首页

> 学术期刊知识库

首页 学术期刊知识库 问题

目标检测ssd论文思想解析

发布时间:

目标检测ssd论文思想解析

作为计算机视觉三大任务(图像分类、目标检测、图像分割)之一,目标检测任务在于从图像中定位并分类感兴趣的物体。传统视觉方案涉及霍夫变换、滑窗、特征提取、边界检测、模板匹配、哈尔特征、DPM、BoW、传统机器学习(如随机森林、AdaBoost)等技巧或方法。在卷积神经网络的加持下,目标检测任务在近些年里有了长足的发展。其应用十分广泛,比如在自动驾驶领域,目标检测用于无人车检测其他车辆、行人或者交通标志牌等物体。

目标检测的常用框架可以分为两类,一类是 two-stage/two-shot 的方法,其特点是将兴趣区域检测和分类分开进行,比较有代表性的是R-CNN,Fast R-CNN,Faster R-CNN;另一类是 one-stage/one-shot 的方法,用一个网络同时进行兴趣区域检测和分类,以YOLO(v1,v2,v3)和SSD为代表。

Two-stage的方式面世比较早,由于需要将兴趣区域检测和分类分开进行,虽然精度比较高,但实时性比较差,不适合自动驾驶无人车辆感知等应用场景。因而此次我们主要介绍一下SSD和YOLO系列框架。

SSD与2016年由W. Liu et al.在 SSD: Single Shot MultiBox Detector 一文中提出。虽然比同年提出的YOLO(v1)稍晚,但是运行速度更快,同时更加精确。

SSD的框架在一个基础CNN网络(作者使用VGG-16,但是也可以换成其他网络)之上,添加了一些额外的结构,从而使网络具有以下特性:

用多尺度特征图进行检测 作者在VGG-16后面添加了一些特征层,这些层的尺寸逐渐减小,允许我们在不同的尺度下进行预测。越是深层小的特征图,用来预测越大的物体。

用卷积网络进行预测 不同于YOLO的全连接层,对每个用于预测的 通道特征图,SSD的分类器全都使用了 卷积进行预测,其中 是每个单元放置的先验框的数量, 是预测的类别数。

设置先验框 对于每一个特征图上的单元格,我们都放置一系列先验框。随后对每一个特征图上的单元格对应的每一个先验框,我们预测先验框的 维偏移量和每一类的置信度。例如,对于一个 的特征图,若每一个特征图对应 个先验框,同时需要预测的类别有 类,那输出的大小为 。(具体体现在训练过程中) 其中,若用 表示先验框的中心位置和宽高, 表示预测框的中心位置和宽高,则实际预测的 维偏移量 是 分别是:

下图是SSD的一个框架,首先是一个VGG-16卷积前5层,随后级联了一系列卷积层,其中有6层分别通过了 卷积(或者最后一层的平均池化)用于预测,得到了一个 的输出,随后通过极大值抑制(NMS)获得最终的结果。

图中网络用于检测的特征图有 个,大小依次为 , , , , , ;这些特征图每个单元所对应的预置先验框分别有 , , , , , 个,所以网络共预测了 个边界框,(进行极大值抑制前)输出的维度为 。

未完待续

参考: chenxp2311的CSDN博客:论文阅读:SSD: Single Shot MultiBox Detector 小小将的知乎专栏:目标检测|SSD原理与实现 littleYii的CSDN博客:目标检测论文阅读:YOLOv1-YOLOv3(一)

