首页

> 学术期刊知识库

首页 学术期刊知识库 问题

关于蒸馏法测水分的毕业论文

发布时间:

关于蒸馏法测水分的毕业论文

水与有机溶剂易发生乳化现象,造成读数误差,可以添加少量戊醇或异丁醇防止出现乳浊液。利用进行蒸馏法测定总水分含量时。水容易与有机溶剂易发生乳化现象,分层不理想,造成读数误差,需要通过添加少量戊醇或异丁醇来进行沉淀,使其分层。

水分含量的测定方法有:

1.常压干燥法

特点:该方法使用最广泛,操作和设备简单,具有很高的准确性。

原理:食品中的水分通常是指在大气压下于约100°C加热而损失的物质。但实际上,在此温度下损失的是挥发性物质的总量,而不仅仅是水。

2.真空干燥法

原理:在较低的温度下减压干燥以除去水分,样品中的减少量为样品中的水分含量。此方法适用于在100℃以上加热容易变质的食品,并且含有不易去除的结合水。测量结果更接近实际湿度。

3.蒸馏法

出现在20世纪初,当时它使用沸腾的有机液体分离样品中的水,但该方法至今仍适用。

原理:将水不溶性有机溶剂和样品放入蒸馏式水分测量仪中并加热。样品中的水分与溶剂蒸气一起蒸发。在冷凝器管中冷凝此类蒸汽,以从湿气量中获取样品水分含量。

关于蒸馏法测水分论文范文

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法:① 常压干燥法(此法用的广泛);② 真空干燥法(有的样品加热分解时用);③ 红外线干燥法;④ 真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理⑴ 特点:此法应用MAX广泛,操作以及设备都简单,而且有相当高的度。⑵ 原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言):⑴ 水分是可挥发成分这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。⑵ 水分挥发要完全对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。⑶ 食品中其它成分由于受热而引起的化学变化可以忽略不计。例:还原糖+氨基化合物 △→ 变色(美拉德反应)+H2O↑还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2发酵糖(NaHCO3+KHC4H4O6) △ →H2O+CO2+ NaKC4H4O6高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下鼓风干燥箱内进行干燥。我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时)所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点⑴ 取样(称样)在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。⑵ 干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘小时→于干燥器冷却→称重→再烘小时→称至恒重(两次重量差不超过即为恒重)*油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。*对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。*对于液体与半固体样品,要在称量皿中加入海砂,使样品疏松,扩大蒸发的接触面,并且用一个玻璃棒作为容器。先放到沸水浴中烘,烘的差不多,再放到烘箱烘,否则不加海砂样品容易使表面形成一层膜,造成水分不易出来,另外易沸腾的液体飞沫使重量损失。计算:水分= G2 - G1 / W 固形物(%)=100 - 水分%G1 —— 恒重后称量皿重量(g)G2 —— 恒重后称量皿和样品重量(g)W —— 样品重量(g) 固形物 —— 指食品内将水分排除以后的全部残留物。其组分有蛋白质、脂肪、粗纤维、无氮抽出物和灰分等。

食品中水分的测定方法如下:

1、直接干燥法(常压干燥法):主要原理是利用食品中水的物理性质,在,温度在101℃~105℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件下能挥发的物质,再通过干燥前后的称量数值计算水分的含量。

2、真空干燥法(减压干燥法):主要原理是利用食品中水分的物理性质,在达到40kPa~53kPa压力后,加热至60℃±5℃,采用减压烘干方法,去除试样中的水分,在通过烘干前后的称量数值,计算出水分含量。

3. 蒸馏法:主要原理是利用食品中水分的物理化学性质,使用水分测定器将食品中的水分与甲苯或二甲苯共同蒸馏出,根据接收的水的体积计算出试样中水分含量。

4. 卡尔·费休法:主要原理是根据碘能与水和二氧化硫发生化学反应,在有吡啶和甲醇共存时,1mol的碘和1mol水作用。分为库伦法和容量法。容量法测定的碘是作为滴定剂加入的,滴定剂中碘的浓度是已知的,根据消耗滴定剂的体积计算消耗碘的量,从而计量出被测物质水的含量。

