首页

> 学术期刊知识库

首页 学术期刊知识库 问题

甲醇生产研究现状论文

发布时间:

甲醇生产研究现状论文

甲醛产能过剩将长期困扰产业发展发布时间:2010-11-24 09:56:072009年,我国甲醛生产与消费市场受经济衰退影响总体表现低迷。自2008年下半年开始,因大环境经济衰退造成甲醛生产厂家销售困难、价格下滑、被迫减产、停产的现象比较普遍,但是,由于国家在2009年上半年及时进行宏观调控和应对金融危机一揽子计划的刺激和拉动,使企业的外部环境有所好转。加上我国甲醛行业协会和各地区、各企业自身努力应对,致力于推动市场复苏和保持产销基本平衡。我国甲醛行业已经度过了最困难的危机期.开始了低起点和不平衡的回升。经过一年的观察,我国甲醛市场的总体低迷状况并没有继续蔓延和恶化,发展前景比预想的要好。根据行业协会调查,目前全国甲醛生产企业472家,总产能2314万如(占世界甲醛总产能的53%).共有629套甲醛装置,其中运行产能2212万t/a,停产万t/a,在建万t/a。产能最集中的地区仍是华北,约占全国产能的32%,华南、华中和华东也较为集中,约占总产能的45%。全国甲醛产能地区分布情况见表1。目前,我国甲醛行业的装置开工率仅为50%左右。产能极度过剩是今后相当长时间存在的突出问题。我国甲醛生产已经逐步规模化,单套甲醛装置规模在向大型化发展,5万t/a以上的装置占总套数的。我国甲醛产品逐步向高浓度、多规格方向发展,为下游产品的环保生产提供有利条件。我国甲醛行业的工艺、设备技术不断创新和改进,并得到逐步推广,已对甲醛生产技术的提升和甲醛行业的发展起到明显作用。我国甲醛生产节能减排、安全、环保越来越受到高度重视,这方面的应用方法和技术,正不断产生和推广应用。为应对金融危机带来的困难局面,中国甲醛行业协会大力倡导学习有些省份积极自救的先进经验,建立新型的甲醛区域经济圈模式,推动甲醛生产和消费市场朝着公平、公正、包容有序、互利共赢的方向发展。2009市场大势平稳009年我国甲醇与甲醛各月平均价格基本比较平稳,甲醛价格随甲醇价格波动,年底均有上扬。2009年我国甲醇与甲醛月平均价格与走势对比见图1。2009年我国甲醛生产装置平均开工率不到50%,甲醛价格随甲醇价格、板材市场波动,全年交易总体低迷。但个别地区产销两旺,有的月份开工率达到95%以上。根据抽样调查资料统计,我国地区甲醛市场要素统计分析见表2。1月,各地板材市场需求进一步低迷,各地区甲醛交易继续保持清淡局面。2月,春节过后,板材厂家陆续开工,甲醛市场也缓慢恢复。由于受到甲醇价格连续升高的影响,各地甲醛价格都有不同幅度的上涨。3月,主要下游市场板材需求依然较为低迷,国内甲醛企业销售受阻,整体开工率依然不高。从整体来看,市场需求依然看淡。原因是目前经济大环境仍然没见显着好转,例如,欧美等地住房需求疲软,国内家具、板材等出口量受到限制;国内房地产行业同样较为低迷。因此板材、家具等产品购买力下降,导致甲醛需求下降。其他甲醛下游品种,如多聚甲醛、乌洛托品等市场行情也处于萎缩状态,对甲醛市场同样缺乏支撑。所以,三月份在下游板材需求持续欠佳、甲醇价格涨势趋弱的背景下,甲醛市场仍维持疲弱态势。4月,上旬甲醇行情连续上涨,为了保证效益,许多甲醛企业也被动调涨甲醛出厂报价,平均涨幅在50~100元/t左右。但是。由于下游人造板需求依旧低迷,许多甲醛企业仍然滞销。一些厂家被迫停产或限产,减少库存压力。5月,受进口甲醇价格冲击和甲醛下游市场疲软影响,从四月中旬开始,甲醇价格持续下跌,华东、华南市场甲醇价格从4月中旬的2150~2300元/t跌至1800~1900元/t。原料甲醇价格的下跌,加之下游板材市场的低迷,势必造成甲醛市场继续走低,各地甲醛市场价格与本月初相比,平均下降了50~100元/t左右,甲醛企业整体开工率大部分只能保持在55%左右。6月,全国各地甲醛市场行情趋于平稳,大部分地区甲醛价格涨跌幅稳定在50元/t左右。