作者的其他相关文章: 图像分割:全卷积神经网络(FCN)详解 PointNet:基于深度学习的3D点云分类和分割模型 详解 基于视觉的机器人室内定位

深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理。  目标检测可以理解为是物体识别和物体定位的综合 ,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置。 2014年R-CNN算法被提出,基本奠定了two-stage方式在目标检测领域的应用。它的算法结构如下图 算法步骤如下: R-CNN较传统的目标检测算法获得了50%的性能提升,在使用VGG-16模型作为物体识别模型情况下,在voc2007数据集上可以取得66%的准确率,已经算还不错的一个成绩了。其最大的问题是速度很慢,内存占用量很大,主要原因有两个 针对R-CNN的部分问题,2015年微软提出了Fast R-CNN算法,它主要优化了两个问题。 R-CNN和fast R-CNN均存在一个问题,那就是 由选择性搜索来生成候选框,这个算法很慢 。而且R-CNN中生成的2000个左右的候选框全部需要经过一次卷积神经网络,也就是需要经过2000次左右的CNN网络,这个是十分耗时的(fast R-CNN已经做了改进,只需要对整图经过一次CNN网络)。这也是导致这两个算法检测速度较慢的最主要原因。 faster R-CNN 针对这个问题, 提出了RPN网络来进行候选框的获取,从而摆脱了选择性搜索算法,也只需要一次卷积层操作,从而大大提高了识别速度 。这个算法十分复杂,我们会详细分析。它的基本结构如下图 主要分为四个步骤: 使用VGG-16卷积模型的网络结构: 卷积层采用的VGG-16模型,先将PxQ的原始图片,缩放裁剪为MxN的图片,然后经过13个conv-relu层,其中会穿插4个max-pooling层。所有的卷积的kernel都是3x3的,padding为1,stride为1。pooling层kernel为2x2, padding为0,stride为2。 MxN的图片,经过卷积层后,变为了(M/16) x (N/16)的feature map了。 faster R-CNN抛弃了R-CNN中的选择性搜索(selective search)方法,使用RPN层来生成候选框,能极大的提升候选框的生成速度。RPN层先经过3x3的卷积运算,然后分为两路。一路用来判断候选框是前景还是背景,它先reshape成一维向量,然后softmax来判断是前景还是背景,然后reshape恢复为二维feature map。另一路用来确定候选框的位置,通过bounding box regression实现,后面再详细讲。两路计算结束后,挑选出前景候选框(因为物体在前景中),并利用计算得到的候选框位置,得到我们感兴趣的特征子图proposal。 卷积层提取原始图像信息,得到了256个feature map,经过RPN层的3x3卷积后,仍然为256个feature map。但是每个点融合了周围3x3的空间信息。对每个feature map上的一个点,生成k个anchor(k默认为9)。anchor分为前景和背景两类(我们先不去管它具体是飞机还是汽车,只用区分它是前景还是背景即可)。anchor有[x,y,w,h]四个坐标偏移量,x,y表示中心点坐标,w和h表示宽度和高度。这样,对于feature map上的每个点,就得到了k个大小形状各不相同的选区region。 对于生成的anchors,我们首先要判断它是前景还是背景。由于感兴趣的物体位于前景中,故经过这一步之后,我们就可以舍弃背景anchors了。大部分的anchors都是属于背景,故这一步可以筛选掉很多无用的anchor,从而减少全连接层的计算量。 对于经过了3x3的卷积后得到的256个feature map,先经过1x1的卷积,变换为18个feature map。然后reshape为一维向量,经过softmax判断是前景还是背景。此处reshape的唯一作用就是让数据可以进行softmax计算。然后输出识别得到的前景anchors。 另一路用来确定候选框的位置,也就是anchors的[x,y,w,h]坐标值。如下图所示,红色代表我们当前的选区,绿色代表真实的选区。虽然我们当前的选取能够大概框选出飞机,但离绿色的真实位置和形状还是有很大差别,故需要对生成的anchors进行调整。这个过程我们称为bounding box regression。 假设红色框的坐标为[x,y,w,h], 绿色框,也就是目标框的坐标为[Gx, Gy,Gw,Gh], 我们要建立一个变换,使得[x,y,w,h]能够变为[Gx, Gy,Gw,Gh]。最简单的思路是,先做平移,使得中心点接近,然后进行缩放,使得w和h接近。如下:我们要学习的就是dx dy dw dh这四个变换。由于是线性变换,我们可以用线性回归来建模。设定loss和优化方法后,就可以利用深度学习进行训练,并得到模型了。对于空间位置loss,我们一般采用均方差算法,而不是交叉熵(交叉熵使用在分类预测中)。优化方法可以采用自适应梯度下降算法Adam。 得到了前景anchors,并确定了他们的位置和形状后,我们就可以输出前景的特征子图proposal了。步骤如下: 1,得到前景anchors和他们的[x y w h]坐标。 2,按照anchors为前景的不同概率,从大到小排序,选取前pre_nms_topN个anchors,比如前6000个 3,剔除非常小的anchors。 4,通过NMS非极大值抑制,从anchors中找出置信度较高的。这个主要是为了解决选取交叠问题。