在现代技术中,理化检验是指借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”。下面是我精心推荐的一些理化检验技术论文,希望能对大家有所帮助!理化检验技术论文篇一:《试谈理化检验质量控制考核中有关技术》 【摘要】 随着最近几年国家科学技术的飞速发展,各项科研工作也不断扩大。理化检验是我国进行科学研究检测的重要组成部分,尤其是在卫生监督管理方面。而理化研究由于其高要求的精密性而要求在检测的过程中必须提高检测的准确率,质量控制是一种提高准确率非常行之有效的方式,对于不同的检测,质控控制的技术也不一样。 【关键词】 理化检验;质量控制;技术分析;物理;化学 理化检验就是借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”,这种测量工具或器具都是非常精密,比如说一般常用的测量工具有千分尺、千分表、验规、显微镜等等。随着我国对于卫生行业的改革和对卫生监督管理的加强,卫生部门在进行检测的时候就提出了更高的要求,而理化检验是卫生检测的一种重要手段,它为监督执法提供更加精确的检测数据,在劳动卫生监督管理工作中具有重要作用。 1 理化检验质量控制考核中有关技术 根据多年来众多研究者不断的探索发现和 总结 ,理化检验质控考核主要可以分为以下几个方面。 滤膜上沉着的金属含量分析 这种技术就是运用化学 方法 ,通过添加相关化学剂使其沉淀然后过滤,对过滤金属进行类型、含量多少等分析。滤膜沉着的金属样品的稳定性比较高,在正常环境下不会随着自然环境的变化而发生损失,在进行滤膜上沉着的金属含量分析的过程中需要注意防止灰尘的污染,提取考核样品的时候应注意对工具的消毒、干燥处理,以免发生污染,致使考核结果数据不准确。考核完成后要将样品放入洁净的干燥器中。 固体盐中金属含量分析 顾名思义,这中理化检验考核技术就是通过对固体盐类中的金属含量和类型进行考核,同滤膜沉着的金属样品一样,固体盐中金属样品也具有较好的稳定性。在提取样品的时候应注意样品量不宜过多,在提取样品前一定要对其进行干燥处理,干燥的时间至少在一个小时以上,考核完成后要将样品放入洁净的干燥器中。 活性炭管吸附有机毒物含量分析 这种技术考核原理是化学亲和力的作用,因为活性炭管的吸附有机会具有很强的吸附能力,如果运用物理办法则不容易对其进行分离,用化学亲和力将其分离和样品考核分析。在日常的样品保存中要注意防尘和防潮。因而,活性炭管吸附有机毒物样品不适宜保存在冰箱里。 水溶液中毒物含量分析 水溶液中待检测的毒物考核样品很多,比如:水溶液中氯化氢含量、水溶液中三氧化铬含量等,水溶液中待检测的毒物考核样品的稳定性比较差,在正常自然状态下会随着环境的变化而发生变化,比如当环境温度升高了,就会增大样品水分的自然蒸发,在样品保存的时候,如果水溶液瓶盖密闭不严也会导致水分蒸发。所以,考核水溶液样品的保存非常重要,在保存的时候要注意放在温度不会发生变化的环境里,冰箱或者冷藏箱就是很好的方式,同时还要注意样品瓶是否密封好。 2 样品考核过程中应注意的问题 样品考核流程要严格按照规范标准 对于理化检验的质量考核,国家出台了相关的流程规范标准。因此,在实际的操作中要严格按照规范标准,以防出现错误或者测试不准。在考核前应将操作分析的计划详细书写清楚,按照相关指标和标准配置试剂,同时要取少量的考核样品先试验分析,主要是检测其浓度,以决定分析所用考核样品的取样量。在实际的考核过程中,首先做好标准曲线,包括空白点共五个点,每点做六份,计算变异系数小于百分之二,列出回归方程,计算回归系数。为了提高考核的准确率,应该取考核样品3份按标准曲线同样的方法进行操作,然后计算这三次测定的平均值作为最终测定结果,注意还要计算其相对标准值,标准值应小于百分之五,否则就说明误差过大,数据不能作为测定结果。注意书写过程中各种格式及单位等要严格按照标准格式。 考核过程中各器具及试剂运用的注意事项 首先是实验所用的吸液管,要求必须使用取得计量认证的单位生产的标准计量器具,或者是经过了考核人员本人的校正,因为吸液管的指标参数也会影响着测试的准确性。整个分析考核样品的过程中,要特别注意吸取标准试剂和考核样品溶液的剂量。其次是对实验所用的蒸馏水的注意,样品分析过程中,蒸馏水的质量会深深影响着化学分析铅的空白值,最终影响着分析结果。而分析试剂的纯度也会对分析结果造成很大的影响。因此,在实际考核中,为了保证考核样品结果的准确性,应使用重蒸馏水和分析纯以上试剂,气相色谱的考核用GR级色谱纯试剂。 3 结 语 理化检验质量控制考核并非一项复杂的工程,但是由于其检测结果的重要性就要求了检测结果必须更加的精确,因此在考核过程中必须要保证各项操作严格按照标准规范进行,保护样品不受污染,检测结果 报告 一定按照相关格式要求,全面、准确。通过各方面的规范操作来加强理化检验的质量控制。 参考文献 [1] 黄家钿,李诚,杜宏,张茵,方辰.卫生检验与检疫技术专业实践教学新模式的构建[A].浙江省医学会.2012年浙江省医学 教育 学学术年会论文集[C].浙江省医学会,. [2] 关于举办全国材料理化测试与产品质量控制学术研讨会暨《理化检验》创刊40年庆典活动的征文通知(第一号)[J].理化检验(物理分册),2012,02:92. [3] 张云霞,蔡望伟,周代锋.以素质教育为导向,深化医学院生物化学实验教学改革[J].海南医学,2011,15:135-137. [4] 张秀丽,廖兴广,张蒙,高葆真.2010年河南省食品卫生微生物检验质量控制考核结果的评价与分析[J].中国卫生检验杂志,2011,07:856-857. 理化检验技术论文篇二:《浅谈茶叶理化检验样品制备技术》 摘要:本文初步分析研究了茶叶理化检验样品的制备技术,并且从挑选与加工新鲜叶子、预处理与磨碎毛茶、均匀混合与分装磨碎样品、检验样品的均匀稳定性、检测特性数值等方面对茶叶理化检验样品制备技术进行了分析,最终提出了对标准化样品进行定值时,可以把定值根据转向实验室所提供的检测相关数据等发展建议,希望可以为我国的茶叶质检事业发展添砖加瓦并且奉献自己的力量。 关键词:茶叶 理化检验 制备样品 全球三大饮料之一便是茶叶,与 其它 饮料相比茶叶更加的实惠和经济,因此茶叶的饮用范围也在逐渐的扩大,拥有越来越大的消费人群,并且已经成为了21世界健康饮品的首先选择对象。可是,伴随着迅速发展壮大的商品经济,日益激烈的市场竞争环境,出现了各种各样的伪劣产品,茶叶也不能被排除之外。为了能够满足商品市场的要求,对各种形式的假茶叶进行严厉打击,有效整顿非常混乱的茶叶市场,迫切需要对茶叶进行理化检验。 一、茶叶理化检验标准化样品概述 对茶叶进行检测的内容包含了检验茶叶的品质、理化标准以及卫生标准等。其中,理化检验程序重点是对出物水浸、水分、茶多酚、咖啡碱等指标进行检验;卫生检验则是对存在于茶叶中的六六六成分等各种残留农药实施检测,以及重金属与微生物等项目的科学检验。 标准化样品具体是指一种或是各种均匀充足以及特点价值已经确定了的物质材料,主要用途是对设备仪器、评测方式以及材料具有的赋值进行校准。当前,通过国家生态环境科学研究院等有关单位研究制作、并且由我国标准物质机构特定销售的是存在于茶叶中的具备赋值特点的无机元素的茶叶标准样品。其它能够对茶叶理化各个指标体现的赋值标准化样品始终没有地方购买。