参考文献的引用必须实事求是,引用到的重要数据和结果就必须在参考文献中给出出处。如果没用引用什么东西,也不要硬性凑数量乱列参考文献。
有期刊杂志,书籍和论文三种,在建模论文的写法都不一样,论文格式中应该会有
有期刊杂志,书籍和论文三种,在建模论文的写法都不一样。
参考文献标准格式是指为了撰写论文而引用已经发表的文献的格式,根据参考资料类型可分为专著[M],会议论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A],杂志[G]。
简介
按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T 7714-2015《信息与文献 参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。
根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。
数学建模论文格式一般包括:①题目、②论文摘要和关键词、③目录、④引言(或序言)、⑤正文、⑥结论、⑦参考文献和注释、⑧附录。
注意事项:
一、论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。
二、论文第一页为承诺书,具体内容和格式见本规范第二页。
三、论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
四、论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
五、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
六、论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1: A2: A3: A4: A5: A6: A7: A8: A9: A10:: B2: B3: B4: B5: B6: C1: C2: C3: C4:在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1
首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明将你要建立的模型中的一些参量用符号代替表示。4. 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。
论文(答卷)用白色A4纸,上下左右各留出厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。
数学建模参考文献:
[1]基于高可靠性的重负载Ⅰ类双星网络性能评价的数学建模《电子学报》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2011年11期,孙丽珺、刘飞、逯昭义
[2]沥青混合料诸参数对性能指标影响的数学建模《解放军理工大学学报(自然科学版)》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2009年z1期,范鹏贤、马喜斌、姜鹏飞、王明洋
[3]一种新型主动式波浪补偿系统的原理及数学建模《国防科技大学学报》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2007年3期,徐小军、陈循、尚建忠
[4]卡环接口自适宜封闭间隙数学建模与试验研究《湖南大学学报(自然科学版)》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2009年1期,胡竟湘、龚金科
[5]综合业务双环LAN的一种新协议及数学建模《电子与信息学报》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2007年8期,逯昭义、姜辉、吕磊
[6]发电用燃气轮机的非线性数学建模及稳定性分析《中国电机工程学报》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2007年26期,张化光、邓玮、耿加民
[7]国内外网络舆情数学建模研究综述《情报杂志》
被北京大学《中文核心期刊要目总览》收录PKU,被南京大学《核心期刊目录》收录CSSCI,2014年10期,苏创、彭锦、李圣国
[8]时空过采样系统及其在点目标检测中的性能仿真《光学精密工程》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2014年9期,董玉翠、陈凡胜、苏晓锋、龚学艺、李真真
[9]2KH针摆行星传动机械效率的数学建模《机械工程学报》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2006年10期,蒙运红、吴昌林、另立平、黄正坤
[10]基于中立模型表达的数学知识管理方法《南京理工大学学报(自然科学版)》
被中信所《中国科技期刊引证报告》收录ISTIC,被EI收录EI,被北京大学《中文核心期刊要目总览》收录PKU,2014年3期,荣冈、肖俊、胡云苹、冯毅萍
你可以随便找一个国内权威的期刊,参考期刊中的论文文献格式写入即可。当年我也参加了全国的数学建模竞赛以及美国MCM数据建模竞赛,都是这样写参考文献的。望采纳
