工工艺特殊,因此它们只是在必要时用于某些特殊的结构或构件的局部,如火箭发射台和高速公路的抢修等。在砂浆中铺设钢丝网及网与网之间的骨架钢筋(简称钢丝网水泥)所做成的薄壁结构,具有良好的抗裂能力和变形能力,在国内外造船、水利、建筑工程中应用较为广泛。近年来,在钢丝网水泥中又掺人钢纤维来建造公路路面、渔船、农船等,取得了更好的双重增韧、增强效果。6、自密实混凝土(self-compacting concrete)自密实混凝土不需机械振捣,而是依靠自重使混凝土密实。混凝土的流动度虽然高,但仍可以防止离析。配制这种混凝土的方法有[4]:①粗骨料的体积为固体混凝土体积的50%;②细骨料的体积为砂浆体积的40%;③水灰比为;④进行流动性试验,确定超塑化剂用量及最终的水灰比,使材料获得最优的组成。这种混凝土的优点有:在施工现场无振动噪音;可进行夜间施工,不扰民;对工人健康无害;混凝土质量均匀、耐久;钢筋布置较密或构件体型复杂时也易于浇筑;施工速度快,现场劳动量小。7、智能混凝土(smart concrete)[4]利用混凝土组成的改变,可克服混凝土的某些不利性质,例如:高强混凝土水泥用量多,水灰比低,加入硅灰之类的活性材料,硬化后的混凝土密实度好,但高强混凝土在硬化早期阶段,具有明显的自主收缩和孔隙率较高,易于开裂等缺点。解决这些问题的一个方法是,用掺量为25%的预湿轻骨料来替换骨料,从而在混凝土内部形成一个“蓄水器”,使混凝土得到持续的潮湿养护。这种加入“预湿骨料”的方法,可使混凝土的自生收缩大为降低,减少了微细裂缝。高强混凝土的另一问题是良好的密实性所引起的防火能力降低。这是因为在高温(火灾〕时,砂浆中的自由水和化学结合水转变为水气,但却不能从密实的混凝土中逸出,从而形成气压,导致柱子保护层剥落,严重降低了柱的承载力,解决这个问题的一种方法是,在每方混凝土中加2kg聚丙烯纤维,在高温(火灾)时,纤维熔化,形成了能使水气从边界区逸出的通道,减小了气压,从而防止柱的保护层剥落。8、预填骨料升浆混凝土国内在大连中远60000t船坞工程中,因地质条件复杂,船坞底板首次采用了坐落于基岩上的预填骨料升浆混凝土,即用密度较大的厚4~5m的铁矿石作为预填骨料,矿石层下再铺设1m厚的石灰石块石。矿石层上是厚60~80cm的现浇钢筋混凝土板在预填骨料层中布置压浆孔注入砂浆,形成预填骨料升浆混凝土。采取这种工艺,缩短了工期,取得了良好的经济效益。9、碾压混凝土[8]碾压混凝土近年发展较快,可用于大体积混凝土结构(如水工大坝、大型基础)、工业厂房地面、公路路面及机场道面等。用于大体积混凝土的碾压混凝土的浇筑机具与普通混凝土不同,其平整使用推土机,振实用碾压机,层间处理用刷毛机,切缝用切缝机,整个施工过程的机械化程度高,施工效率高,劳动条件好,可大量掺用粉煤灰,与普通棍凝土相比,浇筑工期可缩短1/3~1/2,用水量可减少20%,水泥用量可减少30%~60%.碾压混凝土的层间抗剪性能是修建混凝土高坝的关键问题,国内大连理工大学等单位曾开展这方面的研究工作。在公路、工业厂房地面等大面积混凝土工程中,采用碾压混凝土,或者在碾压混凝土中再加入钢纤缝,成为钢纤维碾压混凝土,则其力学性能及耐久性还可进一步改善。10、再生骨料混凝土新中国建国至今己逾50年,建国前后修建的不少混凝土结构,因老化或随着经济的发展,需拆除重建,其拆除量十分巨大,在拆除的混凝土中,约有一半是粗骨料,应该考虑如何使之再生利用。以减少环境垃圾,变废为用。文献[4]报道,在荷兰的德尔夫特,一个272所住宅的方案中,所有的混凝土墙均利用了再生骨料,该方案下一步的计划,是在混凝土楼板中也利用再生骨料。当然,在利用这些再生骨料时,需对这种馄凝土的性能进行试验,例如,文献[9]报道了有关再生轻质混凝土收缩和徐变较为显著的试验成果,值得重视。二、混凝土加强筯1、纤维筋[6]钢筋混凝土结构的配筋材料,主要是钢筋最近在国际上研究较多的是树脂粘结的纤维筋(fiber reinforced plastics, FRP)作馄凝土及预应力混凝土结构的非金属配筋,常用的纤维筋有树脂粘结的碳纤维筋(GFRP)、玻璃纤维筋(GFRP)及芳纶纤维筋(AFRP)国外研究指出,这几种纤维筋的强度都很高,只是玻璃纤维筋的抗碱化性能较差。纤维筋的突出优点是抗腐蚀、高强度,此外,还具有良好的抗疲劳性能、大的弹性变形能力、高电阻及低磁导性,其缺点是断裂应变性能较差、较脆、徐变(松弛)值较大,热膨胀系数较大。国外已有日本、德国、荷兰等国将纤维筋用于预应力混凝土桥,包括体外预应力桥的实例[4].2、双钢筋[1]为了减小裂缝宽度和构件的变形,国内在一些工程中,采用焊成梯格形的双钢筋,在构件内平放或竖放布置。3、冷轧变形钢筋[1]为了节约钢材用量,国内引进国外设备或自制设备,用光圆钢筋,经过冷轧,轧成带肋的直径小于母材直径的钢筋,称为冷轧带肋钢筋。另一种类似的钢筋,是用I级光圆用筋冷轧扭转成型,称为冷轧变形用筋或冷轧扭钢筋。这两种冷轧钢筋的抗拉强度标准值(极限抗拉强度)及设计值都比母材大大提高,与混凝土的粘结强度也得到提高,但直径较小。它们主要用作板式构件的受力钢筋或梁、柱构件的箍筋或作预应力筋。由于强度提高,可以节约材料用量,获得经济效益。这两种钢筋,国内己制订了规程。为将这种小直径钢筋的用途扩展至梁、柱的受力钢筋,也可采用双筋或三筋的并筋,但需适当增大其锚固长度。4、环氧树脂涂敷钢筋[1]在海洋环境或者有腐蚀性介质的环境中(如冬季撒盐的桥面),钢筋锈蚀是影响结构耐久性的重要原因。为了防止钢筋锈蚀,用不锈钢制造钢筋是一个途径,但是价格昂贵。另一个途径是用环氧树脂涂敷钢筋表面,形成防锈的涂层,以防止钢筋生锈,这种方法在日本、美国应用较多。钢筋在工厂中校直、加热、喷涂树脂粉末,形成防护薄膜,冷却后经检验合格,用于有严格防锈蚀要求的工程,可使结构的耐久性大大提高。5、预应力混凝土用钢棒、预应力混凝土用螺旋肋钢丝在传统用于预应力混凝土的钢丝、钢绞线、热处理钢筋的基础上,从国外引进生产线,己生产出直径达、抗拉强度达1570MPa的预应力混凝土用的带螺旋肋的钢棒(stee1 bar),及直径达、抗拉强度达1570MPa的带螺旋肋的钢丝。这种新产品的特点是:高强度、低松弛,与混凝土的粘结强度好,易墩粗,可点焊,可盘卷等。6、纤维布、纤维条、纤维板国内在对钢筋混凝土结构进行加固时,常用的一种技术是钢板粘结加固技术,但是钢板质量重、运送不便,剪切成型也比较复杂。最近在国内外发展并应用了以质量很轻、易于加工、单向抗拉强度很高的纤维布(条、板〕代替钢板进行构件加固的技术,取得了良好的效果。例如,冶金工业局建筑研究总院使用从日本进口的碳纤维,开发了加固改造修复混凝土结构新技术[10],其使用的碳纤维布,厚,单向抗拉强度3000~3550MPa,这种碳纤维布的特点是:具有很高的单向抗拉强度(为普通钢材的10倍),弹模与钢材接近,很适用于钢筋混凝土结构的加固;质量轻,密度仅为钢的1/4,加固层厚度一般不大于1mm,基本不增加结构自重及截面尺寸;施工方便,功效高;耐腐蚀,无须定期维护。国外在用碳纤维布或碳纤维条时,还利用不同弹模的碳纤维进行优化组合,降低造价。除碳纤维外,与纤维筋类似,也有用芳纶纤维和玻璃纤维制成的产品(布、条或扳〕。值得指出的是,国际桥梁与结构工程学会(IABSE)在1999年11月出版的Structural Engineering第9卷第4期中,集中报道了加拿大、美国、日本、欧洲诸国在发展使用这种新型材料方面的经验,对激发我国开展这种新材料的生产与应用很有意义。三、结束语混凝土是水泥、砂、石、水、外加剂、掺合料等多组分构成的一种性能多样化的材料,其性能不仅与组成材料的性能有直接关系,而且还与施工技术、所处环境及维护条件等有关;笔者只是从一个结构工程技术人员的工程实用角度出发,对于所涉及过的研究领域和知之不多的混凝土及其增强材料的发展与应用等方面,作了抛砖引玉的介绍。期望在混凝土结构领域内,有更多的专家学者开发出更多新的材料,并进而研究将这些材料用于结构工程所需解决的设计方法、施工技术以及维护要求等,以促进我国混凝土结构技术的进一步发展。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