为了可以有效提升全国检测茶叶机构的工作能力,加强检测机构对数据进行测定的可靠性,势必要设计针对茶叶理化各个指标所产生复制标准化样品,这也成为了各个检测单位对实验室检测茶叶项目技术水平客观了解的事实根据。 二、茶叶理化检验标准化样品制备技术 (一)挑选与加工新鲜叶子 影响茶叶理化指标数值的因素主要包括茶树的种类、产茶的时间、原材料的鲜嫩程度以及加工环节等。要想从根本上对原材料整体质量进行控制就需要挑选相同的种类、相同的茶园、根据一致的采摘要求对鲜叶实施采摘。并且在相同的步骤下加工生产等级相同的毛茶样品。需要关注两个方面:一方面是对毛茶所含水平有效控制。保证茶叶品质的重要因素就是茶叶所含的水分,毛茶样品要想成为标准化的茶叶样品,其含有的水分应当在以下。另一方面是对原材料的鲜嫩程度进行合理控制。加工茶叶使用鲜嫩程度良好的茶叶,不仅消耗较高的成本,同时出现较多的绒毛也对制备均匀样品非常不利。制作茶叶标准化样品,最好选择一芽的对夹叶或者三四叶的新鲜叶子作为原材料,使用二级或者二级以下作为毛茶的原材料。曾经根据以上的要求制作了一些茶叶的相关样品,已经被实验室国家认可组织作为了验证茶叶能力的标准化样品。不但具有较低的成本,并且在开始就已经对其均匀性获得了保障。 (二)预处理与磨碎毛茶 刚刚加工出来的毛茶通常会包含一些杂物。为了能够确保整批毛茶统一的质量标准,迫切需要挑剔全部茶叶,同时除去茶梗与石粒等,可以避免这些杂物对指标 产生的影响。国际相关标准对茶叶理化检验样品进行了规定必须使用磨碎之后的茶叶,因此,在预处理的前提条件下,必须磨碎处理毛茶的样品。磨碎之前,首先要清理干净磨碎设备,其次放入一小部分样品实施磨碎,并且清理掉这些磨碎样品。最后开始对样品正式进行磨碎,选择孔径在毫米到1毫米之间的筛子对磨碎样品进行筛选并且将其作为制备样品。 (三)均匀混合与分装磨碎样品 制备标准化的样品与平常检测使用的样品不同。制备一次样品的数量比较大,为了能够确保样品具有较高的均匀性,必须在进行分装操作之前充分混合均匀筛选后的磨碎样品。样品在混合均匀之后分别盛放在干燥清洁的设备中,盖紧瓶盖,为保存茶叶样品提供一个密闭、干燥、避免阳光照射的环境。 (四)检验样品的均匀稳定性 随机在整体样品中选择超过10个样品后检验其均匀性。检验均匀性可以使用待测项目,选择具有代表性或者对不均匀样品产生敏感的项目。对每一个抽取的样品,通过相同的检测人员在不变的环境条件下测试2次以上。应用单因子方差对检验结果进行分析,充分验证样品之间不会存在显著的差异性,只有这样才能证明其是均匀的样品。在验证茶叶能力所需样品的均匀性检验工作中,选择了总灰分和粗纤维等相关项目检验均匀性。由于前期制备均匀样品工作操作正确,应用单因子方差对上述检验均匀性结果进行验证表明其具有均匀性。上述茶叶项目在密闭与干燥的环境中状态稳定,因此,上述项目应用的样品可以不进行稳定试验。 (五)检测特性数值 检测某一个特性数值,通过需要具备检测茶叶能力的几十家实验室,根据国家规定的检测方法,应用各个实验室之间的联合检测方法,联合定值对应的特质数值。也就是根据相关准则规定的方法,统计和计算各个实验室获得检测结果,最终确定标准化样品各个特性数值体现出的测量的不确定性。 三、茶叶理化检验样品的发展 我国当前正在努力对各种能力开展计划验证,在验证茶叶能力的各项活动中,参与单位具有极高的积极性,参加个别项目的实验室超过了百家。开展工作的过程中,工作人员深刻的意识到制备大量样品非常不容易,在制备样品过程中,怎样保证样品具有均匀性以及对其进行有效检验等工作耗费了较多的财力与精力。因此,相关工作人员认为可以凭借验证茶叶能力这个机会,增加制备验证样品的数量。由于每一次验证茶叶能力之后剩余的样品都已经通过了均匀性检验,同时在验证能力过程中进一步获得确认;通过验证能力又可以产生一些具有较高技术水平的优秀实验室。所以,对标准化样品进行定值时,可以把定值根据转向这些实验室提供的检测相关数据。比如:可以将某种样品相关项目所需的标准数值规定为各个实验室得出的测定数值中的中位值,把标准化的IQR定义为标准偏差。假如能够科学有效的应用这些资源,不但能够大量减少制备与验证茶叶标准化样品所需的成本,同时也促使定值的结果更加无限接近真实数值,符合了各个质检单位对茶叶理化检验标准样品产生的要求。 结束语 目前,在制备茶叶标准样品工作上,茶叶工作者具备了丰富专业的茶叶背景优势,可是要想将验证茶叶能力提升为茶叶的标准化样品,还要对相关的研究程序作出进一步的分析理解,以便可以制备出具有稳定结果、准确定值、均匀样品同时充分发挥法律效力的茶叶标准化样品,也为我国发展茶叶质检工作贡献自己的力量。 参考文献: [1]GB/T8303―2002.茶磨碎试样的制备及其干物质含量测定[M].中华人民共和国国家标准,2009. [2]CNAS-GL03.能力验证样品均匀性和稳定性评价指南[M].中国合格评定国家认可委员会2008. 理化检验技术论文篇三:基于工作过程的《食品理化检验技术》课程教学过程设计 食品理化检验技术作为食品营养与检测专业的一门重要的核心课程之一,该课程的教学会直接影响到学生的培养质[]量,因此,需要对课程进行教学过程的设计,来培养学生学习的积极性、主动性和创造性,调动学生的学习兴趣,从而提高教学的课堂效果,教学过程是知识、 经验 、方法、能力的整体综合体现,教学过程既要体现做事的方式方法,又要重视知识的掌握和应用[1-2]。为了搞好该课程的教学工作,本文对《食品理化检验技术》课程进行教学过程设计,通过教学过程设计来保证课堂的教学效果,达到合乎企业要求的人才培养目标。 一、食品理化检验技术课程开发 食品理化检验技术课程的开发是以企业的理化检验的工作过程为导向进行的,将理化检验的工作过程设计成企业岗位需要的工作任务,并以该工作任务为载体设计学习情境,确定开发的流程,具体为首先对食品营养与检测专业进行调研,写出 调研报告 ,分析企业理化检验工作岗位所要求的职业能力和工作能力,根据职业能力和工作能力的要求,分析食品理化检验技术的课程结构,优化出该课程的课程体系,从而分析出课程的教学内容,制定出课程标准和实验实训指导书,然后进行教学设计。 二、教学内容的选择和课程内容结构 在食品理化检验技术课程的教学内容选取上,根据国家和地方食品企业行业发展以及高职食品营养与检测专业的培养目标,按照食品理化检验的工作岗位对学生知识、能力、素质的要求,根据“够用、必需”原则来选取教学内容,按照职业性、实践性的原则选取食品理化实训教学项目。 三、食品理化检验技术教学过程的设计 食品理化检验技术课程的教学过程采用具体的工作任务来引领学生学习的整个过程,按照食品理化检验工作岗位的流程进行设计该课程的教学过程,从工作岗位所需的工作任务来选择理化检验项目,检验项目选择完成后,学生根据检验项目查找资料进行方案设计,方案设计确定出来后,需要教师和学生共同进行反复讨论、修改,通过后才能实施,根据确定的方案,学生在教师的指导下完成实验实训的各项准备工作,然后开始进行实训操作,操作完成,对实训的结果进行分析,再广泛收集教师和学生们的意见,最后教师把问题反馈给学生,避免学生下次出现同类错误。《食品理化检验技术》课程的教学过程设计见图1。 图1 食品理化检验技术教学过程的设计 四、推行基于工作过程的项目导向、任务驱动教学法