由于甲醇价格的持续平稳,甲醛行情也随之平稳,有小幅下调。在甲醛需求方面,由于下游板材市场持续低迷,加之部分地区受近期雨季影响,多数甲醛企业销售下降,整体开工率与上月持平在55%左右。7月,进入甲醛市场的传统淡季,板材市场依旧低迷,与六月份相比较,全国甲醛市场整体以平稳为主,大部分甲醛企业销售不畅,平均开工率稳定在50%左右。七月初板厂因6月雨水多,木材收购困难且价格高,出现了部分板厂停产、限产,引起甲醛需求下降。到中下旬情况有所好转。8月,甲醛生产企业随着天气好转,木材原料供应有所增加,下游板厂的开工率逐步提升,甲醛需求相对有所好转。这也使得原料甲醇价格行情连续上涨,国内部分地区甲醛企业迫于成本压力相应调高甲醛售价,当地甲醛市场也持续走高。9月,随着国内外甲醇的连续推涨和传统的甲醛销售淡季即将过去,甲醛市场价格也被动跟涨。装置开工负荷相应增大,甲醇价格的理性回调,逐步提高了国内甲醇装置的开_丁率,西部和中部的甲醇通过水陆运输进入了华东地区,华东、华南两地区的甲醇价格差价逐步拉开,甲醛市场价格也随之在各地区进行调整,同时,甲醛装置在个别省份盲目集中投建,使得这些地区的甲醛市场处于非正常竞争,如广西地区、成都地区等,并造成对周边地区的影响,使刚刚有点复苏的甲醛市场受到沉重打击。10月。根据以往规律,金秋十月应为甲醛市场的传统旺季,但是由于受下游板材市场需求的影响,部分地区甲醛企业均反映,与九月相比较本月甲醛市场主要以平稳为主,甲醛价格和需求都没出现较大的波动。11月,各地甲醛市场行情基本以平稳为主,其中在十月下旬,华东及西南甲醛市场有少许上涨,东北甲醛市场一直持续小幅下跌。大部分甲醛企业销售情况一般,企业整体开工率也保持在50%以上。12月,受原料甲醇价格持续上涨的影响,从11月底至今,各地区甲醛价格也出现被动跟涨的局面,平均涨幅在150元/t左右。同时,大部分地区的甲醛市场较前期也略有好转。我国进口甲醛主要来自台湾省、日本、新加坡和韩国,出口甲醛主要到越南、蒙古和亚洲其他地区。加强区域合作促进产业健康发展我国甲醛产业多年来累积的问题有:产能过剩;一些地区无序竞争时有发生:产能集中度很低;自主创新技术发展缓慢,一些新技术的知识产权得不到扶持和有效保护等等。近两年,中国甲醛行业协会曾积极倡导各地区的甲醛企业开展区域合作,并且一些地区已经有一些区域合作的好经验。这是一个解决我国甲醛行业诸多问题的有效途径之一。甲醛产品区域性生产和消费特征非常突出,建立区域甲醛经济圈模式是甲醛行业应对挑战的重要措施。抓紧构建区域合作交流平台,推动地区市场机制建设,将使甲醛生产消费市场秩序朝着公平、公正、包容、有序的方向发展,使企业达到互利共盈的目的。通过区域合作,不仅能解决甲醛企业一些眼前的生产经营问题,而且可以启发我国各地区的甲醛企业发现一些新的可行的发展之路,通过深化区域合作模式的发展,最终促进企业并购重组,为解决甲醛产业多年来积累的若干问题创造良好发展的内外部条件。企业并购重组已有一百多年的历史,并已成为经济全球化的一个最明显的特点。从国外企业并购的发展历程来看,在经济持续高速增长和经济急剧转轨时期,都将发生大规模的企业并购,同时将产生一批企业巨人。我们今天熟悉的美国巨型跨国公司,如杜邦公司、通用电气、柯达公司等,都是借助当时并购浪潮,经过不断并购,对外扩张而形成的,其中不乏民营企业。从这个意义上讲,并购重组是企业发展的必由之路。我国有500家左右的甲醛生产厂家,有近2500万t/a的生产能力,已成为世界第一甲醛生产消费大国。我国甲醛行业已经在装备设计制造、装置建设、规模化生产以及相应的催化剂、电器和自动控制等诸多方面有相当的能力和规模,也积累了许多宝贵的经验。我国甲醛产业现有的基础已经具备通过并购重组优化生产要素和扩大发展的条件。如果我国甲醛行业能进一步推广区域合作,并通过区域合作摸索和发现进行并购重组的有效途径,那将是一个行业健康发展的大跃进。