混凝土增强剂的研究与制备论文

普通型混凝土表面增强剂可提高5~8兆帕超强型混凝土表面增强剂可提高8~15兆帕进口型混凝土表面增强剂可提高10~16兆帕

混凝土增强剂是一种水溶性的液态产品,其主要成分为具有反应活性的碱金属硅酸盐或改性的碱金属硅酸盐催化剂,助剂等。具有极低的表面张力,能快速渗透到混凝土内部,与混凝土中水泥水化的副产物发生二次反应,生成大量的二氧化硅凝胶,这些凝胶能堵塞混凝土内部毛细微孔,从而增加混凝土表面的密实性,抗压强度,硬度和耐磨性,快速地提高回弹强度。

膨胀剂掺入到商品混凝土中,通过产生一定的限制膨胀,补偿商品混凝土的收缩,有利于提高商品混凝土的抗渗防裂。掺膨胀剂的商品混凝土在多向约束条件下密实度、强度和耐久性也有所提高。虽然如此,有关膨胀剂在商品混凝土中的应用尚存在意见分歧。原因在于:掺膨胀剂的商品混凝土常不能产生预期的膨胀,商品混凝土结构在中后期甚至早期仍出现变 形开裂,此外,对掺膨胀剂的商品混凝土的相关耐久性特别是抗碳化和钢筋锈蚀能力存在较大担心。针对上述问题,本论文主要研究掺UEA膨胀剂商品混凝土碱度变化、抗 碳化和钢筋锈蚀能力;研究了温度、湿度、水胶比、矿物掺合料的种类和用量对掺膨胀剂商品混凝土限制膨胀的影响。探讨了温度和湿度对钙矾石稳定性的影响,并分析了延迟钙矾石形成的原因和条件。研究结果表明:①UEA掺量提高,商品混凝土的碱度略有降低,但幅度很小,掺量达到水泥用量的20%时,商品混凝土体系的pH值仍 在以上。②随着膨胀剂掺量提高,商品混凝土抗碳化能力和抵抗钢筋锈蚀的能力呈降低趋势,这种趋势对水胶比大于的商品混凝土表现较明显;当水胶比低于 时,掺膨胀剂对商品混凝土的抗碳化能力和护筋性基本没有影响。③温湿度对膨胀剂的作用效率有重要影响。饱和湿度且温度低于70℃时,随着温度提高,膨胀 剂的早期膨胀效率提高,中后期膨胀效率则略有降低;当温度超过80℃后,膨胀剂的膨胀效率随温度的提高而大幅度降低,这主要与钙矾石的稳定性有关。④矿物 掺合料对膨胀剂的膨胀性能有一定的影响,其中,粉煤灰的影响较小,磨细矿渣和硅灰的掺入将削弱膨胀剂的膨胀功能。⑤膨胀剂商品混凝土的膨胀行为受水胶比影响, 膨胀剂在较低水胶比的商品混凝土中表现出的膨胀功能相对较低。-

产品特色:回弹强度可提高 8-15Mpa,3天起效,迅速解决混凝土回弹不足缺陷!一、产品简介: 本公司混凝土增强剂选用进口原液多年试验研发,添加特殊无害表面活性成分,超强渗透,强度更高,性能卓越! 该产品无色透明、液体材料、使用方便、不燃、渗透力强,能有效提高混凝土硬度,符合所有VOC规则。 二、产品功能及使用范围: (1)混凝土表面增强剂通过渗透入混凝土内部,与其中化学物质发生化学反应,收缩混凝土毛孔和裂缝,使混凝土致密,从而提高其硬度。该产品针由无机物、化学活性物质和络合物组成。 (2)该产品广泛使用于:已浇筑成型后的混凝土强度不足的基础建筑上。 三、工作原理: (1)通过有效渗透,本产品与水气及混凝土中的化合物成分发生化学反应,使混凝土硬度提高,同时混凝土可以呼吸,抗化学腐蚀。有效提高混凝土硬度、密度、抗压强度,回弹强度可提高 10%~40%。(普通型)(2)增硬后的混凝土颜色保持不变。四、特点优势 (1)紧缩混凝土毛孔,有效抑制外界污染物进入混凝土。 (2)提高新旧混凝土的硬度(回弹强度)和耐磨性能。 (3)抵抗氯化物的侵蚀。 (4)抑制化学物质的侵蚀。 (5)防止混凝土出现剥落、散裂。 (6)经混凝土表面增强剂处理过后的混凝土颜色不发生改变。 五、使用方法: (1)施工前,将混凝土表面进行清扫,无浮灰,混凝土比较光滑的基层需用砂纸打磨处理,并用清水清洗混凝土表面。 (2)需要用滚筒涂刷,施工完3天达到理想效果,可用回弹仪测 六、包装规格与贮存: (1)桶装 50kg/桶。 (2)宜在室内阴凉、干燥、通风处保存。 (3)可在零度以下环境中存放。