原油蒸馏论文文献

浅谈常减压蒸馏装置的减压拔出现状和改进措施论文

论文摘要: 着重介绍了中国石化系统内蒸馏装置减压系统的拔出现状和提高拔出率的措施,指出在加工原油重质化的趋势下,提高常减压蒸馏装置减压系统的拔出水平可发挥原油重质化的效益。

论文关键词: 常减压蒸馏装 置减压系统 拔出

随着原油供需矛盾趋紧和原油价格持续走高,中国石化炼油企业原油采购日益重质化,造成部分常减压蒸馏装置的减压系统超负荷,蜡渣油分割不清,蜡油馏分流失到渣油当中,渣油量的增大又造成炼油厂重油装置能力吃紧和不必要的能量消耗,部分企业还不得以出售渣油,削弱了加工重质原油的应有效益。为了缓解加工原油变重对二次加工装置的影响,提高重油加工装置的营运水平,充分发挥原油采购重质化的效益,提高蒸馏装置减压系统的拔出水平显得尤为重要。

1国内蒸馏装置减压系统的拔出现状

目前,国内还未真正掌握减压深拔成套技术,少数几套装置虽然从国外SHELL和KBC公司引进了减压深拔工艺包,但对该项技术的吸收掌握还需要一段时间。通常来讲,国外的减压深拔技术是指减压炉分支温度达到420oC以上,原油的实沸点切割点达到565~620℃。中国石油化工股份有限公司近几年新引进的减压深拔技术是按原油的实沸点切割点达到565℃设计,也即是国外减压深拔技术的起点,其余减压装置未实现深度拔出的主要原因是装置建成时问较早,当时多按原油实沸点切割点为520~540℃设计,无法实现减压深拔。

2影响减压系统拔出率的因素

减压塔汽化段的压力和温度是影响减压拔出深度的两个关键因素。炉管注汽量、塔底吹汽量、进料量、洗涤段的效果等对总拔出率也有影响。

汽化段压力由汽化段到塔顶总压降和塔顶抽真空系统操作决定,汽化段真空度越高,油品汽化越容易,减压拔出深度越高(国外的先进设计,汽化段残压可以达到1.33~2.00kPa)。汽化段温度的提高受限于炉管的结焦和高温进料的过热裂化倾向,在汽化段压力不变的情况下,以不形成结焦和过热裂化为前提,应尽量提高汽化段温度。汽化段温度升高,油品汽化程度也会增加,减压拔出深度提高。

3存在的主要问题

通过分析系统内有必要实施减压深拔操作的20余套减压装置的函调数据,未达到深度拔出的装置主要表现出以下几个问题。

3.1常压系统拔出率不足造成减压系统超负荷

多数装置的常压渣油350oC馏出为5%以上,最高达到15%。常压渣油中的柴油组分过多会增加减压炉的负荷,增大减压塔的汽相负荷,并加大减压塔填料层(或塔盘)的压降,直接影响到减压塔汽化段的真空度。

3.2减压炉出口温度较低造成油品汽化率较低

多数减压装置为了减少炉管结焦的风险,减少渣油发生热裂化反应,减压炉分支温度多在400℃以下,减压塔汽化段温度多在385℃以下,常压渣油在此温度下的汽化程度不足。提高减压炉出口的温度主要受以下几个因素制约。

(1)炉管的材质。多数装置的减压炉辐射管采用Cr5Mo,已经不能适应提温后的炉管热强度,也不能抵抗高温下的环烷酸腐蚀,应进行材质升级,尤其是扩径后的几根炉管。

(2)炉管吊架材质。通常,设计时减压炉的炉管吊架材质选择一般比炉管材质要低,需要升级以适应提高炉温后的炉膛辐射温度。

(3)注汽流程。多数装置都有注汽流程,但部分装置在日常操作中没有投用,注汽操作在日常生产中仅作为低炼量或事故状态下防止炉管结焦的手段,而不是为了防止大炼量高炉温下的油品结焦。此外,部分炉管注汽点设在减压炉的进料线上,蒸汽在炉管内的气化加大了油品的`总压降,进而影响到减压汽化段的真空度。合理的注汽位置应设在对流转辐射的炉管内,此点注汽能很好的起到降低炉管内的油膜温度和缩短油品停留时间的作用,降低油品在炉管内的结焦风险。

(4)减压炉负荷。部分老装置的减压炉炉管表面热强度已超过设计值,无法进一步提温深拔,若要大幅提高减压炉出口温度,需对减压炉进行扩能改造。

3.3汽化段的真空度较低造成油品汽化率不足

部分装置减压进料段的真空度较低,直接影响了常压渣油的汽化率和减压系统的拔出深度。汽化段的真空度主要受以下两方面的限制。

(1)塔顶真空度。塔顶真空度越高,在一定的填料(或塔盘)压降下,进料段真空度越高。

(2)塔内件压降。提高进料段真空度的关键是减少塔顶至进料段之间的压降。塔内件压降大的原因主要为塔板与填料混用、填料段数多、填料高度大及减压塔塔径小、汽相负荷大等。

3.4无急冷油流程而无法控制提温后塔底的结焦风险

老装置由于设计时未考虑减压深拔操作,一般没有顾及提高进料段温度后会造成塔底温度升高,易造成管线、换热器、控制阀、塔底结焦、减压塔塔底泵抽空等影响,很多减压装置未设置急冷油流程,无法控制提温后塔底的结焦风险和塔底裂解气的产生,对装置的长周期运行和塔顶真空度的控制有着不利影响;部分装置虽没有设置专门的急冷油流程,但设有经过一次换热后的减压渣油作为燃料油再返回减压塔底的流程,同样可以起到降低塔底温度的作用。

3.5机泵封油的性质和流量对减压渣油5oo℃馏出有影响

通常,减压塔塔底泵采用减压侧线油作为封油,但仍有部分装置使用直馏柴油作封油。直馏柴油或封油(蜡油)量较大会提高减压渣油中500℃馏出量,还可能造成减压塔塔底泵抽空。