1、根据国情,从节能减排说起。 大家都清楚,我国的资源现状是:福煤贫油。如何充分利用资源优势,取得最大效益,是国家能源部门一直努力的问题。2、 煤制烯烃项目是国家新能源的发展方向。 传统上我国一直用石脑油催化裂解制烯烃,生产主要集中在中石化、中石油两大集团。如今,国内石油制烯烃已经不能满足需要,绝大部分烯烃直接来源于进口。为了改变现状,考虑新的技术支持和出路。利用煤质甲醇,搭建起煤和烯烃的桥梁。 甲醇可以作为烯烃的原料;而在我国,煤制甲醇在所制造甲醇方法中占有很大的比例(65%以上)。据统计, 2010年甲醇制烯烃项目,甲醇消费量仅有30万吨。意味着仅生产了10万吨乙烯。截止到2011年10月份,国内仅有三套烯烃装置已投产,分别是神华包头60万吨/年、神华宁煤52万吨/年和中原石化20万吨/年。后期计划建设的烯烃项目产能预计将会突破1800万吨。这是一个发展迅速、前景非常宏大的项目。3、甲醇制烯烃项目之所以以前没发展起来,本人想主要从项目投入考虑。一套100万吨装置,大概需要投入2300亿,成本高不是一般的企业能够承受。 在这里立足甲醇行业,仅仅为楼主展示一个课题的研究意义和目的。楼主如果论文写作完毕,希望有幸拜读一下。本人邮箱