混凝土抗压强度研究论文

混凝土养护技术论文篇二 对混凝土养护技术的探讨 [摘 要]随着社会的发展,我国的工程项目日益增多,而混凝土作为工程项目中必不可少的材料之一,在工程项目施工中有着很大的作用。不过在工程施工中,混凝土的质量也直接影响着整个工程的质量。因此,为了避免这样的情况发生,我们在进行工程施工时,都会对混凝土进行一定的养护工作以保证混凝土的质量。 文章 通过对混凝土的养护的原理和方法进行简要的概述, 总结 了当前混凝土养护的技术,以供大家参考。 [关键词]混凝土;养护;介质温度;介质湿度;延续时间 中图分类号:TU154 文献标识码:A 文章编号:1009-914X(2016)07-0271-01 目前,由于混凝土已经广泛的应用到人们生活的各个方面,传统的工艺技术已经完全不能满足人们的需求,因此施工工艺和养护技术还需要不断创新,尤其是混凝土的养护技术,作为工程施工和质量保证的重要环节,它的创新直接影响着整个混凝土工艺技术。 一、混凝土养护原理 在混泥土的施工工艺中,当混凝土浇筑完后,还存在一个相当久的缓冲时期,需要相当长的一段时间保持混凝土的温度和湿度,这样才能很好的保障混凝土的强度与其质量的好坏,而我们就把保持混凝土中的温度与湿度的技术方法叫做混凝土的养护技术。由此可见,要做好混凝土的养护工作,必须要保证温度、湿度和养护时间这三大要素。 我们在进行混凝土的养护时,想要混凝土的硬度和强度得到增长,我们就必须要把握好混凝土内部的适当的温度和足够的湿度,这主要是和混凝土中重要组成的材料水泥有关,因为水泥是一种具有较强水硬性的材料,在与水反应的时候,会产生凝胶状的水化物,当这种水化物凝固后硬度和强度都会变得很大,不过这需要一定的条件,如果条件不能满足,还直接影响混凝土,使其出现裂痕。因此,我们在进行混凝土的养护时一定要注意混凝土中的温度和湿度,这样才能很好的保障混凝土的质量,才能用于工程施工。 二、养护方法 养护的方法有很多,比如:自然养护、标准养护、蓄热法养护等等,这些都可以对混凝土起到一个很好的养护作用,下面我们就对这些养护方法进一一的介绍。 1自然养护 混凝土的自然养护是施工工程中常见的养护方法之一,这主要是因为这种养护方法简便快捷,而且需要的成本很低,所以在工程施工中广泛的用于中、小型施工工程。这种方法应用的原理是,当在气温不低于5度的自然条件下,人们在混凝土的养护过程中采用浇水保湿,用其他的设施进行防风防干来对混凝土进行养护,以保证其质量。人们在进行养护的时候,都会采用像湿麻袋、锯末、湿砂等覆盖在混凝土的表面,然后在进行定期的洒水、浇水,以保持混凝土表面的湿度,而且在洒水时,一定要洒均匀,不然就很难保证混凝土中的湿度,而且在不同的季节,还要采用不同的方法,例如在春季, 雨水 比较充足,我们就要采取一定的防潮措施,以免因混凝土中的水分过多而引起的质量问题;在夏季的时候,我们为了防止其表面的温度过高,我们就要采取一定的隔热措施,将温度和湿度控制在合适的位置上,而且不同的混凝土的养护时间也存在着不同。因此,我们在采用自然养护时,一定要进行合理的控制。 2、标准养护 就是按规范要求,在温度20±3℃、相对湿度在90 %以上的条件下进行养护 ,即为标准养护。尤其是对混凝土试件进行标准养护,是测定混凝土强度的关键。 3、蓄热法养护 混凝土在养护期间采用保温材料加以覆盖 ,使混凝土始终保持一定温度。这种方法在平均气温不低于-10℃、混凝土表面率(表面积与体积比)小于5时较为适宜。多在住宅冬季施工中应用 ,若配合热水养生效果更佳。 4、热养护 热养护是利用外界热源加热混凝土而加速水泥水化反应的方法 ,也称加速硬化养护法。此法又分为以下几种: 4、1加热养护。此法往往在蓄热法养护达不到目的时采用。可分为暖棚法、 蒸汽加热法、 干 ― 湿法、 加压蒸汽法等。 (1)暖棚法。利用保温材料搭成暖棚 ,把整个构件或结构围起来 ,保证棚内有较高温度 ,棚内加热可采用装设蒸汽管 ,也可直接生火炉提高棚内温度。 (2)蒸汽加热法,也叫湿热法。利用蒸气加热,使混凝土得到较高温度和湿度,在湿热环境中加速水泥水化来达到加速硬化的目的。蒸汽养护分4个阶段进行,即预养期(静停期)、升温期、恒温期与降温期。为了防止和抑制结构破坏,在开始升温之前,要设置预养期,使混凝土在常温潮湿环境中静停(静置)一定时间,产生一定的早期强度。预养期以2~4h为宜。混凝土的结构破坏主要发生在升温期。同时,升温期也是混凝土结构的定型阶段,在热养过程中至关重要。在升温期必须控制升温速度,使因温度引起的不均匀膨胀破坏力不超过已产生的结构强度。对于中等强度的混凝土,升温速度不宜超过20~25℃/h。当升温达到最高限时,保持一段时间称为恒温期。恒温期是混凝土强度的主要增长期,故为混凝土结构的巩固期。恒温期混凝土的硬化速度取决于水泥品种、水灰比和恒温温度。对于普通硅酸盐水泥混凝土,恒温温度不宜超过60~70℃,矿渣硅酸盐水泥混凝土则不宜超过90~95℃,温度过高不利于水化作用,强度将会降低。目前,多采用恒温时间为3~5h。降温阶段因混凝土已具有较高强度能够承受较大的温度变化,为了避免表面开裂,一般脱模时气温与混凝土表面温度相差不得超过40℃,混凝土降温速度不宜超过35℃/h,过速降温不仅强度损失,而且失水过多将影响后期水化。对于尺寸大,外形复杂的构件,升降温速度应酌量减小。[1] (3)干湿热养护法与其他的养护方法不同,在混凝土浇筑成型后不需要延长养护期,直接利用其内部结构的饱和蒸汽养护产生的应力,就可以上混凝土中的温度和湿度达到一个合理的环境,而且这样的方法可以有效的控制混凝土的强度。它主要的施工原理是,在混凝土成型后的一段时间中,进行干燥,然后在进行高温养护。这样主要是因为,在进行高温养护的时候,内部的水分会因为高温的影响向外迁移,而内部就会因为脱水而进行收缩,从而使得混凝土内部更加紧密,而且有效的控制温度,也有效的控制了混凝土因高温而被破坏的现象。 4、2 辐射热养护法。 此法分为以下两种。 (1)太阳能热养护法。在混凝土表面覆盖一层吸热物体 ,搭设通光集热保温罩进行的混凝土养护。此法与自然养护比较 ,可缩短养护周期1/2左右,晴天集热罩内温度比室外温度高015~110倍。此法有直接覆盖、 太阳能养护罩 ,塑料簿膜简易暖棚等多种方式。[2] (2)红外线养护法。红外线加热养护就是利用发热体改变表面状态提高辐射强度,使被加热制品吸收辐射热提高内部温度。另外模板和介质也吸收热量,最终以对流和传导的方式再次传递给制品一部分,使制品内部温度进一步提高,加速水泥水化,促进混凝土内部结构的形成。此法是在发热体(散热器)表面涂刷远红外辐射材料,当发热体使涂料分子受热后便激发而向四周发射电磁波,该波被物体吸收,成为分子运动动能,使被加热物体的温度上 升。红外线加热以电、煤气或蒸气为热源。由于混凝土在养护过程中内部有游离水存在,而对红外线又有较宽广的吸收带,混凝土在60~100℃时对红外线的吸收率为90%左右。因此用远红外线加热养护混凝土制品可以取得混凝土内部温度高、养护时间短、抗压强度高,节约能源等效果。 结束语 由此可见,混凝土的养护技术在生活多种多样,而且在不同的环境下也有着不同的技术方案,这也有效的保障了混凝土的质量,同时也为我国的工程质量提供了一份保障。不过,由于我国在混凝土的养护技术方面起步比较晚,在很多方面还存在的不足,因此我们还要向发达国家多多学生,在以后的实践中,找到更加合理的施工技术,从而促进我国工程项目的发展与进步。 参考文献 [1] 黄云海.水泥混凝土强度应注意的几个影响因素[J].大众科技. 2004(10). [2] 彭仕国,尹友良,焦云州.混凝土养护工艺应用[J].铁道工程学报. 2001(02). 看了“混凝土养护技术论文”的人还看: 1. 公路养护技术论文 2. 公路养护技术论文(2) 3. 建筑节能新技术论文 4. 浅析水泥混凝土路面破坏的形式及裂缝养护 5. 浅谈工程技术建设论文