3.6减压塔底汽提蒸汽过小或未投影响了塔底的提馏效果

部分装置减压塔的负荷已经较大,为避免降低塔顶真空度而未投减压塔底吹汽或吹汽量较小。另外,少量装置本来按湿式操作设计,在生产中为了降低装置能耗而停止吹汽。

4提高减压系统拔出率的措施

提高常减压蒸馏装置减压系统的拔出深度是一项综合工程,首先要从完善减压塔的设计及塔内件的选择人手,其次要根据原油性质变化及时调整操作参数,在确保安全和不影响装置运行周期的情况下,提高减压系统的操作苛刻度。

4.1提高蒸馏装置减压系统的设计水平

(1)减压炉和转油线的设计对汽化段的压力有较大影响。采用炉管扩径,注汽等可提高汽化段温度,提高炉出口汽化率;转油线温降小可有效降低炉温,从而较少裂解和保证高拔出率所需温度。

(2)采用低压降、高分馏效率、大通量的塔盘和填料,不但可以提高馏分油的收率和切割精度,还可以大幅提高分馏塔的处理能力。采用填料的减压塔一般全塔压降小于20rnrnHg,而板式减压塔压降明显大,是填料塔的一倍以上。

(3)改进抽真空系统的设备水平,提高塔顶真空度。目前蒸汽+机械抽真空和液力抽真空的应用效果都较好。

(4)改进减压进料分布器的结构,适当增加进料口上方的自由空间高度,可减少雾沫夹带量。

(5)为避免减压塔底结焦和减少裂解气体生成,减压塔底部应设置急冷油流程,控制塔底温度不超过370℃。

(6)常压塔的设计要着力考虑降低塔底重油中350℃以前馏分的含量,防止过量的应在常压塔拔出的柴油组分进入减压塔,致使减压塔顶部负荷偏大,顶温高,真空度低,影响总拔出率。

4.2提高常压系统的拔出率

常压系统的拔出率对减压深拔的影响很大,应根据加工原油性质的变化尽可能地提高常压塔的拔出率,降低常压渣油中350oC含量到4%以下。主要措施有控制合理的过汽化率,提高常压炉出口温度、降低常压塔顶压力、调整常压塔底吹汽量和侧线汽提蒸汽量、提高常压侧线的拔出量(尤其是常压最下侧线)。

4.3提高减压炉出口温度和减压塔进料温度

在拥有相关工具软件的情况下,应根据加热炉的设计参数和进料性质进行模拟计算,绘制加热炉的结焦曲线,以模拟结果为指导逐步提高炉温;即使没有炉管结焦曲线的模拟软件,也可小幅提高炉温并增大炉管注汽,观察减压塔操作工况确定合适的炉温并维持操作,首先要达到设计温度,在此基础上再增加炉管注汽,继续提温。

4.4提高减压塔顶真空度

优化减压塔顶抽空器和抽空冷却器的运行,减少抽空系统泄露,保证塔顶真空度。

4.5合理分配炉管注汽和塔底吹汽

合理分配炉管注汽和塔底吹汽的流量,控制减压系统总注汽量,减少对真空度的影响。

4.6优化洗涤段的操作

要确保洗涤段底部填料保持润湿,即合理的喷淋密度能够保证总拔出率和减压馏分油的质量,洗涤段操作效果好,可以降低过汽化率,在同样的烃分压和蜡油质量的前提条件下可以提高拔出率。

4.7优化减压塔取热分配

为提高装置总拔出率,减压塔的取热可作适当调整,降低减压塔下部中段回流取热量,以增加减压塔上部气相负荷。

4.8控制合理的减压塔底温度

投用减压塔底急冷油流程,控制塔底温度不超过370oC即可,过多的急冷油量会影响塔底的换热效率。

5提高减压系统拔出率应注意的事项

(1)应根据减压渣油的加工流向确定是否适合深拔操作,减压渣油作延迟焦化原料和减压渣油虽作催化裂化原料,但由于催化消化不完还有减压渣油作燃料油或外售的蒸馏装置。

(2)原油实沸点切割达到565oC时,减压塔最下侧线的干点必然在580oC以上,若有携带现象还将导致蜡油中的沥青质和重金属含量上升,可能会给加氢裂化装置带来操作问题,建议实施深拔后重新考虑重蜡油的流程走向,由现在的进加氢裂化改进蜡油加氢处理或催化裂化装置等。

(3)减压拔出深度的提高需要高的炉出口温度、高的进料段真空度,还需要增加注汽量和增设急冷油流程等,蒸馏装置的能耗相应会有所上升,但从全炼厂角度,减压深拔操作能实现节能和增效的双重收益。

化工论文格式范文

导语:化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。下面是我分享的化工论文格式的范文,欢迎阅读!

题目:化学工程中的化工生产工艺

摘要:

化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。也正是随着这些理念的出现,一系列新型的化学工艺以及加工生产技术逐渐走进化学工程当中。综合生产效益和生产效率的两个点,化工生产应该在环保化的基础之上促进高效化发展。将对化学工程中的化工生产工艺进行全面的分析。希望对相关技术人员有所启发。

关键词:化学工程;化工生产工艺;化工技术

目前,化学生产工艺在化学生产中的发展一直处于开发阶段,而化学工艺的研发在近几年却变得逐渐火热起来,其护腰原因还是因为化工生产在一定程度上对我们的自然环境造成了污染。随着节能环保和低碳生活理念的持续火热,人们对环境的关注度也越来越重,因此,化工生产就应该及时做出改变。在过去,化工生产的污染排放问题一直得不到科学合理的解决,化工废料污染的排放,给我们的生活环境造成了较大的污染。

1我国化工生产的现状

机械工业、煤矿工业和化学工业是我国三大工业主体。之所以化学工业能够成为三大工业中的一部分,其主要原因就是因为化学工业能够生产出大量我们生活所需的物件,能够最大限度的满足人们的生活需求,进而推动了我国农业和工业的进一步发展。肥料是支撑我国农业不断发展的基础要素,在很多程度上维持这我国的经济水平稳定。但是,在化学生产过重,势必会产生一定的化学废料并对周围环境造成一定范围的污染,尤其是化工企业所排放出来的“三废”。

化工生产效率较低

我国三大工业存在一个相同的问题,那就是整体生产效率较低。而在化学工业这方面,其主要的原因就是因为生产环境较为恶劣,再加上化工生产设备存在质量问题。例如,在生产化学肥料时,反应器皿往往不能达到正常化学反应所需的温度,进而导致化学反应不充分,最终导致废气问题出现。另外,如果化学反应不充分,那么最终形成的化学产品合格率就比较低,难以满足人们生活的使用需求。