首先计算每一个选区面积,然后根据他们在softmax中的score(也就是是否为前景的概率)进行排序,将score最大的选区放入队列中。接下来,计算其余选区与当前最大score选区的IOU(IOU为两box交集面积除以两box并集面积,它衡量了两个box之间重叠程度)。去除IOU大于设定阈值的选区。这样就解决了选区重叠问题。 5,选取前post_nms_topN个结果作为最终选区proposal进行输出,比如300个。 经过这一步之后,物体定位应该就基本结束了,剩下的就是物体识别了。 和fast R-CNN中类似,这一层主要解决之前得到的proposal大小形状各不相同,导致没法做全连接。全连接计算只能对确定的shape进行运算,故必须使proposal大小形状变为相同。通过裁剪和缩放的手段,可以解决这个问题,但会带来信息丢失和图片形变问题。我们使用ROI pooling可以有效的解决这个问题。 ROI pooling中,如果目标输出为MxN,则在水平和竖直方向上,将输入proposal划分为MxN份,每一份取最大值,从而得到MxN的输出特征图。 ROI Pooling层后的特征图,通过全连接层与softmax,就可以计算属于哪个具体类别,比如人,狗,飞机,并可以得到cls_prob概率向量。同时再次利用bounding box regression精细调整proposal位置,得到bbox_pred,用于回归更加精确的目标检测框。 这样就完成了faster R-CNN的整个过程了。算法还是相当复杂的,对于每个细节需要反复理解。faster R-CNN使用resNet101模型作为卷积层,在voc2012数据集上可以达到的准确率,超过yolo ssd和yoloV2。其最大的问题是速度偏慢,每秒只能处理5帧,达不到实时性要求。 针对于two-stage目标检测算法普遍存在的运算速度慢的缺点, yolo创造性的提出了one-stage。也就是将物体分类和物体定位在一个步骤中完成。 yolo直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。通过这种方式, yolo可实现45帧每秒的运算速度,完全能满足实时性要求 (达到24帧每秒,人眼就认为是连续的)。它的网络结构如下图: 主要分为三个部分:卷积层,目标检测层,NMS筛选层。 采用Google inceptionV1网络,对应到上图中的第一个阶段,共20层。这一层主要是进行特征提取,从而提高模型泛化能力。但作者对inceptionV1进行了改造,他没有使用inception module结构,而是用一个1x1的卷积,并联一个3x3的卷积来替代。(可以认为只使用了inception module中的一个分支,应该是为了简化网络结构) 先经过4个卷积层和2个全连接层,最后生成7x7x30的输出。先经过4个卷积层的目的是为了提高模型泛化能力。yolo将一副448x448的原图分割成了7x7个网格,每个网格要预测两个bounding box的坐标(x,y,w,h)和box内包含物体的置信度confidence,以及物体属于20类别中每一类的概率(yolo的训练数据为voc2012,它是一个20分类的数据集)。所以一个网格对应的参数为(4x2+2+20) = 30。如下图 其中前一项表示有无人工标记的物体落入了网格内,如果有则为1,否则为0。第二项代表bounding box和真实标记的box之间的重合度。它等于两个box面积交集,除以面积并集。值越大则box越接近真实位置。 分类信息: yolo的目标训练集为voc2012,它是一个20分类的目标检测数据集 。常用目标检测数据集如下表: | Name | # Images (trainval) | # Classes | Last updated | | --------------- | ------------------- | --------- | ------------ | | ImageNet | 450k | 200 | 2015 | | COCO | 120K | 90 | 2014 | | Pascal VOC | 12k | 20 | 2012 | | Oxford-IIIT Pet | 7K | 37 | 2012 | | KITTI Vision | 7K | 3 | | 每个网格还需要预测它属于20分类中每一个类别的概率。分类信息是针对每个网格的,而不是bounding box。故只需要20个,而不是40个。而confidence则是针对bounding box的,它只表示box内是否有物体,而不需要预测物体是20分类中的哪一个,故只需要2个参数。虽然分类信息和confidence都是概率,但表达含义完全不同。 筛选层是为了在多个结果中(多个bounding box)筛选出最合适的几个,这个方法和faster R-CNN 中基本相同。都是先过滤掉score低于阈值的box,对剩下的box进行NMS非极大值抑制,去除掉重叠度比较高的box(NMS具体算法可以回顾上面faster R-CNN小节)。这样就得到了最终的最合适的几个box和他们的类别。 yolo的损失函数包含三部分,位置误差,confidence误差,分类误差。具体公式如下: 误差均采用了均方差算法,其实我认为,位置误差应该采用均方差算法,而分类误差应该采用交叉熵。由于物体位置只有4个参数,而类别有20个参数,他们的累加和不同。如果赋予相同的权重,显然不合理。故yolo中位置误差权重为5,类别误差权重为1。由于我们不是特别关心不包含物体的bounding box,故赋予不包含物体的box的置信度confidence误差的权重为,包含物体的权重则为1。 