浅谈再生混凝土的性能特点及其应用工学论文

在日常学习和工作中,说到论文,大家肯定都不陌生吧,论文是探讨问题进行学术研究的一种手段。你所见过的论文是什么样的呢?以下是我为大家收集的浅谈再生混凝土的性能特点及其应用工学论文,希望对大家有所帮助。

摘要 :

新建筑工程的建设和旧建筑工程的拆除都会产生大量的建筑垃圾,既造成环境污染又浪费大量资源,如何处理日益增多的建筑废弃垃圾,减轻对环境的污染,已成为各个国家必须面对的重要课题.通过分析再生混凝土的物理、力学性能、耐久性能、剪切性能以及抗震性能,探讨了再生混凝土的应用前景。

关键词 :再生混凝土;性能指标;建筑垃圾;应用前景

引言

目前我国正处于大兴土木的建设时期,土木建筑的快速发展带动了国民经济,也成为了消耗资源和产生垃圾最多的行业.为了有效减少环境污染破环,减少废弃混凝土的数量,做到可持续协调发展,目前解决该问题的方法只有再生利用,于是跟再生混凝土有关的一些技术和研究也快速发展起来。

再生骨料或再生混凝土骨料[1-2]是指将废弃混凝土块破碎、分级,并按一定的级配混合后形成的骨料,而利用再生骨料作为部分或全部骨料配制的混凝土,称为再生骨料混凝土,简称再生混凝土.再生混凝土是建筑材料的循环再利用,是与生态环境发展相协调的重要一部分,也 符合国家的可持续发展战略.本文主要讨论再生混凝土基本性能,探讨再生混凝土应用工程的发展前景。

1、再生混凝土研究现状

国外研究现状国外对于再生混凝土的研究比较早,可以追溯到二次世界大战期间,连年的战争破坏了大量的建筑物,同时也产生了大量的废弃物,因此许多欧洲国家均不同程度地面临着如何处理废弃物的问题[2].20世纪50年代,苏联和德国为了处理大量废弃混凝土同时为城市重建提供新的原材料,相继开展了再生混凝土技术的研究工作.1977年日本政府制定了JIS TR A 0006《再生骨料和再生混凝土使用规范》;1991年日本政府又制定了《资源重新利用促进法》,规定建筑施工过程中产生的渣土、混凝土块、沥青混凝土块、木材、金属等建筑垃圾,必须送往“再生资源化设施”进行处理。

对于废弃物再利用,美国政府也制定了《超基金法》,规定:“任何生产有工业废弃物的企业,必须自行妥善处理,不得擅自随意倾倒.”这个规定给再生混凝土的发展提供了操作依据和法律保障.

国内研究现状

我国对再生混凝土的研究工作起步相对较晚,目前还停留在实验室研究阶段,不过政府对再生混凝土研究工作相当重视,相继投入了不少的资金,也取得了一些成果.同济大学对再生混凝土技术进行了大量的研究工作[2-3],包括再生混凝土的强度和工作性能、废弃混凝土破碎及再生工艺研究、再生混凝土耐久性研究、再生混凝土梁柱试验研究、再生混凝土框架节点试验研究、再生混凝土框架结构抗震性能的研究等.2007年同济大学编写了地方标准《再生混凝土应用技术规程》(DG/TJ 08-2018-2007),为再生混凝土的应用提供了技术指导。

另外,中科院、东南大学、浙江大学和北京工业大学等相关科研单位也对再生混凝土开展了大量的研究工作,并开发了相关的再生混凝土技术。

2、再生混凝土性能特点

物理力学性能东南大学陈亮等对再生骨料混凝土技术开发与研究的最新进展进行了综述与对比分析[3],分析结果表明再生混凝土的破坏过程和破坏模式与普通混凝土基本一致.从破坏形态来看,再生混凝土的破坏基本上始自粗骨料和水泥凝胶体面的黏结破坏,再生混凝土的长期抗压强度发展规律与普通混凝土有所差异.分析还指出,全部采用废混凝土作骨料的再生混凝土与相同配合比的普通碎石混凝土相比,抗压强度降低9%,抗拉强度降低7%,抗压弹性模量降低28%,抗拉弹性模量降低34%,说明再生混凝土脆性降低,韧性增加.而全部采用废弃混凝土作骨料的再生混凝土较相同配合比的普通混凝土极限拉应变增大28%,拉伸弹模降低34%,抗压强度比有所增加,说明再生混凝土的抗裂性能较好。

中国科学院武汉岩土力学研究所骆行文等通过一系列试验,分析研究了不同再生混凝土取代率对静力力学性能的影响,研究了再生混凝土声波传播特征参数随再生混凝土轴向压缩变形的变化规律[4].指出随着再生混凝土取代率的增加,再生混凝土的应力峰值在减小,再生混凝土的弹性模量和变形模量也在降低.分析还表明再生混凝土声波传播速度随着再生混凝土的轴向压缩变形先增大后减小,在再生混凝土轴向压缩过程中,超声波在再生混凝土中波幅先增大后减小。

同济大学肖建庄通过不同再生粗骨料取代率下再生混凝土的单轴受压应力应变全曲线试验,分析了再生粗骨料取代率对再生混凝土的应力应变全曲线形状和再生混凝土抗压强度、弹性模量、峰值及极限应变的影响[5].研究表明,再生混凝土的应力应变全曲线的总体形状与普通混凝土的相似,但曲线上各特征点的应力和应变值有所区别;再生混凝土的棱柱体抗压强度与立方体抗压强度的比值高于普通泥凝土;再生混凝土的峰值应变大于普通混凝土;再生混凝土的弹性模量明显低于普通混凝土.分析还指出再生混凝土应力应变全曲线的上升段和下降段可以分别用3次多项式和有理分式分别进行拟合。

浙江大学徐亦东等采用优质矿物掺合料和高效减水剂成功配制出C40—C60高性能再生混凝土,并采用电液伺服压力试验机对高性能再生混凝土进行单轴受压试验,测得其应力应变曲线并进行理论分析,总结出了再生混凝土单轴受压应力应变全曲线的数学表达式,与试验结果吻合较好[6-7]。

西班牙加泰罗尼亚理工大学等设计4种不同的再生混凝土粗集料取代率,通过4种混凝土的搭配比例来得到相同的抗压强度,分析了再生混凝土的力学性能[8].试验中,回收集料处于吸水状态,但不饱和,以控制新拌混凝土的性能、有效水灰比和更低的强度偏差.结果表明采用中低抗压强度的集料生产再生混凝土,其必要性已被证实归结于水泥的用量,测定了再生混凝土相对较低的弹性模量,此结果验证了几位学者提出的数学模型的有效性。

葡萄牙里斯本理工大学等通过不同的养护条件分析了再生混凝土的物理力学性能,分析了再生混凝土的抗压强度、劈裂强度、弹性模量和磨耗值,分析结果表明影响再生混凝土物理力学的养护条件大体上跟普通混凝土一致[9]。

