proc countreg data=one; model y = x1 x2 x3 x4 x5 / dist=negbin(p=2) ; ods output parameterestimate=pe; run;quit; NEGBIN(P=1) negative binomial regression model with a linear variance function NEGBIN(P=2) negative binomial regression model with a quadratic variance function
有以下三点。平稳性,独立性,普通性。不同的条件是Poisson回归要求等离散型,负二项回归分布不要求等离散性。
大学生数学建模论文答辩指导
有很多参加大学数学建模竞赛的学生, 建模论文写得很好,数学模型建立的观点也很新颖独特,但一旦要答辩,心理就会变得惴惴不安,不知所措。 而且他们心理最大的疑问就是:“数学建模怎么进行答辩? 老师一般问什么问题? PPT 幻灯片怎么做? PPT 幻灯片上主要写些什么? ”针对这些问题,笔者拟从五个方面具体分析,期望对大学生数学建模论文答辩有所帮助。
一、建模论文答辩前应做的准备工作
大学生的建模论文基本上都有或多或少的缺点。 如文字表述的逻辑性、论文的规范性、图形的准确性等都有可能存在缺陷,只要论文上交给评委组了,以上存在的种种问题就无法再挽回了。 但是只要你的论文有创意、观点新颖,也有可能获得参加建模论文答辩的机会。 如果真的获得了答辩的机会,作为答辩的学生就应该高度重视,严肃认真地把握好这个机会, 要清楚自己论文形成的整个过程,这样参加答辩时才会头脑清晰。 笔者总结归纳了高教社杯全国大学生数学建模竞赛答辩前必须注意的问题,供参加数学建模答辩的学生参考。 包括以下内容:(1)论文的主题是什么? (2)你为何选择写这个主题的论文?(3) 论文的研究问题是什么 ? 为什么选择这个问题来研究? (4)掌握论文中涉及的基本理论;(5)对涉及的理论分析、方法、原则问题要熟练掌握;(6)陈述要全面、流利、简练(建议反复练习一下);(7)结合实践谈谈自己对该理论有何新的认识?(8)你所提出的解决方法,是否有应用的前景? (9)在写论文时,收集了哪些方面的资料,是怎样收集的?(10)论文最重要的参考文献是哪一篇? 请简单介绍其主要内容;(11)论文主要创新点有哪些? (12)你的研究存在哪些局限与不足? (13)论文所涉及的主题还可以从哪些方面进一步深入研究? (14)要特别熟悉论文的内容,一些名词尤其要注意, 比如你引用了平衡计分卡的内容或观点,一定要搞清是谁发明的,否则问起来回答不出来会打折扣的;(15)引用一些书名,最好是自己读过的,内容大概知道一些;(16)准备 10-15 分钟的答辩陈述,一定要把自己论文的关键之处说清楚,让评委老师眼前一亮;(17)可能抛开论文以外 ,问你几个与学习工作相关的话题。
如果在参加建模论文答辩前能够把握好以上问题,说明你已经准备得不错了。
二、数学建模答辩时应注意的问题
答辩流程分为论文方案讲解和专家评委提问两个环节,每个环节限时七、八分钟。 在比赛中,各参赛队伍的表述都要求条理清晰,思维严谨,对同样的问题从不同的角度,通过不同的数学模型进行讲解。 但要注意以下几点:(1)答辩的过程就是检验你的真实建模能力 ,同时也检测你的建模论文是不是自己做的。 所以答辩时一定要证明论文是自己做的。 (2)答辩也就是要求陈述你的建模过程以及建模的创新点,所以答辩时要把做题的思路讲清楚,每个步骤都必须严谨。 (3)制作 PPT 幻灯片尽量多用图,少用文字。 (4)对于自己的建模论文,多设计几个问题,并有针对性地给出合理的解释, 防止到时提问时不知道怎么回答。 (5)一定要坚信自己的模型是合理正确的,否则别人也就不会相信你。 评委对你的模型肯定要提问,要你说理由, 你只要大胆说出你的方法和模型的特色就可以了。 (6)回答教师提问时一定要谦虚,有争议的问题,可以商榷,不要争辩。 (7)自己最好准备一份论文打印稿备份在手,以备随时查阅。 (8)答辩时千万不能紧张,一定要口齿清晰。 (9)不管评委老师问的问题有多么刁钻、有多么难以回答,都要保持微笑。 即使没有圆满回答出评委老师问的问题,也要保持微笑,给评委老师一个良好的印象,把评委老师那份感情分牢牢地抓在手里。
三、建模答辩时要反思自己的论文形成过程
笔者认为,大学生数学建模竞赛论文答辩并不可怕,可怕的是参赛学生是否有参加答辩的能力, 这种能力来源于参赛学生建模论文的形成过程。 因为学生几十页的建模论文不是苍白文字的罗列, 而是学生团体合作的结果。 他们从拿到竞赛题目的茫然不知到对题目思路由模糊到清晰,直到能够建立数学模型,最后解决题目要解决的问题。 在这个过程中,论文里的所有数学模型、解决问题的计算方法、 提出解决问题的方案等都是学生亲身的经历和体验,可以说建模论文是学生三天劳动的结晶,所以建模论文只要是学生自己做出来的,答辩就不是问题,因为论文中的所有片段会像幻灯片一样在学生的头脑中放映,所以不管评委老师提什么问题,选手只要沉着冷静就能对答如流。
四、建模答辩要尽量体现建模思想、逻辑和价值性