Faster R-CNN准确率mAP较高,漏检率recall较低,但速度较慢。而yolo则相反,速度快,但准确率和漏检率不尽人意。SSD综合了他们的优缺点,对输入300x300的图像,在voc2007数据集上test,能够达到58 帧每秒( Titan X 的 GPU ),的mAP。 SSD网络结构如下图: 和yolo一样,也分为三部分:卷积层,目标检测层和NMS筛选层 SSD论文采用了VGG16的基础网络,其实这也是几乎所有目标检测神经网络的惯用方法。先用一个CNN网络来提取特征,然后再进行后续的目标定位和目标分类识别。 这一层由5个卷积层和一个平均池化层组成。去掉了最后的全连接层。SSD认为目标检测中的物体,只与周围信息相关,它的感受野不是全局的,故没必要也不应该做全连接。SSD的特点如下。 每一个卷积层,都会输出不同大小感受野的feature map。在这些不同尺度的feature map上,进行目标位置和类别的训练和预测,从而达到 多尺度检测 的目的,可以克服yolo对于宽高比不常见的物体,识别准确率较低的问题。而yolo中,只在最后一个卷积层上做目标位置和类别的训练和预测。这是SSD相对于yolo能提高准确率的一个关键所在。 如上所示,在每个卷积层上都会进行目标检测和分类,最后由NMS进行筛选,输出最终的结果。多尺度feature map上做目标检测,就相当于多了很多宽高比例的bounding box,可以大大提高泛化能力。 和faster R-CNN相似,SSD也提出了anchor的概念。卷积输出的feature map,每个点对应为原图的一个区域的中心点。以这个点为中心,构造出6个宽高比例不同,大小不同的anchor(SSD中称为default box)。每个anchor对应4个位置参数(x,y,w,h)和21个类别概率(voc训练集为20分类问题,在加上anchor是否为背景,共21分类)。如下图所示: 另外,在训练阶段,SSD将正负样本比例定位1:3。训练集给定了输入图像以及每个物体的真实区域(ground true box),将default box和真实box最接近的选为正样本。然后在剩下的default box中选择任意一个与真实box IOU大于的,作为正样本。而其他的则作为负样本。由于绝大部分的box为负样本,会导致正负失衡,故根据每个box类别概率排序,使正负比例保持在1:3。SSD认为这个策略提高了4%的准确率 另外,SSD采用了数据增强。生成与目标物体真实box间IOU为 的patch,随机选取这些patch参与训练,并对他们进行随机水平翻转等操作。SSD认为这个策略提高了的准确率。 和yolo的筛选层基本一致,同样先过滤掉类别概率低于阈值的default box,再采用NMS非极大值抑制,筛掉重叠度较高的。只不过SSD综合了各个不同feature map上的目标检测输出的default box。 SSD基本已经可以满足我们手机端上实时物体检测需求了,TensorFlow在Android上的目标检测官方模型,就是通过SSD算法实现的。它的基础卷积网络采用的是mobileNet,适合在终端上部署和运行。 针对yolo准确率不高,容易漏检,对长宽比不常见物体效果差等问题,结合SSD的特点,提出了yoloV2。它主要还是采用了yolo的网络结构,在其基础上做了一些优化和改进,如下 网络采用DarkNet-19:19层,里面包含了大量3x3卷积,同时借鉴inceptionV1,加入1x1卷积核全局平均池化层。结构如下 yolo和yoloV2只能识别20类物体,为了优化这个问题,提出了yolo9000,可以识别9000类物体。它在yoloV2基础上,进行了imageNet和coco的联合训练。这种方式充分利用imageNet可以识别1000类物体和coco可以进行目标位置检测的优点。当使用imageNet训练时,只更新物体分类相关的参数。而使用coco时,则更新全部所有参数。 YOLOv3可以说出来直接吊打一切图像检测算法。比同期的DSSD(反卷积SSD), FPN(feature pyramid networks)准确率更高或相仿,速度是其1/3.。 YOLOv3的改动主要有如下几点:不过如果要求更精准的预测边框,采用COCO AP做评估标准的话,YOLO3在精确率上的表现就弱了一些。如下图所示。 当前目标检测模型算法也是层出不穷。在two-stage领域, 2017年Facebook提出了mask R-CNN 。CMU也提出了A-Fast-RCNN 算法,将对抗学习引入到目标检测领域。Face++也提出了Light-Head R-CNN,主要探讨了 R-CNN 如何在物体检测中平衡精确度和速度。 one-stage领域也是百花齐放,2017年首尔大学提出 R-SSD 算法,主要解决小尺寸物体检测效果差的问题。清华大学提出了 RON 算法,结合 two stage 名的方法和 one stage 方法的优势,更加关注多尺度对象定位和负空间样本挖掘问题。 目标检测领域的深度学习算法,需要进行目标定位和物体识别,算法相对来说还是很复杂的。当前各种新算法也是层不出穷,但模型之间有很强的延续性,大部分模型算法都是借鉴了前人的思想,站在巨人的肩膀上。我们需要知道经典模型的特点,这些tricks是为了解决什么问题,以及为什么解决了这些问题。这样才能举一反三,万变不离其宗。综合下来,目标检测领域主要的难点如下: 一文读懂目标检测AI算法:R-CNN,faster R-CNN,yolo,SSD,yoloV2 从YOLOv1到v3的进化之路 SSD-Tensorflow超详细解析【一】:加载模型对图片进行测试  YOLO              C#项目参考: 项目实践贴个图。