对自然环境污染较为严重

化工生产可以说是我国目前最为严重的污染源之一,尤其是重金属和化学废料的污染。从化工厂附近的水源当中抽取检测发现,水中的污染物严重超标,进而导致水源受到污染,间接影响到周围的土质,导致范围内的环境出现失衡问题。另外,化工企业为了节约生产成本,违反国家的环保法律,直接将一些化工废料排入到自然环境当中,进而造成大范围严重的化工污染。而在化学反应过程中,化学生产的连续性较低,进而导致整个化学工程反应迟缓,工程的进度受到严重的影响,进而导致整个生产环节出现脱节现象,这就会导致化工生产受到较大的影响。而导致脱节问题出现的主要原因还是应该化工生产工艺不合格所导致的。简单来说,我国的化工生产主要存在生产效率低、企业环境保护意识差“、三废”处理不科学和化工生产技术低下等问题。也正是这些问题的存在,严重阻碍了我国化工生产的发展。

2降低我国化工生产污染的措施

从分析我国化工生产现状发现,我国的化工生产技术和环境还不是很完善,各个工作环节都还存在缺陷。而针对这些问题的特点,我们就应该对化工工艺进行改进,而从化工工艺角度来看,我们又应该从哪几个方面做起呢?笔者经过实践工作总结了解,要想降低化工生产中的污染问题就必须做好以下几点:

优化反应环境,强化反应条件

反应条件是化工生产中最为重要的环节,为了达到最高效的化工反应,提高生产效率,降低废料的出现量,反应条件就必须做到最好。所以,提升化工生产质量的关键点就在于提高化工生产中的反应条件。所使用的催化剂必须在一定反应时间之后才能够使用,进而保障生产过程中的高效性,降低化学废料的产出量。

做好废料环保处理工作

目前,我国法律明文规定,化工生产中产生的`重度污染物不能直接排放到自然环境当中。另外,还有我们常见的废气,这些化工生产废料都应该在经过处理之后才能够进行排放。化工生产废水的排放必须采用化学综合的方式来对其进行处理。其工作原理非常简单,就是通过化学反应的原理,将废水中的重金属物质通过沉淀的方式过滤出来,进而降低废水的污染度。

从化工生产技术入手

只有从化工生产技术入手,才能够从化工生产根本上解决环境污染问题。例如,生产氧气的方式有很多,那么哪一种生产方式才是最有效和最环保的呢?因此,我们应该针对生产环境的不同,选择科学的生产方式,对于原料的选择更是应该灵活应对。

3结论

化工生产中的工艺问题还有待进一步的研究,更多的技术点还有待进一步的强化,自然和化工生产之间的平衡点我们还未找到,因此,则应该更加努力的加强研究,对传统化工工艺进行优化。

参考文献

[1]李积云.化学工程中化工生产的工艺解析[J].中国石油和化工标准与质量,2013(2):22.

[2]王杲,吴晶.关于化学工程中化工生产的工艺的分析[J].化工管理,2015(18):167.

[3]刘伟,李霞.化学工程与工艺专业煤化工特色建设浅谈[J].河南化工,2014(5):61-63.

[4]高改轻.化学工程中化工生产的工艺解析[J].民营科技,2014(7):73.

题目:化学工程技术创新在石化工业装置实践研究

摘要: 化学工程技术是石油工业发展的重要基础,其技术的创新和发展对推动整个石化行业发展有着重要的意义。化学工程技术能有效解决石化工业装置建设中的问题,并且能对其进行改造,让石化工业得到更好的发展。本文主要通过讲述石化工业装置中关于工业炉的改造,以体现化学工程创新在其中的意义。

关键词:化学工程;技术创新;石化工业;装置建设

引言

化学工程是研究化学工业为代表的,是对石化工业的生产过程中有关化学过程与物理过程的原理和规律进行研究,并利用这些规律来解决工业装置的建设。随着石化工业的不断发展,石化工业所涉及的范围也越来越广,因此重视化学工程技术的创新,并在石化工业装置建设中得到实践与发展是非常必要的。而同时,随着石化工业装置建设的发展,化学工程技术创新提供了必要的条件。

一、石化工业装置建设中的主要改造的部分

在石化工业装置中,工业炉是整个生产工艺中的重点设备,无论是炼油、有机原料的炼成和合成树脂的工艺都需要借助不同工业炉完成。比如在炼油中,最为常见的石化工业装置有裂解炉、转化炉和加热炉等。它们能够按照不同的作用,不同的工艺要求,发挥不同的效果。但目前大多数的石化工业装置仍然是根据其外形将工业炉分为五类:

1.管式加热炉:按形状分为圆筒炉、立式炉、箱型炉。管式炉炉体一般由钢架及筒体(或箱体)组成,炉内衬有耐火材料和隔热材料,还有炉管系统、炉配件和烟囱等部分。根据其受热形式有纯辐射式和辐射-对流式。管式加热炉是石油化工行业最常用的炉型,以后各节主要围绕管式加热炉展开介绍。

2.立式反应炉:这类炉的炉体基本上是受压容器,如甲烷化炉、中(低)温变换炉、气化炉、二段转化炉等;另一部分类似平顶(底)或锥形顶(底)的常压容器,如沸腾炉、蓄热炉、煤气发生炉等,炉体多数均有复杂的内件和衬耐火材料,催化剂填料等。

3.卧式旋转反应炉:炉体呈卧式旋转筒体,内部装有螺旋输运器或加热炉管,外部有传动及减速装置,如HF旋转反应炉等。

4.带传动、升降投料装置的反应炉:这类炉设备类似容器,但外部有投料提升装置,炉内有内衬或砌筑耐火和隔热材料,如电热炉等。

5.其他工业炉:焚烧炉:用于废气、废液、废渣的焚烧。将其中有害物质经焚烧转化为无害物质排出。如污泥焚烧炉、硫磺回收装置焚烧炉。干燥炉:用于干燥工艺物料。热载体炉:塑料厂用的较多。当化学工程技术得到创新,石油化工装置也需要做出相应的改变,以发挥化学工程技术的作用,提升自我生产率。所以为了进一步提升我国石油工业事业的发展,并且配合化学工程技术的创新发展,石化工业装置的主体——工业炉也应该进行相应的改造。