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

甲醇发酵过程研究现状论文

甲醇生产项目的危险性分析:1 火灾、爆炸 甲醇是易挥发性液体,属于甲类火灾危险性物质,贮存不好或发生泄漏都可能发生燃烧、爆炸。原料液体甲醇经蒸发器加热蒸发后变成甲醇蒸气,蒸发系统不得泄漏,否则在压力作用下甲醇气体以高速喷出,产生静电或遇明火,极易发生火灾爆炸。气态甲醇与空气混合能形成爆炸性混合气体,一旦遇有明火、高温或静电火花就有爆炸、燃烧的危险。 1m3 气态甲醇完全燃烧,发热量高达数万千焦,爆炸所产生的冲击波超压与同能量的TNT 爆炸产生的超压相似。由于它燃烧热值大,爆炸速度快,瞬间就会完成化学性变化,破坏性特别强。 甲醇气与空气混合进入氧化器进行催化氧化反应和脱氢反应,反应温度在6 20℃~650℃,反应的总热效应属于强放热反应,氧化器径向和轴向都存在温差。催化剂的载体往往是导热欠佳的物质,如果催化剂的导热性能良好,且气体流速又较快,则径向温差较小。一般沿轴向温度分布都有一个最高温度,称为热点,热点温度过高,使反应选择性降低,催化剂作用变慢,甚至使反应失去稳定性或产生飞温。生产甲醛的氧化器属于固定床反应器,床层温度分布受到传热速率的限制,可能产生较大温差,甚至引起飞温,导致火灾爆炸事故。 反应过程应中应控制好氧醇比(即氧气和甲醇的摩尔比)和水蒸气配比,防止超温。随着温度升高,反应速度加快,转化率增加,放出的热量也随之增加,如不及时移走反应热,就会导致温度难以控制,产生飞温现象。 甲醛生产中有90%以上的甲醇参加氧化反应和脱氢反应,其余部分发生燃烧反应及甲醛的深度氧化等副反应,生成CO、CO2、H20、CH4 和H2 等,都是放热反应,增加了反应过程的总热量,有可能产生飞温,当温度达到甲醇或甲醛的自燃点时,就可能发生燃烧爆炸。 甲醇、甲醛的蒸气都能与空气形成爆炸性混合物,但温度对爆炸极限影响较大,不同温度的爆炸极限可根据25℃的爆炸极限进行修正。修正后的甲醇和甲醛的爆炸极限如附表1-4 所示。 附表1-4 经温度修正的爆炸极限 物料 温度℃ 爆炸下限(%) 爆炸上限(%) 甲醇 25 600 700 甲醛 25 73 600 700 正常情况下,控制甲醇与空气的体积比为~,对照表2,虽然反应不在爆炸范围之内,但如果操作不慎,如氧醇比过低,就有可能使反应处于爆炸极限范围之内。 过热器到氧化器的入口,存在甲醇和空气两种成分,系爆炸性混合物;氧化器出口存在甲醇、甲醛、H2,CO,CH4 和02 等6 种成分,也系爆炸性混合物。因此,无论在氧化器的进口或出口,只要遇火源,就会立即发生燃烧、爆炸事故。 吸收操作是在吸收塔中将反应气中的绝大部分甲醛用水吸收下来,未被吸收的尾气送至尾气锅炉进行燃烧处理。在该操作过程中所涉及的气体系爆炸性混合物,如果设备发生泄漏,可能引起燃烧、爆炸事故。 在装卸甲醇、甲醛以及清罐等作业过程中,若违章操作或由于设备、管道腐蚀、制造缺陷、法兰未紧固等原因造成储罐、管道渗漏,甲醇或甲醛暴露在空气中,形成爆炸性混合物,达到爆炸极限时,遇火源易发生爆炸燃烧事故。 (1)将甲醇或甲醛装入储罐中 A 储罐漫溢 装卸时对液位检测不及时易造成甲醇或甲醛跑冒,甲醇或甲醛溢出罐外后,周围空气中甲醇或甲醛的浓度迅速上升,达到或超过爆炸极限,遇到火星即发生爆炸燃烧;在甲醇漫溢时,使用金属容器刮舀,开启电灯照明观察,均会无意中产生火花,而引起爆燃。 B 甲醇滴漏 由于装卸时,胶管破裂、密封垫破损、接头紧固栓松动等原因,使甲醇滴漏至地面,遇火花立即发生燃烧。 C 静电起火 由于输送管道无静电连接、采用喷溅式装卸、罐车无静电接地等原因,造成静电积聚放电,点燃可燃蒸气。 D 装卸过程中遇明火 在非密闭装卸中,大量可燃蒸气从装卸口逸出,当周围出现烟火、火花时,就会产生爆炸燃烧。 (2)储罐、管道或法兰渗漏,没有及时发现,导致甲醇或甲醛暴露在空气中,甲醇或甲醛蒸气遇明火燃烧爆炸。 安全防火间距不足 生产区域内或生产区域外建(构)筑物为有可能出现明火的场所,若建构筑物与生产区域内危险设施的间距不足,易造成火源与合适浓度的可燃性气体相遇,引发事故。另一方面,当一个设施设备出现火灾,若防火间距不足时,易诱发另一 个设施设备火灾;或当生产区域内发生火灾事故,若防火间距不足时,易诱发生产区域外建构筑物火灾,造成更大的损失。 该车间生产过程与储存过程中存在甲醇、甲醛、氢气等易燃易爆物质,该生产区域和储罐区域属于爆炸和火灾危险环境,在此区域内的电气设备如果不能满足防火防爆要求,可能会引起火灾爆炸事故。 电气线路老化、绝缘破损、短路、私拉乱接、超负荷用电、过载、接线不规范、发热、电器使用管理不当等易引起火灾。 雷击引起火灾。由于没有采取可靠的防雷措施,导致雷击直接击中储罐或装卸设施,或者在储罐或装卸设施上产生感应电荷积聚放电,都会导致甲醇、甲醛燃烧或甲醇、甲醛与空气混合气爆炸。 生产区域内建(构)筑物耐火等级达不到要求,一旦明火管理不当,用火失控,就容易导致火灾。2 容器爆炸在生产装置中存在压力容器,这些压力容器如果本身设计、安装存在缺陷;安全附件或安全防护装置存在缺陷或不齐全;在使用过程中如发生侵蚀、腐蚀、疲劳、蠕变等现象;未按规定由有资质的质检单位检验或办理安全准用证;人员误操作等原因,均有可能发生容器爆炸事故。3 中毒 甲醇对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选择作用,引起病变;可致代谢性酸中毒。对粘膜、上呼吸道、眼睛和皮肤有强烈刺激性。接触其蒸气,引起结膜炎、角膜炎、鼻炎、支气管炎;重者发生喉痉挛、声门水肿和肺炎等。肺水肿较少见。对皮肤有原发性刺激和致敏作用,可致皮炎;浓溶液可引起皮肤凝固性坏死。口服灼伤口腔和消化道,可发生胃肠道穿孔,休克,肾和肝脏损害。因此在操作过程中,如防护措施不到位或无防护,有可能对人体造成甲醇中毒事故。 短时大量吸入甲醛会出现轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。因此在操作过程中,如防护措施不到位或无 防护,有可能对人体造成甲醛中毒事故。4 高处坠落该车间生产厂房为三层厂房,在二层以上的楼层作业,若防护栏杆设置不规范、防护栏杆腐蚀损坏等原因,在储罐上进行检修工作,防护措施不到位等原因,均有可能造成高处坠落事故。5 机械伤害各种泵的运转部位,如果没有设置防护罩等防护措施,人体触及运转部位,可能造成机械伤害事故。6 触电各带电设备若因防护措施不到位(如触电保护、漏电保护、短路保护、过载保护、绝缘、电气隔离、屏护、电气安全距离等方面不可靠),均有可能造成人员触电。7 灼烫蒸汽管道或法兰连接处出现破损,使中压蒸汽喷出,可能喷至人体,造成人员高温灼烫事故。8 车辆伤害车间内行走的车辆,若车间内设施防护不当,易造成车辆冲撞装置内设施,另一方面也易对人员造成碰撞伤害。9 噪声项目中存在的罗茨风机、泵等,这些设备会产生噪声,噪声是一种物理危害因素,长期在高噪声的环境下工作,接触者的听力将受到损害,引起噪声耳聋,并妨碍 操作人员正常的感觉能力,使人烦躁不安,还会影响通讯,甚至成为诱发事故的原因。10 毒物长期接触低浓度甲醛可有轻度眼、鼻、咽喉刺激症状,皮肤干燥、皲裂、甲软化等。慢性影响:长期吸入低浓度甲醇,可能会导致神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等,皮肤出现脱脂、皮炎等。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