意大利马尔凯理工大学Valeria Corinaldesi等采用取代率为30%的再生集料配制再生混凝土,分析了梁柱结合处再生混凝土在周期荷载下适用于结构的可行性[10].当取代率为30%时,再生混凝土与普通混凝土有几乎相同的抗压强度,然而,再生混凝土的抗拉强度、劈裂强度和弹性模量比普通混凝土偏低.基于周期荷载试验结果,通过参数裂缝类型、分布能、延展性和设计值来评价梁柱结点处的性能,结果显示,利用再生混凝土浇筑的结点具备充足的结构性能。

耐久性能

武汉大学刘数华、饶美娟对再生混凝土的变形性能主要包括弹性行为、干缩与徐变、温度变形性能,再生混凝土的耐久性包括渗透性、抗冻耐久性和抗化学侵蚀性能[11].对再生混凝土的变形性能和耐久性能进行深入分析,结果表明,再生骨料对再生混凝土变形性能和耐久性能虽有不同影响,但亦可满足于工程应用。

湖南省高速公路管理局龚先兵和长沙理工大学刘朝晖、李九苏对道路再生骨料混凝土的耐久性进行系统试验研究,包括抗硫酸盐侵蚀试验、抗冻性试验和干缩性试验,结果表明,再生骨料混凝土的耐久性能能够满足道路工程的需要[12]。

浙江大学徐亦冬,沈建生根据再生骨料的特性并结合当今的研究热点“高性能混凝土”技术,使再生混凝土向高性能化的方向发展[13].研究表明,尽管再生骨料属于低品质骨料,但通过将粉煤灰、矿渣及硅灰等矿物掺合料应用于再生混凝土中,充分利用粉体的优化组合以及界面强化效应,可使再生混凝上具有良好的工作性及较高的强度等级。

安徽水利水电学院的魏应乐对再生混凝士的抗渗性、抗冻融性、抗碳化、氯离子渗透性、硫酸盐侵蚀、耐磨性进行了分析,并提出了减小水灰比、掺加粉煤灰、采用二次搅拌工艺、减小再生骨料最大粒径、采用半饱和面于状态等改善再生混凝土耐久性的措施[14].研究结果表明,再生混凝土的抗渗性、抗冻融行、抗硫酸盐侵蚀性、抗氯离子渗透性和耐磨性均较普通混凝土弱。

美国威斯康星大学麦迪逊分校等在中干试验环境下,对引气型再生混凝土和非引气型再生混凝土进行自由状态下冻融耐久性试验[15],结果表明,直接冻融坚固性试验为判断再生混凝土集料的坚固性提供了更为实际的试验条件,硫酸盐坚固性试验不能预测再生混凝土集料的冻融难易程度。

英国诺桑比亚大学Alan Richardson等基于质量损失和极限抗压强度2个指标,采用对比试验,对再生混凝土的冻融耐久性试验进行研究[16],结果表明,再生混凝土与普通混凝土几乎有着相似的耐久性,原因归结于在分批前对再生集料仔细的选择和处理.耐久性是材料的一个重要指标,再生集料需要被大量的测试以便用于工业生产,本文表明了未来应用的可能性。

抗剪性能

广西大学黄莹、邓志恒等通过对四点受力等高变宽梁进行剪切试验,探讨水灰比相同的条件下,再生骨料取代率对再生混凝土剪切性能的.影响[17].研究表明,再生混凝土剪切破坏形态和普通混凝土相似,但其抗剪强度和变形能力均低于普通混凝土.在对再生混凝土抗剪强度、剪切变形和剪切模量分析的基础上,绘制了再生混凝土的剪应力应变曲线,建议了剪应力应变曲线方程和剪切模量的计算公式。

广东省建筑科学研究院黄健和同济大学建筑工程系肖建庄、雷斌对影响再生混凝土梁抗剪承载力的各因素作了定性分析,得出再生混凝土梁抗剪机理,包括剪跨比、混凝土强度及配箍率在内的诸多因素对再生混凝土梁抗剪承载力的影响趋势与普通混凝土梁基本一致的结论[18].同时指出增大荷载分项系数可明显提高再生混凝土梁抗剪可靠度指标,但在配箍率较小时,荷载分项系数提高至时再生混凝土梁抗剪可靠度也不能满足可靠度要求.增大再生混凝士抗压强度平均值,使其标准值达到与普通混凝土相同的水平,再生混凝土梁的抗剪可靠度均可满足规范要求,这是提高再生混凝土梁抗剪可靠度指标的最佳途径。

西安建筑科技大学刘丰、白国良等试验采用等高变宽梁,考虑混凝土强度等级和再生骨料取代率,研究了再生混凝土梁的抗剪强度和变形及其发展规律[19],得出了再生混凝土梁抗剪极限承载力与取代率没有直接关系的结论,同时还得出再生混凝土梁的切应力主应变曲线接近直线,试验所得抗剪强度相对普通混凝土较低的结论。

郑州大学的张雷顺通过13根再生混凝土梁与普通混凝土梁的对比试验,对再生粗骨料取代抗震性能同济大学建筑工程系的肖建庄、朱晓晖完成了3种不同再生粗骨料取代率再生混凝土框架边节点在恒定竖向轴压荷载和水平低周反复荷载作用下的抗震性能试验研究[23],指出再生混凝土节点的破坏过程与普通混凝土相类似,虽然再生混凝土节点的抗震性能略低于普通混凝土,但再生混凝土节点的延性等抗震性能仍满足相应抗震设防要求,说明再生混凝土可用于有抗震设防要求的框架节点中。

同济大学结构工程研究所的孙跃东等通过对3榀1∶2比例框架模型在不同的竖向轴压荷载和水平低周反复荷载作用下的抗震性能的对比试验,研究了再生混凝土框架在低周反复荷载作用下以及不同轴向力作用下对再生混凝土框架抗震性能的影响[24].结果表明,再生混凝土框架,在不同轴力和低周反复荷载作用下,其受力特性、破坏形态和破坏机制没有明显的差别,破坏机构均表现为明显的“强柱弱梁”类型;再生混凝土框架具有较好的抗震性能,结构进入弹塑性阶段后,框架的滞回曲线均比较丰满,表明框架都具有良好的耗能能力;框架的位移延性系数为~,表明框架延性良好,再生混凝土框架的位移延性小于普通混凝土框架,随着轴向荷载的增加,框架的延性降低。

北京工业大学建筑工程学院的张建伟、曹万林等进行了7个剪跨比为的中高剪力墙低周反复荷载试验研究[25],在试验的基础上,分析了各剪力墙的承载力、延性、刚度、滞回特性、耗能及破坏特征.研究表明,再生细骨料掺量的增加,使再生混凝土中高剪力 墙的抗震性能有所降低以及随着配筋率的提高,其承载力、延性、耗能能力有所提高.同时指出轴压比的提高,使再生混凝土剪力墙的承载力提高,弹塑性变形能力降低。

北京工业大学的尹海鹏等进行了1根普通混凝土柱和3根不同取代率的再生混凝土柱模型的低周反复荷载试验研究[26],模型按1/2缩尺.试验结果表明,随着再生骨料取代率的增加,其混凝土的弹性模量明显减小,试件初始刚度明显下降、承载力呈下降趋势、耗能值下降,抗震能力呈下降趋势,并指出再生混凝土柱可用于多层结构轴压比较小的柱的抗震设计。

3、存在问题及应用前景

存在问题最近几年再生混凝土研究工作取得了一些成就,不过,鉴于再生骨料自身的局限性和目前我国对再生混凝土利用的实际情况,还存在一些障碍和不足,主要表现在以下几个方面。

(1)目前合适的处理废弃混凝土的设备与相关技术较少,对废弃混凝土再生利用的认识还不到位.