二、化学工程技术创新在炼油方面的实践与进展

1.催化裂化技术

在炼油装置中的创新体现催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化的主要工程需要在裂解炉中完成,裂解炉,主要以石油馏分为原料,进行热裂解生产烯烃,其结构特征为:立管加热裂解炉。裂解炉大多数为立式钢架结构炉体,将几种不同管径组合成一组,炉底有油气联合喷嘴;对流室在顶部,为卧式盘管,预热原料或燃料等。如今催化裂化技术已经成为石化工业装置建设中的核心技术,是石化工业炼油都需要用到的一种方式。在这项技术中就体现了许多化学工程技术的创新之处,如自动开发的高效雾化喷嘴,PV高效旋风分离器、油浆旋液除尘和烟气能量回收等。这些技术的创新与使用,很好的解决了炼油中长期存在的回收烟气压力、取出多余热量等难题。有效的提升了炼油的效率和环保性,让炼油取得了更好的经济效益。

2.炼油装置

炼油装置中的核心部分为常压装置,是处理炼油的重要装置。能有效提升其处理能力,降低能耗,提升拔除率。镇海炼化与SEI对炼油装置大型化开发应用了一系列化学工程创新技术,如在两段闪蒸、三级蒸馏节能型常压蒸馏技术应用其中,并使用真空技术来降低低压降、高减压的拔除率,是其研发出的炼油装置成为目前国内最大的长减压装置。经过实际的投入运用,该常减压设置的处理能力达到了102%,总拔除率达到了,整个装置的能耗量低至每吨11千克标油。

3.催化重整技术创新

在炼油装置中的体现催化重整是在催化剂的作用下,对油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。石油在炼制的过程中需要在加热、氢压和催化剂发挥作用的共同环境中,让原油中蒸馏所得的轻汽油馏分转变成富含芳烃的高辛烷值汽油,并副产液化石油气和氢气的过程。催化重整中可以用作汽油调合组分,也可以使用芳烃抽提制取苯、甲苯和二甲苯,副产的氢气是炼油厂中重要的氢气来源。需要注意的是,制氢装置转化炉的结果与其他工业炉的结构不同,炉管里都装有催化剂,并在关于制氢反应过程是在炉管内完成的。炉内温度较高,达到1000°C,反应介质出口温度为800°C左右。而催化重整技术的创新主要是在其中应用了新型再生器催化剂分布器,能均匀的分布下料,有效提升反应器的利用率和催化剂的再生治疗。该技术在进气方式及气体分配流动技术也有所创新改进,通过改善气体的轴向及径向分流的均匀性及提升了气体在径向床成内的压力降和气体在轴向的压力分布情况。这些技术方面的创新都有助于提升整个催化重整技术的效果。

4.新型塔板、填料和冷换设备

在改进炼油中相关的化学工程技术中,选择合适的材料能有效保证创新技术的效果发挥,并能帮助炼油厂的合理成本管理。新型规整的填料或乱堆填料已经成为催化裂化中吸收稳定塔和常减压塔的主要材料。高效换热器也已经成为常减压装置的主要构件,其能很好的回收烟气热能,将热炉热效率提升到90%以上。此外,表面蒸发冷凝器、表面多孔管换热器也已经在炼油装置中得到广泛的应用与普及。

三、化学工程技术创新在有机原料方面

1.乙烯成套技术

自“九五”计划以来,我国乙烯事业就开始快速的发展,仅2000年中国石化集团公司的乙烯产量就达到287×104t,并且在乙烯成套技术方面有了很好的创新和发展。石化股份公司对裂解炉和分离工艺技术进行了创新改进,通过在文丘里管流量控制技术对裂解原料在众多的辐射段炉管中的流量实现了精密的均匀分布控制;应用“湿壁”模型解决了废热锅炉结焦的问题。此外,在底部供热和侧壁供热中是由辐射段,建立有效的供热模式系统,让供热更快、更为均匀。乙烯分离技术一直是化学工程技术集中度非常密集的一个范围,并且对于乙烯大型化节能效果与深冷条件都有着非常严苛的要求。通过对该技术的不断研究与创新,在通过多种考虑后,石化公司选择中型乙烯作为乙烯分离技术创新、改进的切入点。如今该项技术已经成功的在石油化工中得到使用。

2.甲苯歧化和烷基转移成套技术

甲苯歧化和烷基转移技术是芳烃技术中的一个重要组成单元,是满足石油化工对二甲苯需求的有效的措施之一。上海石油化工研究将HAT系列作为催化剂,并以此为基础研制出大型轴向固定床反应器和反应器进口气体分布器,以提升甲苯歧化反应的效率,并提升对二甲苯的回收率,满足了石油化工对二甲苯日渐增大的需求。如今一套甲苯歧化和烷基转移成套技术所使用的40×104t/a已经安全、稳定的使用了6年。

3.苯乙烯成套技术

在苯脱氢制成苯乙烯的成套技术中,乙苯脱氢轴径向反应器是该项技术的创新点。对反应器中的原料与反应物料流向进行更合理、更环保、更节约的改进,能降低对催化剂的使用量,并提升乙苯烯的制成率。华东理工大学在6×104t/a和10×4t/a的反应器中进行多次实验后,终于建立了两维气体的数学模型,并计算出反应器入口处轴向催化器的气封高度。另外,也有研究发现使用新型的高效静态混合器,是解决原有反应器入口处乙苯与水蒸气在高温和高速流动状态发生的质量偏离及乙苯脱氢转化率偏低的问题的最好方式。

4.化工型MTBE合成及裂解一体化成套技术

化工型MTBE合成及裂解一体化技术为制出高纯度的聚合级异丁烯,上海石油化工研究院就以下两点进行了创新:(1)使用带有环柱形催化剂装填构件,以实现深液层塔盘的催化蒸馏技术的使用;(2)在预反应器中是由外循环工艺,改变床层抽出的位置。这两点的创新抓住了化工型MTBE合成及裂成一体化技术的关键所在,因此其所发生的效果也是颠覆性的。在MTBE裂解单元中使用固体酸裂解工艺技术,并适当的放大固定床反应器,并对裂解产物分离和精馏塔系进行合理的设计。目前该项技术已经得到很好的使用,以燕化公司为例,其所生产的高纯度异丁烯很好的与丁基橡胶合成。

结论

化学工程技术的创新对石化工业装置建设的发展发挥着重要的促进作用,但也正是因为石化工程装置建设要不断满足市场的需求,不断自我发展,自我突破,才为化学工程技术提供了良好创新环境。二者相辅相成,相互促进。所以只有不断注重化学工程技术的创新,重视合理的引进、吸收国外的经验,并根据本国的国情与条件进行合理的研究,是能有发现好的创新点,大大提升化学工程技术的效率。

石油蒸馏物的成份及用途:

一、成份

从沸点由低至高依次为石油气、溶剂油、汽油、柴油、煤油(包括航空煤油)、石蜡、沥青和石油焦等.