1 物料的危害辨识及危险性评价1.1 生产过程中的物料1.1.1 一氧化碳(CO)1.1.1.1 危害性辨识一氧化碳经呼吸道吸入人体后,通过肺泡膜进入血液,与血液中血红蛋白进行可逆性结合,形成碳氧血红蛋白,使血液中的携氧功能发生障碍,造成人体低氧血症,因而导致组织缺氧。轻度中毒者会出现头疼、眩晕、耳鸣、眼花,颞部压迫及博动感,并有恶心、呕吐,心前区疼痛或心悸,四肢无力,甚至有短暂的昏厥;中度中毒者除上述症状外,初期尚有多汗、烦燥,步态不稳,皮肤粘膜樱红,可出现意识模糊,甚至进入昏迷状态;重度中毒者迅速进入昏迷,昏迷可持续数小时或更长时间,出现阵发性和强直性痉挛,有病理反射出现,常伴发脑水肿、肺水肿、心肌损害、心律紊乱或传导阻滞,高热或惊厥,皮肤、粘膜可呈樱红色或苍白、紫绀。1.1.1.2 危险性评价一氧化碳属易燃、易爆、有毒气体,与空气混合浓度在12.5%~74.2%时成为爆炸混合物,爆炸危险度为4.9。遇热容器压力增大,泄漏遇火种有燃烧爆炸的危险。GB 13690—92标准将该物质划分为第2.1类易燃气体;GB 12268—90标准规定其危规号为21005。1.1.2 二氧化碳(CO2)1.1.2.1 危害性辨识低浓度二氧化碳对呼吸中枢有致兴奋作用,高浓度有显著性的麻痹作用。二氧化碳透过肺泡能力比氧大25倍,空气中CO2浓度高时,必造成体内CO2滞留,缺氧引起窒息死亡。即使在含氧浓度较高的情况下,二氧化碳也可以引发中毒。有时缺氧窒息会与二氧化碳中毒并存。吸入浓度为8%~10%的CO2,除头昏、头痛、眼花和耳鸣外,还有气急,脉博加快、无力,血压升高,精神兴奋,肌肉痉挛,时间过长则会出现神志丧失。急性重症发作都在几秒钟内,几乎象触电似的倒下,表现为昏迷,反射消失,瞳孔扩大或缩小,大小便失禁,呕吐等。严重者会出现呼吸停止或休克。1.1.2.2 危险性评价受热后容器压力增大,有爆炸危险。GB 13690—92标准将该物质划分为第2.2类不燃气体;GB 12268—90标准规定其危规号为22019。1.1.3 氢气(H2)1.1.3.1 危害性辨识氢气在生理上属惰性气体,仅在高浓度时,由于空气中氧分压降低才能引起窒息。在很高的分压下,氢气可呈现出麻醉作用。1.1.3.2 危险性评价氢属易燃易爆物质,与空气混合浓度在4.0%~75.6%时成为爆炸混合物,爆炸危险度17.9。氢气比空气轻,在室内使用和储存时,泄漏气体会聚集在上部空间不易外排,遇火即引起爆炸。GB 13690—92将该物质划分为第2.1类易燃气体;GB 12268—90标准规定其危规号为21001。1.1.4 硫化氢(H2S)1.1.4.1 危害性辨识硫化氢是强烈的神经性毒物,对粘膜有明显刺激作用,随空气经呼吸道和消化道能很快被人体吸收。一部分可经呼吸道排出,另一部分在血液中很快被氧化为无毒的硫酸盐和硫化酸盐等经尿道排出;在血液中来不及氧化时,则引起全身中毒反应。体内达到较高浓度时,首先对呼吸中枢和脊髓运动中枢产生兴奋作用,然后转为抑制;高浓度时则引起颈动脉寞的反射作用使呼吸停止;更高浓度时可直接麻痹呼吸中枢而立即引起窒息,造成“闪电式”中毒以致死亡。轻度中毒者首先出现眼结膜刺激病状,接着是呼吸道刺激症状,表现为畏光、流泪、眼刺激、流鼻涕及咽喉灼热感;当接触浓度为200~300mg/m3时,会发生中度中毒,症状为头痛、头晕、全身无力、呕吐,同时引起上呼吸道炎和支气管炎。眼刺激症状强烈、流泪、眼刺痛,且有眼睑痉挛,看光源时周围有色环存在,视觉模糊,有角膜水肿的症兆;当接触浓度在700mg/m3以上时,会发生重度中毒,中枢神经系统症状最突出。出现头晕、呼吸困难,行动迟钝,继而出现烦燥,意识模糊,呕吐、腹泻,很快处于昏迷状态,最终可因呼吸麻痹而死亡;当接触浓度在1000mg/m3以上时,可发生“电击样”中毒,即在数秒钟后突然倒下,瞬间呼吸停止。1.1.4.2 危险性评价硫化氢属易燃剧毒液化气体,人的嗅觉阈为0.035mg/m3,起初是臭鸡蛋味增强与浓度成正比,当浓度超过10mg/m3时,浓度增高而臭鸡蛋味却减弱,以至不能察觉。与空气混合,当浓度在4.3%~45.0%时,形成爆炸性混合物,爆炸危险度为9.5。气体泄漏遇火源会发生燃烧爆炸。GB 13690—92标准将该物质划分为第2.1类易燃气体;GB 12268—90标准规定其危规号为21006。1.1.5 氮气(N2)1.1.5.1 危害性辨识氮气是无色、无臭、无味的气体,是空气的重要组成部分。微溶于水,化学性质稳定。氮气本身并无毒,但当环境中氮气增多致使氧气相对减少,会引起单纯性窒息。其主要表现是机体缺氧,出现头晕、头痛、呼息困难、急促,心跳加快,脉搏弱而快,精神恍惚不安,全身乏力,肌肉协调运动失调。若进入完全充满氮气的设备或容器中,人会立即昏倒窒息。1.1.5.2 危险性评价氮气属难视觉性物质,高纯度氮气环境中易发生窒息甚至死亡事故。超压贮存有爆炸危险。GB 13690—92标准将该物质划分为第2.2类不燃气体;GB 12268—90标准规定其危规号为22005。1.2 成品物料1.2.1 液氨(NH3)1.2.1.1 危害性辨识氨属于低毒类物质。氨随空气经呼吸道吸入后,通过肺泡,除少部分与二氧化碳中和外,其余被血液吸收。被吸收的氨,在肝脏中释出形成尿素,随汗液、尿或呼吸道排出体外。氨对人的呼吸道有刺激和腐蚀作用,浓度过高时,直接接触部分可引起碱化学灼伤,组织呈溶解性坏死,并可引起呼吸道深部及肺泡的损伤,发生化学性支气管炎、肺炎和肺水肿。高浓度吸入,可使中枢神经系统兴奋度增强,引起痉挛,并可通过三叉神经末稍的反射作用引起心脏停搏和呼吸停止。轻度中毒,眼、口有辣感、流泪、流涕、咳嗽、声音嘶哑,吞咽困难,头昏、头痛,眼结膜充血水肿,口唇及口腔、咽部充血,胸闷和胸骨区疼痛;重度中毒,喉头水肿,声门狭窄以及呼吸道粘膜脱落,造成气管阻塞,引起窒息,人体外露部分皮肤可出现Ⅱ度化学灼伤,眼睑、口唇、鼻腔、咽部及喉头水肿,咳吐大量黄痰;肺水肿很快发生,表现为剧烈咳嗽,呼吸困难;脉快而弱,体温升高,咳出血痰或大量粉红色泡沫痰,陷入休克昏迷。1.2.1.2 危险性评价受到猛烈撞击,贮器损坏时,气体外泄会危及人的健康和生命,遇水则变为有腐蚀性的氨水。28%的水溶液则为浓氨水。受热后容器内压力增大或空气中氨浓度在15.7%~27.4%时,遇到火星会引起燃烧爆炸,爆炸危险度为0.9。有油类存在时,更会增加燃烧危险。GB 13690—92标准将该物质划分为第2.3类有毒气体;GB 12268—90标准规定其危规号为23003。1.2.2 甲醇(CH3OH)1.2.2.1 危害性辨识甲醇的职业接触中毒物质危害程度分为三级,急性中毒主要表现为中枢神经系统损害,眼部损害和代谢性酸中毒。人吸入空气中甲醇浓度39.3~65.5g/m3,30~60分钟可致中毒。人体口服中毒最低剂量为0.1g/kg,经口摄入0.3~1.0g可致死。1.2.2.2 危险性评价甲醇是易燃、易爆、有毒性物质。其气体与空气混合能形成爆炸性混合物,爆炸极限为5.5%~36.0%,爆炸危险度为5.5。饮用后会使人失明,甚至死亡。GB 13690—92标准将该物质划分为第3.2类中闪点液体;GB 12268—90标准规定其危规号为32058。