(2)废弃混凝土来源广泛且非常复杂,如何合理分级处理是需要解决的关键问题。

(3)相应的标准规范太少,实际操作时比较困难,目前还难以大面积推广。

应用前景

再生骨料混凝土与普通混凝土相比,虽然在物理力学性能等指标上稍有逊色,但毋庸置疑的是,再生混凝土具有广阔的应用前景.具体应用时,可根据结构所处的部位进行选择性替代[27-28].对于主要的承重结构,再生粗骨料取代率可以适当减少,设定限值或容许范围.对于一般结构工程,例如人行道板、桥梁护栏、防护砌块和其它附属结构,取代率可根据情况适当增大。

摘要:

为了有效减轻不断增加的废弃混凝土带来的环保压力,减少资源浪费,建议对废弃混凝土回收处理成再生骨料,部分或全部代替天然骨料来配置再生混凝土,使废弃混凝土变成土木工程领域的绿色资源。文章从再生骨料生产工艺、性能,再生混凝土物理性能、力学性能及其耐久性等方面介绍了再生混凝土技术在国内外的研究进展,主要从材料、结构、力学性能,耐久性方面分析了再生混凝土的基本特性及其研究存在的问题,指出了需进一步深入研究的方向,为再生混凝土技术在科研与工程应用中提供参考意见。

关键词:

再生混凝土;再生骨料;力学性能;耐久性

1、再生混凝土简介及其研究的必要性

再生混凝土(Recycled Concrete),是指将废弃混凝土块经裂解、破碎、清洗与筛分后,制成混凝土骨料,部分或全部代替天然骨料配制而成新混凝土。它是再生骨料混凝土(Recycled Aggregate Concrete,RAC)的简称。

近年来,我国建筑垃圾逐年上升,建筑垃圾数量已占到城市垃圾总量的30%~40%,其中主要是废弃混凝土,这些垃圾严重影响了城市生活环境,造成了很大的环境污染。目前国内处理这些废弃混凝土的方法有两种:一、运往郊外堆存。这会成为新的垃圾源,显然不可取;二、作为回填材料简单地使用。这会浪费资源,不符合我国建设资源节约型社会要求。据估计,2008年发生的汶川特大地震,产生的建筑垃圾约3亿吨,地震所造成的建筑垃圾量远远超过中国每年建筑施工所产生的建筑垃圾的总和,地震所造成的建筑垃圾量十分庞大,如何对其进行资源化利用,是摆在我们面前的一个新的课题,也是一个挑战。再生混凝土技术是一个很好的解决方法,通过对废弃混凝土的再加工来恢复其原有性能,形成新的建材产品,从而既能对有限的资源进行再利用,又解决了部分环保问题。这既是发展绿色混凝土,实现建筑资源环境可持续发展的重要途径,也是建设资源节约型、环境友好型社会的具体体现。

2、再生骨料的生产工艺及性能

再生骨料的生产工艺

对废弃混凝土进行充分再利用的前提是要保证再生骨料生产工艺是经济可行的。再生骨料的生产需要解决一系列问题,包括对废弃混凝土块或钢筋混凝土块的回收、破碎与筛分等。简单的混凝土破碎及筛分工艺如图1所示。

再生骨料的性能

经过破碎处理的废弃混凝土,生产出的再生骨料含有30%左右的硬化水泥砂浆,这些水泥砂浆大多独立成块,只有少量附着在天然骨料的表面,导致了再生骨料密度小,吸水率高,粘结能力弱的特点。一般地,再生骨料棱角较多,表面比较粗糙。对废弃混凝土块进行再生破坏过程中,由于积累了损伤,会使再生骨料内部产生大量的微裂纹。研究表明,同天然骨料相比,再生骨料孔隙率较高,密度较小,吸水性增强和骨料强度较低。

3、再生混凝土物理性能及力学性能

再生混凝土物理性能

由于再生骨料的表观密度比天然骨料小,因此再生混凝土的密度比普通混凝土低。随着再生骨料掺量的增加,再生混凝土的密度有规律地减小,如果再生混凝土全部采用再生骨料,则其密度比普通混凝土相比,降低了 。再生混凝土有自重低的特点,这能降低结构自重,提高构件的抗震性能。同时,由于再生骨料孔隙较高,使得再生混凝土具有良好的保温性能。

再生混凝土的强度

再生混凝土的强度与基体混凝土(相对于再生混凝土而言,用来生产再生骨料的原始混凝土称为基体混凝土)的强度、再生骨料破碎工艺、再生骨料的替代率以及再生混凝土的配合比等密切相关。由于基体混凝土的强度等级、使用环境各不相同,裂解、破碎的'工艺及质量控制措施的差异,导致再生混凝土强度变化的规律性不明显,不同的研究者所得的结论也有所差异。Hansen的试验结果表明,随着基体混凝土强度的降低,再生混凝土的强度也下降。一般情况下,再生骨料混凝土的抗压强度基体混凝土或相同配比的普通混凝土的抗压强度更低,降低范围为0%-30%,平均降低15%。邢振贤等全部采用废弃混凝土再生骨料制作出再生混凝土,指出再生混凝土的抗弯强度约为基准混凝土强度的75%-90% 。和配合比相同的基准混凝土相比,抗压强度降低了9%,抗拉强度降低了7%。

应该注意的是,再生骨料表面包裹着水泥砂浆,使再生骨料与新的水泥砂浆之间弹性模量基本一样,界面结合可能得到一定的加强。以此同时,再生骨料表面的大量微裂缝会吸入新的水泥颗粒,使得接触区的水化更加完全,最终形成致密的界面结构。由于界面结合得到加强,一定程度的补偿了因再生骨料强度较低而导致的再生混凝土性能的劣化。

再生混凝土的弹性模量

由于再生骨料中有大量的老旧砂浆附着于原骨料颗粒上,导致再生混凝土的弹性模量通常较低,一般约为基体混凝土的70%-80%。再生混凝土弹性模量低,变形大,因此它的抗震性能和抵抗动荷载的能力较强。水灰比对再生混凝土的弹性模量影响较大,当水灰比由降低到时,再生混凝土的抗压弹性模量增加。

再生混凝土的干缩与徐变

再生混凝土的干缩量和徐变量比普通的混凝土增加了40%-80%。再生骨料的品质、基体混凝土的性能以及再生混凝土的配合比决定了干缩率的增大数值。Yamato等人研究表明,当天然骨料与再生骨料共同使用时,再生混凝土的干缩率会增加;水灰比增加时,再生混凝土的干缩率也会增加。

4、再生混凝土的耐久性

再生混凝土的抗渗性

与混凝土渗透性有关因素主要分为两类。

(1)混凝土拌和料的组分、拌和物配合比以及工艺参数,即拌和料的制备、成型和养护等;

(2)混凝土随时间而发生的变化,即在外部环境、结构应力、流体性能和渗透条件等因素作用下,混凝土内部发生的物理和化学变化。

由于再生骨料的孔隙率较大,因此再生混凝土的抗渗性比普通混凝土低。但是往再生混凝土里掺加粉煤灰之后,由于粉煤灰能使再生骨料的毛细孔道细化,因而很大地改善了再生混凝土的抗渗性。