数学建模论文模板论文通常要包括哪些内容? 我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我……………… 全国大学生数学建模竞赛论文格式规范 \x09本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题. \x09论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订. \x09论文第一页为承诺书,具体内容和格式见本规范第二页. \x09论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页. \x09论文题目和摘要写在论文第三页上,从第四页开始是论文正文. \x09论文从第三页开始编写页码,页码必须位于每页页脚中部,用 *** 数字从“1”开始连续编号. \x09论文不能有页眉,论文中不能有任何可能显示答题人身份的标志. \x09论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中).论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印. \x09提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文).全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选. \x09引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出.正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码.参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年. 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年. 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日). \x09在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效). \x09本规范的解释权属于全国大学生数学建模竞赛组委会. [注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格).评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅.论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”. 全国大学生数学建模竞赛组委会 2009年3月16日修订 数学建模论文一般结构 1摘要 (单独成页) 主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表) 作用:了解文件重要性,对文件有大致认识 最佳页副:页面2/3. 2、问题重述和分析 3、问题假设 假设是建模的基础,具有导向性,容易被忽视.常犯错误有缺少假设或假设不切实际.对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定. 作假设的两个原则: ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理. ② 贴近原则:贴近实际. 以上两个原则是相互制约的,要掌握好“度”.通常是先建模后假设. 4、符号说明 (可以合并) 5、模型建立与求解(重要程度 :60%以上) 6、模型检验(误差一般指均方误差) 7、结果分析 (可以合并) 8、模型的进一步讨论 或 模型的推广 9、模型优缺点 10、参考文件 11、附件(结果千万不能放在附件中) 论文最佳页面数:15-21页 \x09论文结构一 题目 摘要 1.问题的重述 2.合理假设 3.符号约定 4.问题的分析 5.模型的建立与求解 6.模型的评价与推广 1、误差分析 2、模型的改进与推广 对XXXX切实可行的建议和意见: 1.…… 2.…… …… 7.参考文献 8.附录 \x09数学建模论文一般格式 \x09摘要 (主要理解、主要方法、主要结果、主要特点) 或(背景、目标、方法、结果、结论、建议) \x09问题重述与分析 \x09问题假设 \x09符号说明 \x09模型建立与求解 \x09模型检验 \x09结果分析 \x09模型的进一步讨论 \x09模型优缺点 优秀论文要点: 1.\x09语言精练、有逻辑性、书写有条理 2.\x09文字与图形相结合,使内容直观、清晰、明了、容易理解 3.\x09切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章 4.\x09对论文中所引用或用到的知识、软件要清晰地予以说明. 5.\x09在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去 各步骤解释 摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表) 作用:了解文件重要性,对文件有大致认识 最佳页副:页面2/3 问题重述与分析: 一向导、对题意的理解、 \x09建模的创造性 创造性是灵魂,文章要有闪光点. 好创意、好想法应当既在人。 论文格式模板 您好,论文格式 1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录)3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。 