1、根据国情,从节能减排说起。 大家都清楚,我国的资源现状是:福煤贫油。如何充分利用资源优势,取得最大效益,是国家能源部门一直努力的问题。2、 煤制烯烃项目是国家新能源的发展方向。 传统上我国一直用石脑油催化裂解制烯烃,生产主要集中在中石化、中石油两大集团。如今,国内石油制烯烃已经不能满足需要,绝大部分烯烃直接来源于进口。为了改变现状,考虑新的技术支持和出路。利用煤质甲醇,搭建起煤和烯烃的桥梁。 甲醇可以作为烯烃的原料;而在我国,煤制甲醇在所制造甲醇方法中占有很大的比例(65%以上)。据统计, 2010年甲醇制烯烃项目,甲醇消费量仅有30万吨。意味着仅生产了10万吨乙烯。截止到2011年10月份,国内仅有三套烯烃装置已投产,分别是神华包头60万吨/年、神华宁煤52万吨/年和中原石化20万吨/年。后期计划建设的烯烃项目产能预计将会突破1800万吨。这是一个发展迅速、前景非常宏大的项目。3、甲醇制烯烃项目之所以以前没发展起来,本人想主要从项目投入考虑。一套100万吨装置,大概需要投入2300亿,成本高不是一般的企业能够承受。 在这里立足甲醇行业,仅仅为楼主展示一个课题的研究意义和目的。楼主如果论文写作完毕,希望有幸拜读一下。本人邮箱