二、用途

19世纪20年代主要石油产品为灯用煤油,原油加工量较少,原油蒸馏用釜式蒸馏法(原油间歇送入蒸馏釜,在釜下加热)进行。19世纪80年代,随着原油加工量逐渐增加,将4~10个蒸馏釜串联起来,原油连续送入,称为连续釜式蒸馏。1912年,美国.特朗布尔应用管式加热炉与蒸馏塔等加工原油,形成了现代化原油连续蒸馏装置的雏形,原油加工量越来越大。近30年来,原油蒸馏沿着扩大处理能力和提高设备效率的方向不断发展,逐渐形成了现代化大型装置(见彩图)。中国现有40余套原油蒸馏装置,年总加工能力超过100Mt。原油蒸馏产率主要取决于原油的性质。中国大庆原油的汽油馏分(130℃前)产率约为,喷气燃料馏分(130~240℃)约为,轻柴油馏分(240~350℃)约为,重质馏分油(350~500℃)约为,其余为减压渣油(约为)。胜利原油的汽油馏分(200℃前)约为7%,轻柴油馏分(200~350℃)约为18%,重质油馏分(350~525℃)约30%,减压渣油约为45%。原油蒸馏是石油炼厂中能耗最大的装置,采用化工系统工程规划方法,使热量利用更为合理。此外,利用计算机控制加热炉燃烧时的空气用量以及回收利用烟气余热,可使装置能耗显著降低。

蒸馏法回收碘单质研究论文题目

(1)浓硝酸具有较强的氧化性,可氧化碘化亚铜,生成单质碘、二氧化氮和水,方程式为:2CuI+8HNO3=I2+2Cu(NO3)2+4NO2↑+4H2O;故答案为:2CuI+8HNO3=I2+2Cu(NO3)2+4NO2↑+4H2O;(2)Cl2氧化碘离子,生成单质碘和氯离子,氯气过量,在溶液中单质碘能被可以被氧化成碘酸根(IO3-)离子,而H2O2是绿色氧化剂不产生污染,且不会使生成的碘进一步氧化;故答案为:H2O2是绿色氧化剂不产生污染,且不会使生成的碘进一步氧化;(3)因四氯化碳的沸点低,易挥发,可用蒸馏的方法分离碘的和四氯化碳,故选:蒸馏;(4)操作⑦为对碘化钾溶液进行蒸发,需要的仪器有:酒精灯、三脚架、蒸发皿、坩锅钳、火柴等,过滤需要的仪器有:铁架台,玻璃棒、漏斗、烧杯、滤纸等,所以还缺少的玻璃仪器有玻璃棒、漏斗,故答案为:玻璃棒、漏斗.

得到碘的四氯化碳溶液之后,水浴加热蒸去溶剂(因为碘易升华,需水浴),得到单质碘

首先,我们用普通的蒸馏装置,控制温度在80℃以下,在锥形瓶中得到的是浅红色的液体,此实验连续重复了三次,得到的产物,颜色一样,显然,有少量的碘单质受热混入了CCl4中,为更好的控制温度,我们改用水浴加热蒸馏,得到的蒸馏物比前一种方法得到的液体颜色更浅,将得到的蒸馏液体再放进烧瓶中重新蒸馏,产物的颜色更浅。但还是不能作为化学实验中用的试剂。 很显然仅仅使用传统的蒸馏法不是分离碘的四氯化碳溶液的最好方法。 联系实验中经常用活性碳吸附红墨水中的色素,我们使用“活性炭的吸附性”来处理蒸馏后CCl4液体呈少量浅红色的问题,效果很好。 首先将蒸馏后的浅红色CCl4液体全部装入烧杯中,再向烧杯中加入少量颗粒状或块状(便于过滤)的活性炭,静置。待烧杯中溶液的浅红色消失。过滤,即可得无色透明的CCl4液体。装入试剂瓶中即能作为学生实验用化学试剂。 当然也可以直接用活性炭处理萃取后I2的CCl4溶液,只不过使用的活性炭量要较大,静放时间要长。 至于I2的CCl4溶液中的碘的回收利用。我们经过实验和分析觉得此回收在中学实验室中实际意义不大。因为在25 ℃时,I2在水中的溶解度为克,加热到50 ℃时, I2的溶解度才为 g。照这样计算,一次萃取实验按10个班计算,既使配制3000 mL 碘的饱和水溶液(如果蒸馏至少要蒸馏20次以上,),完全回收其中的碘,最多也只得到 g。实验事实也如此,每次蒸馏后烧瓶中只有很微量的碘留在烧瓶中。因此,碘水萃取实验后怎样将溶有碘的四氯化碳溶液提纯供回收利用才具有现实意义。 我抄的,我看不明白的,

常减压蒸馏z装置论文文献综述

常减压蒸馏装置工艺包含哪些主要设备描述其结构和工作原理包含的设备肯定就是分阶段分类型的一些装备和设置,他们的结构和工作原理肯定是也是有一定的说明的。

那么一般情况下,它属于要一个加热的装置,一个蒸馏锅这样的装置都是必不可少的,另外还需要一套冷凝管。

一种回收常减压蒸馏装置轻烃的工艺。以克服现有技术设备占地多、设备维护工作量大、投资高和流程复杂等缺点。

炼油厂常减压装置是常压蒸馏和减压蒸馏两个装置的总称。

因为两个装置通常在一起,故称为常减压装置。在炼油厂中,常减压装置十分重要。该装置主要包括烟气余热的回收装置,能够降低过剩空气系数。但是在装置使用期间,其对于能源的消耗量较大,并且在炼油厂整体能耗当中,常减压装置的耗能占比超过25%。

原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。液体沸腾必要条件是蒸汽压必须等于外界压力,降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。

使用常减压装置注意事项

1、氧气瓶放气或开启减压器时动作必须缓慢,如果阀门开启速度过快,减压器工作局部的气体因受绝热压缩而温度大大提高,这样有可能使有机材料制成的零件如橡胶填料、橡胶薄膜纤维质衬垫着火烧坏,并可使减压器完全烧坏。

2、减压器安装前及开启气瓶阀时的考前须知,安装减压器之前,要略翻开氧气瓶阀门,吹除污物,以防灰尘与水分带入减压器。在开启气瓶阀时,瓶阀出气口不得对准操作者或他人,以防高压气体突然冲出伤人。

相关百科

热门百科

首页
发表服务