再生混凝土的抗硫酸盐侵蚀性

再生混凝土的孔隙率及渗透性较高,它的抗硫酸盐侵蚀性比普通的混凝土差。同样的,往里面掺加粉煤灰,能够减少硫酸盐的渗透,使其抗硫酸盐侵蚀性有较大改善。

再生混凝土的抗裂性

与普通混凝土相比,再生混凝土极限伸长率增加了。再生混凝土弹性模量较低,拉压比较高,因此再生混凝土抗裂性比基体混凝土更好。

再生混凝土的抗冻融性

再生混凝土的抗冻融性比普通混凝土差。Yamato等人研究表明,再生骨料与天然骨料共同使用时或者减小水灰比可提高再生混凝土的抗冻融性。

5、结语

通过对再生混凝土的研究,我们得出以下结论与建议,希望能够引起行业或者有关部门的重视。

第一,再生混凝土技术可以从根本上解决废弃混凝土的出路问题,既能减轻废弃混凝土对环境的污染,又能节省天然骨料资源,具有显著的社会、经济和环境效益,是发展绿色混凝土的主要途径之一,符合我国可持续发展战略的要求。

第二,在工程应用研究中,不单要对如何提高再生混凝土的强度进行研究,而且还要对其耐久性如抗渗性、抗裂性等加强研究,来逐步提高再生混凝土的性能。

第三,同普通混凝土相比,再生混凝土的配合比设计和施工工艺均有许多不同之处,应区别对待。

第四,对再生混凝土进行合理设计,基本上能够达到普通混凝土的性能要求。为了更好地推广应用再生混凝土技术,我们还需要对其结构性能(抗弯,抗剪,抗冲切及抗震等)和设计方法多加强研究。

第五,再生混凝土与普通混凝土在原材料、配合比以及施工工艺等方面有重大差异,按照现行普通混凝土的标准、规程等显然是有许多不足之处的;另一方面,国内的水泥、骨料与国外使用的水泥、骨料在成分和性能上差别也较大,因而更不能直接使用国外的相关标准。因此,建议结合再生骨料分级情况,尽早制定出适合国内情祝的再生混凝土的有关标准和规程。

第六,通过对再生混凝土的经济性进行综合研究,在我国广泛推广应用再生混凝土,同样需要xx积极的产业政策扶持和国家的法律法规保障。

参考文献

[1] 苏南,王博麟.废混凝土回收粗粒料品质与再生混凝土工程性质之探讨[J].中国土木水利工程学刊,2009,12(03):435-444.

[2] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,2011 (01):1~5.

[3] 邢锋,冯乃谦,丁建彤.再生骨料混凝土[J].混凝土与水泥制品, 1999(02):10~13.

[4] 孙跃东,肖建庄.再生混凝土骨料[J].混凝土,2014(06):33-36.

[5] 邢振贤,周日农.再生混凝土性能研究与开发思路[J].建筑技术开发,2005,25(05):28-31.

超轻泡沫混凝土的研究进展论文

泡沫混凝土的种类很多,但最常用的是水泥泡沫混凝土。水泥泡沫混凝土根据其掺合料不同又可分为水泥-粉煤灰-石灰型、水泥-矿渣-石灰-石膏型、水泥-粉煤灰-砂-石灰型、水泥一砂一石灰型、水泥-矿渣-粉煤灰-石灰-植物纤维型[4]、水泥-砂-玻璃纤维型等类型。 水泥-矿渣-石灰-石膏型的泡沫混凝土了试验研究表明常压养护矿渣多孔混凝土是一种较理想的隔热保温材料(密度为910 kg/m3, 28d抗压强度为),同时在价格上优势明显,具有一定的市场竞争力。 水泥-粉煤灰-砂-石灰型的泡沫混凝土进行试验研究,获得最佳配合比粉煤灰60%,石灰5%,发泡液3kg,细砂15%,水泥20%所对应的性能为密度创6kglm3、 吸水率229岛、28d抗压强度。 水泥-粉煤灰-石灰型的泡沫混凝土进行试验研究,获得了密度为691kg/m3、抗压强度为、导热系数为(m•K、抗15次冻融循环合格、碳化系数为的理想的泡沫混凝土墙体材料。 水泥-砂-石灰型的泡沫混凝土进行试验研究,获得了密度为812kg/m³、抗压强度为、导热系数为(m•K、抗15次冻融循环合格、干燥收缩率的泡沫混凝土。 水泥-矿渣-粉煤灰-石灰-植物纤维型的泡沫混凝土进行了试验研究,获得了干密度648kg/m3、抗压强度、吸水率、抗25次冻融循环合格、干燥收缩、工艺简单、价格低廉的优异产品。 对水泥-砂-玻璃纤维型的泡沫混凝土进行了试验研究,结果表明玻瑞纤维增加了泡沫混凝土的抗压和抗折强度,极大地改善了韧性,并在一定程度上抑制了早期干缩开裂。 缺点:(1)强度偏低:体积密度为800-859kg/m³的泡沫混凝土的抗压强度严重偏低,一般低于,有的甚至不足。但目前国内泡沫混凝土技术发展迅猛,北京有企业(如北京中科筑诚)已经将500公斤每立方的泡沫混凝土强度提高到. (2)开裂、吸水:硬化泡沫混凝土表面开裂,导致吸收大量外来水分。 应用: 泡沫混凝土以其良好的特性,广泛应用于节能墙体材料中,在其他方面也获得了应用。目前,泡沫混凝土在我国的应用主要是屋面泡沫混凝土保温层现浇、泡沫混凝土面块、泡沫混凝土轻质墙板、泡沫混凝土补偿地基。但是,充分利用泡沫混凝土的良好特性,可以将它在建筑工程中的应用领域不断扩大,加快工程进度,提高工程质量,具体如下: (1)用作挡土墙。主要用作港口的岩墙。泡沫混凝土 泡沫混凝土水泥地暖垫层在岸墙后用作轻质回填材料可降低垂直截荷,也减少了对岸墙的侧向载荷。这是因为泡沫混凝土是一种粘结性能良好的刚性体,它并不沿周边对岸墙施加侧向压力,沉降降低了,维修费用随之减少,从而节省很多开支。泡沫混凝土也可用来增进路堤边坡的稳定性,用它取代边坡的部分土壤,由于减轻了质量,从而就降低了影响边坡稳定性的作用力。 (2)修建运动场和田径跑道。使用排水能力强的可渗性泡沫混凝土作为轻质基础,上面覆以砾石或人造草皮,作为运动场用。泡沫混凝土的密度为800-900kg/m³此类运动场可进行曲棍球,足球及网球活动。或者在泡沫混凝土上盖上一层厚的多孔沥青层及塑料层,则可作田径跑道用。 (3)作夹芯构件。在预制钢筋混凝土构件中可采用泡沫混凝土作为内芯,使其具有轻质高强隔热的良好性能。通常采用密度为400 - 600kg/m³的泡沫混凝土。 (4)管线回填。地下废弃的油柜、管线(内装粗油、化学品)、 污水管及其他空穴容易导致火灾或塌方,采用泡沫混凝土回填可解决这些后患,费用也少。泡沫混凝土采用的密度取决于管子的直径及地下水位,一般为600-1100kg/m³。 (5)贫混凝土填层。由于使用可弯曲的软管,泡沫混凝土具有很大的 泡沫混凝土节能砖工作度及适应性,因此它经常用于贫混凝土填层。如对隔热性要求不很高,采用密度为1200kg/m³左右的贫混凝土填层,平均厚度为;如对隔热性要求很高,则采用密度为500kg/m³的贫混凝土填层,平均厚度为 。 (6)屋面边坡。泡沫混凝土用于屋面边坡,具有重量轻、 施工速度快、价格低廉等优点。坡度一般为10mm/m.厚度为,采用密度为800 - 1200kg/m³的泡沫混凝土。 (7)储罐底脚的支撑。将泡沫混凝土浇阶在钢储罐(内装粗油、化学品)底脚的底部,必要时也可形成一凸形地基,这样可确保整个箱底的支撑在焊接时年处于最佳应力状态,这一连续的支撑可使储罐采用薄板箱底。同时凸形地基也易于清洁。泡沫混凝土的使用密度为800-1000kg\m³。 (8)用于园林绿化。将泡沫混凝土做成容重在600-1000kg/m³,可用于园林假山,垃圾箱,桌凳等。 (9) 国防(现代战争是用信息和先进机动器械为攻击工具),该发泡水泥能用在被敌方轰炸破坏的军事工程如机场,重要交通公路等实行立即抢修,用我们的设备及工艺能把敌方破坏的工程迅速修复,实验得来的结果是修复后10分钟即能用于飞机起降,战车通过。 (10)其他。泡沫混凝土也可用于防火墙的绝缘填充,隔声楼面填充、隧道衬管回填;以及供电、水管线的隔离等方面。 物理性能: 泡沫混凝土通常是用机械方法将泡沫剂水溶液制备成泡沫,再将泡沫加入到含硅质材料、钙质材料、水及各种外加剂等组成的料浆中,经混合搅拌、浇注成型、养护而成的一种多孔材料。由于泡沫混凝土中含有大量封闭的孔隙,使其具有下列良好的物理力学性能。1、 轻质 泡沫混凝土的密度小,密度等级一般为300-1800kg/m3,常用泡沫混凝土的密度等级为300-1200 kg/m3,近年来,密度为 160 kg/m3的超轻泡沫混凝土也在建筑工程中获得了应用。由于泡沫混凝土的密度小,在建筑物的内外墙体、层面、楼面、立柱等建筑结构中采用该种材料,一般可使建筑物自重降低25%左右,有些可达结构物总重的30%-40%。而且,对结构构件而言,如采用泡沫混凝土代替普通混凝土,可提高构件的承截能力。因此,在建筑工程中采用泡沫混凝土具有显著的经济效益。2、 保温隔热性能好 由于泡沫混凝土中含有大量封闭的细小孔隙,因此具有良好的热工性能,即良好的保温隔热性能,这是普通混凝土所不具备的。通常密度等级在300-1200 kg/m3范围的泡沫混凝土,导热系数在(m·K)之间,热阻约为普通混凝土的10-20倍。采用泡沫混凝土作为建筑物墙体及屋面材料,具有良好的节能效果。3、 隔音耐火性能好 泡沫混凝土属多孔材料,因此它也是一种良好的隔音材料,在建筑物的楼层和高速公路的隔音板、地下建筑物的顶层等可采用该材料作为隔音层。泡沫混凝土是无机材料,泡沫混凝土不会燃烧,从而具有良好的耐火性,在建筑物上使用,可提高建筑物的防火性能。4、 整体性能好 可现场浇注施工,与主体工程结合紧密。5、低弹减震性好 泡沫混凝土的多孔性使其具有低的弹性模量,从而使其对冲击载荷具有良好的吸收和分散作用。6、防水性能强 现浇泡沫混凝土吸水率较低,相对独立的封闭气泡及良好的整体性,使其具有一定的防水性能。 7、耐久性能好与主体工程寿命相同。8、生产加工方便 泡沫混凝土不但能在厂内生产成各种各样的制品,而且还能现场施工,直接现浇成屋面、地面和墙体。9、环保性能好 泡沫混凝土所需原料为水泥和发泡剂,发泡剂大都接近中性,不含苯、甲醛等有害物质,避免了环境污染和消防隐患。10、施工方便 只需使用水泥发泡机可实现自动化作业,可泵送实现垂直高度200米的远距离输送,工作量为150—300立方/工作日。11、其它性能 泡沫混凝土还具有施工过程中可泵性好,抗压强度高(),冲击能量吸收性能好,可大量利用工业废渣,价格低廉等优点。 参考文献:[1]关博文,刘开平等.泡沫混凝土研究及应用新进展[J]广东建材,2008(2):19-21 [2]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J]混凝土, 2005(8): 44-48. [3]闰振甲,何艳君.泡沫混凝土实用生产技术[M]。北京:化学1业出版社, 2006 [4]刘子全,王波等。泡沫混凝土的研究开发进展[J]。混凝土,2008(12) : 24-26. [5]谢明辉.大掺量粉煤灰泡沫混凝土的研究[D)。吉林:吉 林大学, 2006 [6]陆爱萍,郭玉顺等.矿渣多孔混凝土性能及其改性研究[1].房材与应用,1997 (I): 20-25 [7]高波.粉煤灰发泡混凝土的试验研究与工程应用[D]西安:西安理工大学, 2004. [8]宋旭辉等.利用沙漠细砂生产泡沫混凝土的研究[J]. 混凝土,2007(12): 55-57. [9]高波,王群力等.免蒸复合发泡混凝土墙体砌块[J].粉煤灰综合利用,2003(4) :39-40. [10]詹炳根,郭建雷等.玻璃纤维增强泡沫混凝土性能试验研究[J]合肥工业大学学报(自然科学版),2009(2):226-229