保甲制度研究现状论文

什么叫保甲制度。保甲制度其实就是一种军事管辖制度和户籍管理制度,这种制度在宋朝时期开始流行起来,而且延续了很久。保甲制度的本质特征是以“户”也就是家庭为社会组织的基本单位,这个和西方的个人为单位是有区别的。保甲制度中的保甲编组是以户为单位,设户长;十户为甲;设甲长;十甲为保;设保长。各保就该管区域原有乡镇界址编定,或并合数乡镇为一保,但不得分割本乡镇一部编入他乡镇之保。保甲制度的优点。保甲制度的优点很多,可以说是自治治事、自信信道、自养养人、自卫卫国,起核心就是为军事化服务。其实这样看来的话,还是能发展经济的,人民的劳动热情肯定是提高了的,所以生产更加卖力了,各个方面都能提高了。保甲制度的缺点。保甲制度的缺点就是一般公正人士不愿意当保长,愿意当的人都是不肖之徒,为了就是有利可图。所以制度是好制度,最后用人不当,还是成了剥削人民的工具了,所以最后民众怨声载道了。

嫡长子继承制度的发展和演变 摘要:嫡长子继承制度是我国古代皇位继承的重要方法是我国两千多年封建制度的重要组成部分对于我国古代政治和经济社会的发展起到了重要的作用本文浅析嫡长子继承制度在其漫长的统治时期所发生的变化和作用。 关键词:嫡长子继承制、皇位继承、昭穆制度、专权乱政 皇位继承制度是历代统治者最关心的问题这是因为把拥有至高无上权力的皇帝宝座万世一系的传给自己的子孙以“奉宗庙之重统无穷之祚”乃是各朝各代最高统治者的共同心愿。“太子天下本本一摇天下震动”二千多年来封建统治者把预立太子看作是国家大事天子传子宰相传贤传子为求政局安定传贤是求国家的治理天子之子并非一人而诸子又无不觊觎最高的权位于是为求政局安定在诸子中难以继承皇位必须有确立的法制不然祸起萧墙政局必难安定这便是历代册封太子的原因。自汉代以来封建法律就确立嫡长子继承皇位的制度。 一、嫡长子继承制的发展。 中国古代皇位的嫡长子继承制确立于西周时期,是周公“制礼作乐”的重要内容。皇位的嫡长子继承制是经历了长期的发展才确立起来的。是古代最主要的皇位继承制度 自先秦至秦汉魏晋南北朝时期关于皇位的继承结合宗法制确立了嫡长子继承制即有嫡立嫡无嫡立长皇位应由正后所生的长子为法定的第一继承人如长子早殇有子则立其子无子再由嫡次子顺序继承只有在正后无子的情况下才考虑册立庶生之长子。皇帝无子再依据昭穆亲疏的顺序选立继位之人。嫡长子继承皇位意在求得政局安定但嫡长子并非个个贤能因而诸皇子争夺皇位继承权的斗争又成为不可避免。如果在建立太子的问题上再加以君王的亲疏爱憎以及后宫、宦官、外戚的干政则斗争更加激烈由此而酿成祸乱者从秦二世诈立为帝到清世宗阴谋夺位可谓不绝于书诚如唐初大臣刘泊所说“太子宗兆是系善恶之习兴亡在焉” 封建制度两千多年的历史中历朝历代的皇位继承虽起于嫡长子继承但是却少有真正将嫡长子继承执行的且看下列数据秦朝,是中国第一个专制主义中央集权的封建王朝。而始皇嬴政、二世胡亥、末帝子婴的即位都不是依嫡长子继承制。两汉时期,皇位继承有些复杂。西汉210年间共11位皇帝。“据《汉书》帝纪统计,除高帝为创业之主,平帝为王莽傀儡外,惠、景、元、成4帝皆以嫡长子继承皇位,文、宣、哀3帝为外藩入继大统,武、昭2帝则是因嫡长子被废而得继位。”东汉王朝195年间共有12位皇帝。“根据《后汉书》帝纪部分统计:其中除光武、献帝外,明、和、殇3帝均是因废长立幼而即位,安、质、桓、灵4帝都为外藩入继皇位,只有章、顺、冲3帝勉强算是嫡长子继承。”可见,两汉的皇位继承制度相当混乱,嫡长子继承制也没有得到较好地执行。魏晋南北朝时期,政权更迭频繁,以嫡长子身份继位的皇帝仅约占总数的三分之一左右。例如, “曹丕的继位并不是由于他居长,而是由于他的谋略和实力更胜曹植一筹。司马昭以兄弟的身份继承司马师之位。司马炎的继位也是由于他谋略高且有大臣贾充等的支持所致。”隋朝时,隋文帝杨坚废长立幼,隋炀帝杨广继承皇位,成历史上有名的暴君,使隋朝仅两代就灭亡了。唐朝,包括武则天在内,有21位皇帝,只有德宗和顺宗是按嫡长子继承制度即位的。宋朝18个皇帝中只有3人是嫡长子即位。元朝由于蒙古旧俗的影响,皇位继承制在汉制和旧俗之间摇摆,从而未能确立起相对固定的嫡长子继承制,导致争夺皇位的战乱频频发生。明朝的16个皇帝中也仅有5人是嫡出。清朝皇帝无一人是以嫡长子身份继承皇位的,采取的是秘密建储的继承制度。有人做过这样的统计, “在中国从秦至清二千余年的历史长河中,只有2/5的皇帝是依靠嫡长子继位制登上皇位的。 这其中我们重点探讨一下唐朝。有唐一代包括武则天在内凡二十一君这二十一君得继大统的情形大致是一按制度而即位者只二君即德宗和顺宗二以权臣而立者有五帝三为宦官所立者有代、宪、穆、文、武、宣、懿、僖、昭九帝四因特殊事变而立者为高祖、太宗、肃宗五因稳定政权而立者为玄宗六为大臣争立者有高宗、敬宗七因母后干政立而废废而立者有中宗、睿宗八因皇帝宠幸阴谋而立者为武后。