字数少可几十字,多不超过三百字为宜。4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。 引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。 主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。 参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。按照上边的论文格式来写,可以使你的论文更加容易被读者了解,被编辑采纳。 论文格式模版 (天头留出25毫米空白) 分类号 密级 U C D___________ 编号1 0 4 8 6 (此处间隔20毫米) (以上四项用仿宋标4号) 武 汉 大 学 硕 士 学 位 论 文 (论文题目与上一行间隔为25毫米) (以上二行用宋体标2号字) 论 文 题 目 (题目用楷体标1号字) 研 究 生 姓 名: 指导教师姓名、职称: 学 科、专 业 名 称: 研究方向: (以上四项用宋体标4号字) (此处间隔为25毫米) 二00八年四月 (黑体标3号字) (地脚留出25毫米空白边缘) 分类号 密级 U C D 编号 1 0 4 8 6 武 汉 大 学 硕 士 学 位 论 文 大为•卡坦文化框架理论关涉下的 林语堂翻译研究 研 究 生 姓 名: 指导教师姓名、职称: 学 科、专 业 名 称:英语语言文学 研究方向:翻译理论与实践 二00八年四月 (地脚留出25 毫米空白边缘) A Study of Lin Yutang's Translations Under David Katan's Theory of Cultural Frames (Times New Roman 小二加粗) A Thesis Submitted in Partial Fulfillment of the Requirements For the Master's Degree of Arts in English Language and Literature (Times New Roman 四号) Candidate: Supervisor: Academie Title: Professor (Times New Roman 四号) April 2008 Graduate Program in English Language and Literature Wuhan University (Times New Roman 四号) 郑 重 声 明 (宋体四号) 本人的学位论文是在导师指导下独立撰写并完成的,学位论文没有剽窃、抄袭,造假等违反学术道德、学术规范和侵权行为,本人愿意承担由此产生的法律责任和法律后果,特此郑重声明。 (宋体小四号) 学位论文作者 (签名): (宋体小四号)2008年4月30日 (宋体小四号) 摘要 (黑体标准小二号) Abstract (Times New Roman 黑体标准小二号) 说 明:外文内封按论文格式的规定要求打印,但各专业语种可根据本专业的实际而定。 分类号:英语H31、俄语 H35、法语 H32、德语 H33、日语 H36 希望能帮助到您。 数学建模论文,求样式 下面是论文的主体: 1.问题重述 主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了. 2.模型假设 对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化. 3.符号说明 将你要建立的模型中的一些参量用符号代替表示. 4.模型建立 这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法 5.问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答) 利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述. 6.模型改进 解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型. 7.参考文献 最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等. 如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块.。
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号]作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号]作者,资源标题,网址,访问时间(年月日)。
数学建模参考文献可以在谷歌浏览器,搜索谷歌学术进行查找。如果用不了谷歌,可以用谷歌学术镜像。
文献查找原则:
文献在精不在多。
参考文献也是论文评分依据的一项。参考文献并不是直接加载论文末尾就行了,而是要在文章中标出具体的引用位置。
评委在阅读论文时,会对比参考文献和论文中具体引用的部分,看看你们是如何应用参考文献的。
如果评委点开了参考文献,但并没有发现这个公式,或者其它队伍和你们用了同样的公式或者方法,但他们的引用是正确的,那么会严重影响到你们的论文评分。因此,没有必要为了数量而去凑参考文献。
注意文献的相关性和时效性。
从论文题目中的方法快速判断出引用文献的相关性,比如你们做了一道数据处理的题目,那么参考文献里出现“数据挖掘”、“离群点”、“矩估计”等词就是合理的。