基于ssd的目标检测论文

论文链接: tensorflow源码链接: SSD是YOLO之后又一个引人注目的目标检测结构,它沿用了YOLO中直接回归 bbox和分类概率的方法,同时又参考了Faster R-CNN,大量使用anchor来提升识别准确度。通过把这两种结构相结合,SSD保持了很高的识别速度,还能把mAP提升到较高的水平。 原作者给了两种SSD结构,SSD 300和SSD 512,用于不同输入尺寸的图像识别。本文中以SSD 300为例,图1上半部分就是SSD 300,下半部分是YOLO,可以对比来看。SSD 300中输入图像的大小是300x300,特征提取部分使用了VGG16的卷积层,并将VGG16的两个全连接层转换成了普通的卷积层(图中conv6和conv7),之后又接了多个卷积(conv8_1,conv8_2,conv9_1,conv9_2,conv10_1,conv10_2),最后用一个Global Average Pool来变成1x1的输出(conv11_2)。a、重新启用了Faster R-CNN中anchor的结构 在SSD中如果有多个ground truth,每个anchor(原文中称作default box,取名不同而已)会选择对应到IOU最大的那个ground truth。一个anchor只会对应一个ground truth,但一个ground truth都可以对应到大量anchor,这样无论两个ground truth靠的有多近,都不会出现YOLO中bbox冲突的情况。 b、同时使用多个层级上的anchor来进行回归 作者认为仅仅靠同一层上的多个anchor来回归,还远远不够。因为有很大可能这层上所有anchor的IOU都比较小,就是说所有anchor离ground truth都比较远,用这种anchor来训练误差会很大。例如图2中,左边较低的层级因为feature map尺寸比较大,anchor覆盖的范围就比较小,远小于ground truth的尺寸,所以这层上所有anchor对应的IOU都比较小;右边较高的层级因为feature map尺寸比较小,anchor覆盖的范围就比较大,远超过ground truth的尺寸,所以IOU也同样比较小;只有图2中间的anchor才有较大的IOU。通过同时对多个层级上的anchor计算IOU,就能找到与ground truth的尺寸、位置最接近(即IOU最大)的一批anchor,在训练时也就能达到最好的准确度。SSD的优点在前面章节已经说了:通过在不同层级选用不同尺寸、不同比例的anchor,能够找到与ground truth匹配最好的anchor来进行训练,从而使整个结构的精确度更高。 SSD的缺点是对小尺寸的目标识别仍比较差,还达不到Faster R-CNN的水准。这主要是因为小尺寸的目标多用较低层级的anchor来训练(因为小尺寸目标在较低层级IOU较大),较低层级的特征非线性程度不够,无法训练到足够的精确度。 下图是各种目标识别结构在mAP和训练速度上的比较,可以看到SSD在其中的位置:

论文: Pelee: A Real-Time Object Detection System on Mobile Devices

基于DenseNet的稠密连接思想,论文通过一系列的结构优化,提出了用于移动设备上的网络结构PeleeNet,并且融合SSD提出目标检测网络Pelee。从实验来看,PeleeNet和Pelee在速度和精度上都是不错的选择。

PeleeNet基于DenseNet思想,加入了几个关键的改进。

受GoogLeNet的启发,论文将原来的dense layer改为2-way dense layer,如图1b所示,新的路径叠加两个 卷积来学习获取不同的感受域特征,特别是大物体特征。

DenseNet使用stride=2的 卷积对输入进行初步处理,受Inception-v4和DSOD启发,论文设计了一个高效的stem block,结构如图2所示,两条路径能提取不同的特征。这样可以在不带来过多计算耗时的前提下,提高网络的特征表达能力。

在DenseNet中,使用bottleneck layer进行输入特征的压缩,但是bottleneck layer的输出固定为dense layer输出的4倍。在网络的早些层中,会存在bottleneck layer的输出比输入更多的情况,导致效率下降。为此,论文将bottleneck layer的输出大小跟输入挂钩,保证不大于输入大小,从图4可以看出,修改后计算效率提升了一倍。

DenseNet在dense layer间使用transition layer进行特征维度压缩,压缩比为。论文通过实验发现这个操作会减弱网络特征的表达能力,所以将transition layer的输出维度固定为输入的大小,不再压缩。

DenseNet使用Conv-Relu-BN的预激活方式,论文将其修改为Conv-BN-Relu的后激活方式,这样卷积层和BN层在inference时能够进行合并运算,提高计算速度。另外,论文在最后的dense layer添加了 卷积,用以获得更强的特征表达能力。