数学建模一般没有标准答案, 竞赛的目的也是在挖掘解决问题的最优方案。 建模可发挥的空间比较大,可以从不同的角度、用不同的方法去解决同一个问题,但答辩的宗旨是一致的,即答辩的问题主要集中在建模的思想、逻辑性及应用的价值性上。 也就是说怎样证明你建的.数学模型是最优的。建模的答辩时间一般只有 15 分钟, 学生最多有 10分钟的时间简述自己的论文观点, 剩下的时间由评委提问。 评委有可能问一些建模里没有考虑清楚或说明清楚的问题,指出漏洞,甚至“刁难”,不过这个主要是考察建模论文是不是学生自己做的。 所以答辩的学生只要不慌,充满信心,回答评委问题时,口齿清晰,逻辑推理性强,就一定会成功。
五、建模答辩幻灯片(PPT)的制作
PPT 就是幻灯片 。 可以理解把一张一张 “图片 ”放给别人看。 也就是把你想告诉别人的东西,排版起来,介绍给别人,PPT 重要的还是内容,格式只是表现形式。
在答辩过程中, 精彩的 PPT 幻灯片会抓住评委的注意力,令评委们耳目一新。 由于答辩时间总共不超过 15分钟,学生简述时间约 10 分钟,在这短短的时间内把你三天的建模工作简述出来, 是对学生综合能力和表达能力的挑战。 所以制作好 PPT 幻灯片是答辩成功的重要环节。 一般应注意以下几点:(1)15 分钟的答辩准备大约20-30 页幻灯片即可。 每页只用 8-10 行字,或一幅图。 只列出要点及关键技术。 (2)幻灯片中不要出现参赛学校名称等信息。 (3)幻灯片的背景不要追求花哨,尽量用浅色调(米黄、象牙百、灰色等),不要弄些与答辩无关的动画。(4)幻灯片一般从建模的提要 、提出问题 、分析问题 、解决问题入手制作。 (5)幻灯片内容要突出自己的建模特点。主要体现建模的思想、算法、特殊技术及创新点。 (6)答辩者大约一分钟讲 2 页,听众一分钟大约看完 4-5 页。 不能完全照着幻灯片念,要用口语化、演讲式的语言讲。 (7)充分利用图形,在较短时间内传递较多信息。 (8)给幻灯片加上页码,再打开母版,把“#”改成“#/X”,X 是幻灯片的总页数, 这样答辩时就能知道已讲了多少,便于调整速度。 (9)如果能用动画把论文中的图形动态变化部分动态演示出来,会使答辩更精彩,更能形象说明论文的论点。
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
1、题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示院校、指导教师、答辩时间等信息。英文部分一般需要使用Times NewRoman字体。2、版权声明:一般而言,硕士与博士研究生毕业论文内均需在正文前附版权声明,独立成页。个别本科毕业论文也有此项。3、摘要:要有高度的概括力,语言精练、明确,中文摘要约100—200字(不同院校可能要求不同)。4、关键词:从论文标题或正文中挑选3~5个(不同院校可能要求不同)最能表达主要内容的词作为关键词。关键词之间需要用分号或逗号分开。5、目录:写出目录,标明页码。正文各一级二级标题(根据实际情况,也可以标注更低级标题)、参考文献、附录、致谢等。6、正文:专科毕业论文正文字数一般应在3000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。毕业论文正文:包括前言、本论、结论三个部分。前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。7、致谢:简述自己通过做毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。8、参考文献:在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以按照音序排列(正文中则采用相应的哈佛式参考文献标注而不出现序号)。9、注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。10、附录:对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。有时也常将个人简介附于文后。
如果不是都线性相关,而且因素又多的话,试试R型因子分析
实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
1、多元线性回归的理论主体。2、多元线性回归模型的标准形式,多元线性回归模型的参数估计。3、多元线性回归模型的检验和预测原理。
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
模型有三个层次:
第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。
第二个层次,描述性统计,分析数据分布特征。
第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。
第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。
选题与预估计
问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。