时间越近代表使用的方法越新,建议同学们尽量引用近些年的论文,当然,某些经典方法只能引用年代久远的论文,这一点不用担心,这些经典方法的论文很出名,评委老师肯定知道。
避坑。
知网和Baidu:建议不要用,检索、阅读等功能不说,单从论文质量上看,知网上面的论文真是一言难尽,你甚至可以在上面找到只有一两页的论文!
百度检索的文章很多都是中文材料,而做美赛大家要尽量引用英文的参考文献(注意:如果不得不引用中文参考文献,务必翻译成英文)。
其次,说不定百度检索出的论文链接到了知网。
建议使用:谷歌学术,谷歌学术不仅页面简洁,而且具有非常好用的筛选功能,可以帮助我们快速检索到想要的文章。
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号]作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号]作者,资源标题,网址,访问时间(年月日)。
有期刊杂志,书籍和论文三种,在建模论文的写法都不一样。
参考文献标准格式是指为了撰写论文而引用已经发表的文献的格式,根据参考资料类型可分为专著[M],会议论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A],杂志[G]。
简介
按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T 7714-2015《信息与文献 参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。
根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。
你可以随便找一个国内权威的期刊,参考期刊中的论文文献格式写入即可。当年我也参加了全国的数学建模竞赛以及美国MCM数据建模竞赛,都是这样写参考文献的。望采纳
综述性论文提纲范文
在日常学习和工作生活中,大家一定都接触过论文吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。还是对论文一筹莫展吗?以下是我整理的综述性论文提纲,希望能够帮助到大家。
1.综述性论文的含义与特点
综述性论文是作者针对某一方面的专题,对某一时期内某一学科,某一专业或技术的研究成果、发展水平以及科技动态等信息资料进行搜集、整理、选择、提炼,并做出综合性介绍和阐述的实用文体。
一般综述性论文可以是述而不评,即只对文献的观点、数据、事实等作客观的分析和介绍,在文章中不加作者本人的见解和评论,作者的倾向性只能潜在地反映在对他人的观点、材料的取舍和引用上。
2.综述性论文的作用
综述性论文可为科研人员研究课题提供有价值的依据
综述性论文能帮助人们有效地进行知识更新
综述性论文后所附的参考书目可为读者提供已确定课题的参考文献线索撰写综述性论文能培养收集材料、综合分析的能力。
3.综述性论文的类型
根据写作的目的,通常可分以下4种:
①简介式综述:按内容特点分别综合介绍原文献所论述的事实、数据、论点等,一般不加评述。
②动态性综述:就是对某一领域或某一专题的发展动态,按照其自身的发展阶段,由远及近地介绍其主要进展。
③成就性综述:就是将有关文献汇集分类,把某一方面或某一项目有关的各种内容从原始文献中摘出,不管时序先后,分门别类地进行叙述。
④争鸣性综述:就是对某一领域或某一专题学术观点上存在的分歧,进行分类归纳和综合,按不同见解分别叙述。
根据写作的形式,通常可分以下3种:
①专题性综述这类综述的目的是对一定时期内围绕某一专题的'论文加以汇集和解释。
②回顾性综述主要是分析某一课题的发展概况,可按年代顺序进行组织。
③现状综述这是较常见的科技综述类型,其主要目的是对某一发展领域的新知识、新情况迅速进行收集、整理而写成的综述。
4.综述性论文的结构
综述性论文基本由前言(引言)、正文、结论和参考文献四大部分组成。
前言(引言):简要介绍所综述的课题,研究目的及意义。
正文:是综述的主体部分,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述。
结论:结论是综述的结束语。一般包括研究的结论,本课题研究的意义,存在的分歧,有待解决的问题和发展趋势等,对所综述的主题有研究的作者,最好能提出自己的见解。
参考文献:注明作者所引用的资料。
5.综述性论文的写作步骤
选题这是文献综述的关键,选题要有明确的目的,一般选题都是近年进展较大而切合实际将要的课题。文献以近3—5年学术性期刊的论文为主。
收集和阅读文献主题确定后,就要有针对性地广泛收集文献资料,在阅读后,根据需要和内容,决定材料和取舍。
拟写提纲文献综述涉及的内容多而广,所以在写作前应拟写一个写作提纲,以便将主题与材料加以安排和组织。
成文和修改(定稿)拟好提纲后,明确构思,可以进一步组织材料、写成文章,对写好的文章草稿要进行多次修改,才能定稿。
6.综述性论文写作过程中应注意的相关问题
搜集文献应尽量全面、可靠
选题范围不能过于宽泛
注意不能生搬硬套,对知识缺乏再创造和概括
不能随意添枝加叶、各取所需
详略把握不够,重点难以突出
引文资料跨度太长
间接和转引文献资料多
参考文献书写不规范
拓展:高职数学建模教学现状与发展综述性研究论文
摘要:
以文献综述法为主要策略,查阅知网和万方数据库中有关高职数学建模教学的相关文献,对高职数学建模教学现状,存在问题以及优化发展对策的文献研究成果进行梳理,通过研究综述发现:以建模思维构建课堂情境已成为国内众多高职院校数学课程教学的重要方法,对数学教学效果的提升也起到了积极的作用,但在教学方法创新和学生有效引导等方面仍存在一些问题,希望各级高职院校能够针对凸显出的问题进行有效整改。