PeleeNet的结构如表1所示,包含一个stem block、4个特征提取阶段以及最后的stride为2的平均池化层。论文纠结使用3个特征提取阶段还是4个特征提取阶段,3个阶段需要stem block更多地缩减特征图大小,考虑到开头过快地减小特征图会大小会减弱网络的表达能力,最终仍采用4个阶段。

基于SSD,将PeleeNet作为主干网络并做了几个优化,提出目标检测网络Pelee,主要的优化点如下:

对PeleeNet的key feature进行验证。

与其它轻量级网络对比。

PeleeNet在各种设备上的实际推理速度对比。

Pelee与其它网络的设置对比。

各改进措施的性能对比。

与其它网络的在VOC上的性能对比。

各设备上的推理速度对比。

与其它网络的在COCO上的性能对比。

PeleeNet是DenseNet的一个变体,没有使用流行的深度可分离卷积,PeleeNet和Pelee仅通过结构上的优化取得了很不错的性能和速度,读完论文可以学到很多网络设计的小窍门

论文解析检测未成功检测

知网提交大学生毕业论文解析失败怎么回事 这个关于我来说就是毛毛雨,要帮助吗?写论文其实要能分离发挥本人的业务特长,每个考生无论才能程度上下,工作岗位如何,都有本人的业务特长,选择那些能分离本人工作、发挥本人业务特长的课题,对顺利完成课题的研讨大有好处。 我的论文查重解析失败了,这是怎么回事啊?要怎样才能查出结果呢? 我的也是,后来怎么解决的? 知网论文查重 解析失败 我现在也出现了这个问题,楼主当初是如何解决的 啊,求急救。 知网 检测论文,一直是正在解析,刷新就是解析失败 进入左侧论文列表,点击篇名,里面会有检测结果如果没有请追问 中国知网论文查重失败,上传后,等待解析,然后返回解析失败的提示,用的是学校知网查重系统 是你文档格式问题,你重复新复制文章到新word或复制到txt上重新传就行了, 上传论文的时候,paperpass 无法解析是什么意思,什么情况 一、选题 选题在学术论文写作中具有头等重要的意义。这是因为,只有研究有意义的课题,才能获得好的效果,对科学事业和现实生活有益处;而一项毫无意义的研究,即使研究得再好, 论文写作得再美,也是没有科学价值的。钱学森教授认为:“研究课题要紧密结合国家的需 要。……在研究方法上要防止钻牛角尖,搞烦琐 哲学 。 目前 在 社会 科学中,有的人就古人的 一句话大作文章,反复考证,写一大篇论文,我看没有什么意思。”因此,我们要选择有科 学价值的课题进行研究和写作。那么,应该根据哪些原则来选题呢? (一)具有科学性。它应包括:急待解决的课题;科学上的新发现,新创造;学科上短 缺或空白的填补; 通行说法的纠正;前人理论的补充;等等。 (二)有利于展开。指的是:要有浓厚的兴趣;能发挥业务专长;先易后难,大小适中; 已占有一定的资料;能得到导师指导;在一定时间内能完成;对题目加以限定。 注意事项 1、摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。 2、不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。 3、结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。 4、用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。 5、要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。 6、除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。 7、不用引文,除非该文献证实或否定了他人已出版的著作。 8、缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明。科技论文写作时应注意的其他事项,如采用法定计量单位、正确使用语言文字和标点符号等,也同样适用于摘要的编写。摘要编写中的主要问题有:要素不全,或缺目的,或缺方法;出现引文,无独立性与自明性;繁简失当。 在学校教务处上传论文到知网查重,但是上传不了,提示网页有错误 30分 到时候会对比你的论文和查重报考,如果里面的内容对不上就麻烦了 沟通技巧沟通成功与失败的案例分析600字论文 (一)题名(Title,Topic) 题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。 论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。 (二)作者姓名和单位(Authoranddepartment) 这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。注明作者所在单位同样是为了便于读者与作者的联系。 (三)摘要(Abstract) 论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容: ①从事这一研究的目的和重要性; ②研究的主要内容,指明完成了哪些工作; ③获得的基本结论和研究成果,突出论文的新见解; ④结论或结果的意义。 (四)关键词(Keywords) 关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。 主题词是用来描述文献资料主题和、给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。 技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。 技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。 技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。 技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。 11.参考文献格式要规范,严谨,基本要求超过三十篇(工程硕士20)。 12.所有参考文献必须在论文中有引用的地方。 13.所有图形公式都要自己完成,拷贝、复制是不允许的。 14.尽量不要用我或者我们这样的字眼,也就是口语化的东西要杜绝。 15.图形都要有英文的title。 16.页眉需要有下面信息。 17.摘要和目录是专家评审的主要翻阅的地方,一定要让摘要和目录体现所做工作和创新点,所以摘要和目录的编写很重要,往往容易被忽视! 18.表格需要有编号并至于表格的上方,不同于图形的放置于下方。 19.论文的结构一般是 背景介绍 ·研究现状 现有算法、技术、手段或方法的缺陷和不足 提出的新的算法、协议、方法、技术或手段 对自己提出的方法、技术或手段进行实践、分析和比较 结论和展望 20.论文撰写时,一定要注意......>> 英国研究生发现自己毕业论文数据分析有错误怎么办 所谓要有新意,就是要从自己已经掌握的理论知识出发,在研究前人研究成果的基础上,善于发现新问题,敢于提出前人没有提出过的,或者虽已提出来,但尚未得到定论或者未完全解决的问题。只要自己的论文观点正确鲜明,材料真实充分,论证深刻有力,也可能填补我国理论界对某些方面研究的空白,或者对以前有关学说的不足进行补充、深化和修正。这样,也就使论文具有新意,具有独创性。