问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。
问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。
问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。
问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。
多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务,需要专业数据分析可以找我
多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。设变量Y与变量X1,X2,…,Xm存在着线性回归关系,它的n个样本观测值为Yj,Xj1,Xj2,…Xjm�(j=1,2,n),于是多元线性回归的数学模型可以写为:可采用最小二乘法对上式中的待估回归系数β0,β1,…,βm进行估计,求得β值后,即可利用多元线性回归模型进行预测了。计算了多元线性回归方程之后,为了将它用于解决实际预测问题,还必须进行数学检验。多元线性回归分析的数学检验,包括回归方程和回归系数的显著性检验。回归方程的显著性检验,采用统计量:式中: ,为回归平方和,其自由度为m; ,为剩余平方和,其自由度为(n-m-1)。利用上式计算出F值后,再利用F分布表进行检验。给定显著性水平α,在F分布表中查出自由度为m和(n-m-1)的值Fα,如果F≥Fα,则说明Y与X1,X2,…,Xm的线性相关密切;反之,则说明两者线性关系不密切。回归系数的显著性检验,采用统计量:式中,Cii为相关矩阵C=A-1的对角线上的元素。对于给定的置信水平α,查F分布表得Fα(n-m-1),若计算值Fi≥Fα,则拒绝原假设,即认为Xi是重要变量,反之,则认为Xi变量可以剔除。多元线性回归模型的精度,可以利用剩余标准差来衡量。S越小,则用回归方程预测Y越精确;反之亦然。
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
哎其实我们说什么,你都会继续做下去的。残差序列不平稳的回归就叫伪回归,伪回归的出现说明模型的设定出现了问题,需要增加解释变量或者减少解释变量,抑或是把原方程进行差分,以使残差序列达到平稳。其实到处都有伪回归的地方,倒是你的相关系数,你还是改进改进模型吧。
你这个就是线性回归第一个表 表示模型的整体拟合度,只要看调整的R²即可,这个调整的R²的范围在0-1之间,越接近1,表示模型的拟合效果越好,越接近0,拟合效果越差。你的只有,即13%左右,说明你的自变量只能解释因变量13%左右的变化,拟合效果有点差。第二个表 表示模型是否显著,这个表跟第一个表是两个概念,模型是否显著与模型拟合效果没什么关系,从你的第二表可以看出,模型效果显著,即模型有效,因此在一般情况下,你可以使用这个回归,但是在实际很多研究中,你这个模型有限,但是拟合效果很差,说明要么是自变量的选择有问题,要么是模型选择有问题。当然如果你只是个论文或者作业什么的,只要模型显著就好,要求高的话,可以尝试下看非线性的模型拟合下看效果如何。第三个表 是自变量的回归系数表,标准化和非标准化的回归系数都可以。但是你这个回归系数中,只有一个常数项。没有其他自变量。常数项是没有什么意义的,可以忽略,但是你的自变量没有了。也就是这个回归模型没有什么实际意义
毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要作好充分的准备。在答辩会上,考官要极力找出来在论文中所表现的水平是真是假。而学生不仅要证明自己的论点是对的,而且还要证明老师是错的。
通常提问会依据先浅后深、先易后难的顺序,答辩人的答题时间会限制在一定的时间内,除非答辩教师特别强调要求展开论述,都不必要展开过细,直接回答主要内容和中心思想,去掉旁枝细节,简单干脆,切中要害。
常见问题
1、自己为什么选择这个课题。
2、研究这个课题的意义和目的是什么。
3、全文的基本框架、基本结构是如何安排的。
4、全文的各部分之间逻辑关系如何。
5、在研究本课题的过程中,发现了哪些不同见解。对这些不同的意见,自己是怎样逐步认识的?又是如何处理的。
6、论文虽未论及,但与其较密切相关的问题还有哪些。
7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻。
8、写作论文时立论的主要依据是什么。
扩展资料
作为将要参加论文答辩同学,首先而且必须对自己所著的毕业论文内容有比较深刻理解和比较全面的熟悉。这是为回答毕业论文答辩委员会成员就有关毕业论文的深度及相关知识面而可能提出的论文答辩问题所做的准备。所谓“深刻的理解”是对毕业论文有横向的把握。
例如题为《创建名牌产品发展民族产业》的论文,毕业论文答辩委员会可能会问“民族品牌”与“名牌”有何关系。尽管毕业论文中未必涉及“民族品牌”,但参加论文答辩的学生必须对自己的毕业论文有“比较全面的熟悉”和“比较深刻的理解”,否则,就会出现尴尬局面。