发泡聚苯乙烯(EPS)是一种轻质泡沫材料,将其掺入砂浆或混凝土中能制备出不同表观密度的轻质混凝土。早在1973年,Cook就对EPS作为混凝土的集料进行了研究.经过多年的研究与尝试,EPS轻质混凝土可以用于诸多建筑结构方面,如EPS保温涂层、EPS砂浆、EPS密封腻子、EPS轻质灰浆、EPS混凝土内外墙板等.此外,EPS轻集料混凝土还在路面回填与找平、防冻路基、保温屋面、楼面隔音以及海洋漂浮结构等领域应用,特别是其具有较强的吸能功能,因而还可用于结构抗冲击保护层[8].然而,EPS颗粒具有两大弱点:其一,EPS的表观密度只有12~20 kg/m3,在混凝土搅拌过程中易产生离析;其二,EPS与水泥浆体界面粘结力弱.这两大弱点严重制约了EPS混凝土技术的应用和推广.因此,需要对其表面进行化学处理.在以前的研究报道中,大多建议采用一些界面添加剂,如环氧树脂或水溶性乙烯丙酸脂,但这大大提高了EPS混凝土。聚苯乙烯泡沫塑料(Expanded Polystyrene,简称EPS)是一种轻质材料,并具有良好的耐水性、绝热性、绝缘性、低吸湿性、较强的抗震性等特点。以EPS颗粒部分或全部取代混凝土中的砂、石,可配制不同密度和强度的混凝土。EPS混凝土具有保温隔热和隔震、减震、大变形及超轻等工程特性,受到建筑行业关注。因此,EPS混凝土结构材料的开发与性能研究及其工程应用探讨,不仅在建筑领域,而且在减轻环境污染和固体废弃物回收利用方面,均具有十分重要的科技和社会效益。迄今为止,国内外的学者已经研制出一些强度较高的EPS轻质混凝土。本文在总结国内外既有成果的基础上,采用了实验和数值分析的方法开展相关研究工作,主要内容包括:(1)以经典堆积理论为基础,通过自编程序计算比较了几种堆积模型,分析了它们的适用范围,并以此作为EPS混凝土配合比设计的依据。(2)测试了EPS混凝土的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、抗折强度和收缩等力学性能指标。

你做设计的话,建筑是乙级的话混凝土强度等级用C25 C30都可以,甲级建筑预算多多就用个C45吧。混泥土强度的确定是先假设用哪种,再验算的,承载力的验算通过说明就可以采用。兄弟,泡沫混泥土不能用来浇筑柱子,抗压强度果断不满足呀,范围大约在,工艺一般做出来都是强度偏小的,这种新型的轻质材料一般主要用于防水,保温,粘接,像修建田径场跑道,挡土墙(主要利用其良好的粘接能力),防火隔音墙,建筑物临时抢修等用得较多。希望采纳

相关百科

热门百科

首页
发表服务