关键词:
高职数学;建模教学;现状与发展;综述分析
一、数学建模教学理论概述
(一)数学模型
数学模型是一种使用数学语言对现实问题的抽象化表达形式。它是人们用数学方法解决现实问题的工具,基于数学模型的现实问题表达往往有着量化的表现形式,再通过数学方法的推演和求解,将现实问题中蕴含的数学含义表达出来。在数学、经济、物理等研究领域,有很多经典的数学模型,例如:,马尔萨斯人口增长理论模型、马尔维次投资组合选择模型等,这些数学模型的构建帮助人们解决了很多现实的问题,提升了相关领域量化分析的精确度。
(二)数学建模教学的步骤
数学建模教学是一种基于数学模型的教学方法,在高职院校数学教学中被普遍应用,具体来说数学建模教学的一般步骤为:
(1)模型理论依据分析。在教学中倘若需要以某一个知识点为基础建设数学模型时,教师应该以前人的研究成果为依据,找寻模型建设的理论支撑点,切忌假大空似的模型构建思路。
(2)以教学内容为基础假设模型。根据教学内容的需要,对待研究问题进行模型化假设,提出因变量、自变量等模型语言。
(3)建立模型。在假设的基础上建立模型。
(4)解析模型。将待求解的数学数据代入模型进行解析计算。
(5)模型应用效果检验。将模型解析的结果与实际情况进行比较,以检验模型解析的准确性和实效性。
二、高职数学建模教学现状与问题研究综述
(一)教学现状综述
施宁清等人(2010)采用试验法研究了建模教学在高职数学课程教学中的效果,试验的过程以对照班和实验班对比教学的形式展开,针对试验班的教学采用数学建模的方法,而对照班的教学则采用传统的讲授法展开,通过一段时间的教学实践后设置评估变量对两个班级学生的数学学习效果进行了总结,结果显示:试验班学生的数学考试成绩、建模应用能力等均优于对照班,说明建模法对高职数学教学质量的提升效益明显。危子青等人(2013)项目教学法与建模思想融合的高职数学教学形式,指出:该种教学的特色在于将高职数学课程的教学内容划分为若干个子项目,对每一个项目都进行模型化构建,并以模型为素材设计和组织项目化教学,通过教学应用后发现学生不仅掌握了项目教学的学习精髓,也掌握了数学模型的构建解析技能,教学效益获得了双丰收。冯宁(2012)肯定了建模思想对高职数学教学带来的效益,指出:通过引入建模教学,能够最大化锻炼学生的发散性思维,以及数学逻辑应用能力,对教学效果的促进效益明显。
(二)存在问题综述
尽管建模法对高职数学教学带来的效益十分明显,但在多年的教学实践中一些问题也不断凸显出来有待进一步整改,为此国内一些学者也将研究的视角放在建模法在高职数学教学中存在问题的研究上,例如:孟玲(2009)从教学方法的教学分析了高职数学建模教学中的问题,指出:很多高职生对数学学习的兴趣不足,加之传统的数学模型又十分抽象,学生理解起来比较困难,一些高职数学教师采用传统的建模教学思路组织教学并不利于学生学习兴趣的激发,而抽象的数学模型与陈旧的教学方法结合反而降低的教学的效果。曹晓军(2016)则认为:很多数学教师并不注重引导学生科学地理解数学模型,并在此基础上有效地接受学习内容,而是一味地采用灌输法设计教学过程,不利于数学模型在课程教学中的应用效益提升。
三、高职数学建模教学发展对策综述
针对建模法在高职数学教学中凸显出的问题,一些学者也提出了对策。例如,齐松茹(2011)认为应创新建模教学的形式和方法,如引入游戏教学法,将深奥的数学模型趣味化,通过组织多元化的教学游戏激发起学生参与建模学习的兴趣。谷志元(2011)则认为教师应该加大对学生的引导,通过课前、中、后期的有效引导,帮助学生有效地建立起对数学模型的认知,逐步教会学生利用模型解决实际问题,达到学以致用的教学效果,以提升数学模型在课程教学中的价值。周玮(2015)则提出了结合网络课堂建立研讨式课堂的建模教学新思路,不失为一种高职数学建模教学的创新教法。
四、结语
通过对已有文献的查阅和梳理发现,高职数学课程教学中引入建模方法对于课程教学实效性提升的效果已经得到了国内众多学者的肯定,但在应用中也存在一些问题,比如:教学方法的创新度不够,学生引导的活动不多等,为此国内一些学者也提出了针对性的教学优化思路。本文的研究认为:建模法对于高职数学教学效益的提升有着积极的价值,在今后的教学实践中各级高职院校教师应该结合教学的实际情况开展科学的建模教学活动,以不断提升高职数学建模教学的实效性。
参考文献:
[1]施宁清,李荣秋,颜筱红.将数学建模的思想和方法融入高职数学的试验与研究[J].教育与职业,2010,(09):116-118.
[2]危子青,王清玲.项目教学法与高职数学建模教学的改革[J].职教论坛,2013,(35):76-78.
[3]孟玲.高职数学建模教学的策略与方法刍议[J].教育与职业,2009,(17):106-107.
[4]冯宁.基于数学建模实践活动的高职数学课程教学[J].教育与职业,2012,(17):127-129.
[5]曹晓军,李健.高职数学教学中渗透数学建模思想的必要性[J].吉首大学学报(社会科学版),2016,37(S1):200-201.
[6]齐松茹,郑红.引入数学建模内容促进高职数学教学改革[J].中国高教研究,2011,(12):86-87.
[7]谷志元.数学建模促进高职数学课程改革新探[J].中国职业技术教育,2011,(29):11-13+20.
[8]周玮.基于数学建模的高职数学创新性课堂研究[J].中国成人教育,2015,(12):135-137.
有期刊杂志,书籍和论文三种,在建模论文的写法都不一样,论文格式中应该会有
你参考的什么文章或书籍那就是什么。参考文献自己找就好。