用office另存为一下,,,

有可能是文件格式有问题,排版有问题!

文档有问题。或者加密。系统没有钥匙。。。

目标检测算法rcnn论文解读

[Paper:Focal Loss for Dense Object Detection] [ ] 关于目标检测主要分为两大类别:one stage,two stage one stage 代表:yolo系列,ssd(特点:检测精度低,但检测速度快) two stage 代表:R-CNN系列,SPPNet(特点:检测精度高,但检测速度慢) 在论文中作者去探讨了造成one stage精度低的原因,发现在训练密集目标检测器的过程中出现了严重的foreground-background类别不平衡。 检测算法在早期会生成很多bbox,而在一幅正常的图像中需要检测的object不会很多,这就意味着多数的bbox是属于background,使得foreground-background类别不平衡。 因为bbox数量很多,而属于background的bbox太多了,假设分类器将所有的bbox全部归为background,那么精度也会很高,而这样的分类器是一个失败的分类器,所以导致目标检测的精度很低。 因为two stage的第一个阶段生成一个候选目标位置组成的稀疏样本集,即RPN简单的对anchor进行二分类(只是区分是foreground和background,并不会区别细类),这样,属于background类别的bbox会大量减少,虽然其数量依然远大于foreground的bbox(例如3:1),但已不像最初生成anchor差别那么大了,这一阶段最终结果是从“类别极不平衡”到“类别较不平衡”转变,也就是说two stage并不能完全解决类别不平衡问题,第二个阶段使用一个卷积神经网络将各候选位置归置foreground类别或者background类别,即在初步筛选后的bbox上进行难度小得多的分类(细分类),这样分类器便得到了较好的训练,从而精度提高了。但因为是经过了两个阶段的处理,操作复杂,使得检测速度变慢了。 因为one stage系列的检测器直接在“类别极不平衡”的bbox中进行难度极大的细分类,直接输出bbox和标签,而原有的交叉熵损失(CE)作为分类任务的损失函数,无法抗衡“类别极不平衡”(会在另一篇文章中详细讲解交叉熵损失),容易导致分类器训练失败。因此,one stage检测虽然速度快,但检测精度低。 既然one stage中的交叉熵损失函数无法抗衡“类别极不平衡”,所以retinanet作者何恺明及其团队提出Focal Loss替换交叉熵损失来提高检测精度。 首先介绍一下二分类的交叉熵损失:鉴于以上的改进过程的思想,可以将交叉熵损失增加一个调节因子(1 - pt)γ,其中γ≥0。这样便出现了Focal Loss,其定义为: 在实践过程中使用的Focal Loss形式为:

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

论文: Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

论文认为,目前的目标检测算法可以按预设框的多少分为两种:

上述两种方法都会预测大量的结果,需要进行NMS后处理,而在训练的时候会存在many-to-one的问题,并且anchor的设置对性能的影响很大。   于是,很多研究开始探讨稀疏(sparse)检测,比如近期的DETR算法。该算法不需要预设anchor,并且预测的结果可直接输出,不需要后处理。但论文认为DETR并不是真正的稀疏检测,因为DETR在各位置提取特征时,需要与全图的上下文进行交互,而真正的稀疏检测应该满足sparse boxes和sparse features,即较少的初始框设定以及框之间不需要过多的特征互动。   为此,论文提出了Sparse R-CNN,如图1c所示,仅需设定少量anchor即可进行检测,而且能够进行set prediction,免去NMS等后处理,其核心主要包含以下几点:

Sparse R-CNN的推理流程如图3所示,输入图片、可学习的proposal boxes以及可学习的proposal features,根据proposal boxes提取对应的RoIAlign特征,dynamic head将proposal features转换为卷积核参数,对RoIAlign特征进一步提取特征,再进行后续的分类和回归。整体的思想和Fast RCNN很像,将selective search替换为proposal boxes,再增加其它更强的模块。

论文采用FPN-ResNet作为主干网络,输出多层特征,每层特征的维度都是256。采用更复杂的主干网络可以获得更好的性能,但论文与Faster R-CNN对齐,采用标准的实现。

Sparse R-CNN的核心是采用数目固定的小批量可学习proposal boxes( )作为region proposal,而非RPN。每个box为4-d参数,在0~1范围内,值为归一化的中心点坐标、宽度和高度。这些参数在训练过程中通过反向传播进行更新,包含了训练集目标位置的统计信息,可用于推理时的初步目标位置猜测。

尽管4维的proposal box能够直观地表示目标的定位,但缺少了目标的信息,比如目标的姿态和形状,所以论文引入proposal feature( )进行补充。proposal features是高维的可学习向量,与proposal boxes一一对应,用于丰富目标的RoIAlign特征。

Dynamic instance interactive head的结构如图4所示,每个proposal box都有一个专属的预测head。给定 个proposal boxes和 个proposal features,先通过RoIAlign提取每个box的 维特征,Dynamic instance interactive head将其对应的 维proposal feature转换为卷积参数,使用这个卷积参数对RoIAlign特征进行提取,得到目标的 维特征,最后经过简单的3层感知机进行分类与回归。   Dynamic instance interactive head也可以使用类似Cascade R-CNN那样的级联模式进一步的提升性能,将输出的新回归框和 维特征作为下一次迭代的proposal box和proposal feature即可。

Sparse R-CNN的训练采用set prediction的形式,将固定数量的预测结果与GT之间进行二分图最优的匹配,然后计算损失值,完整的损失函数为:

各模块对比实验。

性能与收敛性。

在COCO上进行对比。

Sparse R-CNN贯彻了稀疏的思想,只提供少量初始框,可进行Set prediction,颠覆了当前密集预测的检测思路,整体框架十分简洁,跟Fast RCNN有点像,十分值得大家阅读。

维普检测论文解析失败

维普论文显示检测失败不算是提交成功了,是提交失败了,需要修改后重新提交检测。维普论文检测系统,由重庆泛语科技有限公司自主研发,采用先进的海量论文动态语义跨域识别加指纹比对技术,通过运用云检测服务部署使其能够快捷、稳定、准确地检测到文章中存在的抄袭和不当引用现象,实现了对学术不端行为的检测服务。系统主要包括已发表文献检测、论文检测、自建比对库管理等功能,可快速准确地检测出论文中不当引用、过度引用甚至是抄袭、伪造、篡改等学术不端行为,可自动生成检测报告,并支持PDF、网页等浏览格式。详细的检测报告通过不同颜色标注相似片段、引用片段、专业用语,形象直观地显示相似内容比对、相似文献汇总、引用片段出处、总相似比、引用率、复写率和自写率等重要指标,为教育机构、科研单位、各级论文评审单位和发表单位提供了论文原创性和新颖性评价的重要依据。经过不断发展和努力,已经在众多行业和部门得到了广泛使用,受到了用户的高度评价。

搞定上品解析失败是第一种情况是因为论文上传文件格式并不是pdf、doc、docx中的一种,查重系统无法识别出文件格式,就会提示用户检测失败;另一种情况是因为论文总字数超过了对应查重系统的标准,例如知网本科PMLC查重系统要求论文总字数不超过6万字符,若待检测论文超出6万字符,查重系统就会提示解析失败。

具体原因如下学信网查重检测解析失败是因为查重文件处于在编辑状态、文档没有上传标准格式、上传文档过大、个人信息错填漏填以及查重用户过多导致的,在上传前应严格参照知网检测标准,再上传检测文件。学信网查重解析失败怎么回事一、查重文件处于在编辑状态。如果在提交论文时,论文文档在后台处于在编辑状态,知网查重将无法检测出文档内容,会被查重系统视为空白文档,查重系统检测不到内容,就会显示检测解析失败二、文档没有上传标准格式。知网查重系统-般只接受Word和PDF格式的文档,其他格式的文档查重系统将无法识别,这会导致检测解析失败。三、上传文档过大知网查重系统在检测15MI以上大小的文档时会显示检测失败,可以将论文中比较大的数据图片暂时删去,检测成功后再添加回来。四、必要信息错填漏填。知网查重系统在检测论文时,需要作者正确填写自己的姓名,论文题目和摘要等信息,如果信息错填漏填都会导致检测解析失败。五、查重用户过多如果在同一时间有较多查重用户提交论文,则会导致系统缓慢而检测解析失败,只需要耐心等待或错峰查重,最慢两到三个小时就能出检测结果。

相关百科

热门百科

首页
发表服务