二十一君以嫡长子而立者唯穆宗一人以长子而立者有代宗、德宗、顺宗、宪宗、敬宗、文宗、懿宗七帝。唐代是我国封建时代繁荣昌盛的朝代统治近三百年其经济、文化的发展与进步远远走在世界前列而它的皇位继承制度却是如此混乱实在令人惊异。于此相比其实唐朝的立储制度已经是相当完善了。太子位为储君是皇位的法定继承者因此立储便成为封建政治中的一项大事统治者为此煞费苦心隋唐制定了隆重的册立太子的礼仪设置了规模庞大的东宫官署机构经常使太子监国、佐理军国大事并随军出征以期太子在继位前就对全国政治有所历练和全面的了解。这一切本来都是为了稳定政权和顺利接替然而事与愿违不但如上述相继发生过隋炀帝夺位唐太宗杀兄夺储等事而且即使是号称一代明君的唐太宗李世民本人也不免陷入立嗣的深重烦恼中他一废太子李承乾再黜魏王李泰三立晋王李治四欲立吴王李恪。面对诸子弟争夺储位的极为激烈的纷争他自叹“我心诚无聊赖”竟“自投于床”“抽佩刀欲自刺” 二、嫡长子继承制度的演变 按照儒家的理论皇权既然是由天授予当然是终生的世袭的皇统是不能随便更改的即所谓的万世一系。为稳定皇室内部的继承秩序又结合宗法制确立了嫡长子继承制如果这样的规定完全被遵守当然也就不存在什么争吵纠纷也不存在因此而引起的骨肉相残、宫廷喋血了。但是历史往往并不按照任何人主观规定的轨道发展正因为皇位意味着最高的权威最大的荣华富贵它从来都是独占的、绝对排他的。所有礼教的宗法规定都无法真正遏制住对此的觊觎之念无法真正限制住各种夺位阴谋政变的相继发生。究其历代嫡长子继承大致演变为两种形式兄终弟及制以皇帝弟弟的身份做为皇位继承人即“皇太弟”也是储君具有继承皇位的权力是合法的继承人。在皇位传承史上影响最大的兄终弟及事件是宋太宗赵光义继承其兄宋太祖赵匡胤而为皇帝。其实诸如此类皇位继承制度可以说是嫡长子继承制的某种变化大部分是在嫡长子继承制没能得到执行的情况下衍生出的一系列情况密建皇储制是清朝统治者在皇位继承制度上的一大创造。皇帝生前秘密确定皇储写下遗昭秘而不宣驾崩后由大臣当众宣昭被立为皇储者即刻登基被选的人不分嫡、庶、长、幼唯以具有统治才能能胜任皇帝之任最符合根本的统治利益为准。 三、嫡长子继承制没能得到完善执行的原因 第一,由于封建社会是“君天下”的社会,皇帝拥有至高无上的权利,因此即便是宗法制度或是宗法观念,也约束不了皇帝们在选择接班人中的主观随意性。例如,唐太宗李世民就因为不喜欢太子承乾而想废掉太子改立魏王泰,最终导致了一场流血冲突。“另外,皇帝对于太子生母的感情变化,也是其中一个重要的变数。”因为嫡长子的身份是根据其母亲的身份确定的,一旦其母亲的后位不保,太子也就不是名正言顺的嫡长子了,他的地位肯定也会受到威胁。历史上由于其母亲失宠而丢掉太子位的人也比比皆是。 第二,皇室权利争斗的因素十分复杂,诸如后妃干政、宦官弄权、官僚集团的影响、以及皇帝与嫡长子性格、志趣不合或互相猜疑等均可导致嫡长子继承制形同虚设。这些因素都可以从唐朝的皇位继承中体现出来。 第三,正皇后无子或皇帝无后代的情况也会造成嫡长子继承制不能得到正常地施行。在这种情况下,统治者往往会采取嫡长子继承制的一些变通的方法来传递皇位,如立皇长孙;兄弟相继;立子之贵者或长者;选择宗室子弟入继等。其实,就皇位嫡长子继承制本身来说,其弊端也是显而易见的。在传统的专制主义中央集权制度下,皇帝拥有至高无上的权力,同时他也肩负着使人民安居乐业、国家繁荣安定的责任,这就对他的德行、才能等提出了很高的要求。而嫡长子继承是一种只重视继承人先天的继承资格而不顾继承人才能的制度,因此它并不能保证产生一位能够胜任的皇帝,“从而在君主所拥有的制度化权力与其实际的政治能力之间发生了严重的冲突或不对称问题”,出现了合法性与合理性不一致的问题。而历史上出现的一些昏君、白痴皇帝、儿皇帝等,则在很大程度上说明了这一点。 皇位继承制度作为中国古代的一种重要政治制度对古代中国的政治、社会、文化等各方面的影响是极其巨大的但这种政治制度的根本目的在于维护统治者的利益使子孙可以万世永享对百姓的专制统治。直到清朝宣统皇帝退位封建王朝解体皇位继承制度才真正宜告结束。 参考文献【1】《中国政治制度史》韦庆远著中国人民大学出版社1989年5月 【2】《中国政治制度史》张晋藩、王超著中国政法大学出版社1987年2月 【3】《资治通鉴》卷193《唐纪》贞观三年 【4】《汉书》卷43《叔孙通传》 【5】《唐会要》卷四《储君·杂录

一、我国社会保障制度的现状1、目前我国社会保障制度面临三大挑战。从长期看,要解决人口老龄化造成的一系列社会经济问题;从中期看,要减轻计划经济转向社会主义市场经济带来的巨大社会震动;在近期 ,要考虑如何根据宏观经济形势波动适时调整各有关项目的收支水平,以保障经济的稳定增长。2、保障范围覆盖不全。改革开放以后,我国的社会保障制度发生变化,社会保险资金开始转向社会统筹,在体制上围绕着"一个中心,两个确保,三条保障线"具体运行,但当前的三条保障线还不能全部覆盖城镇贫困范围。我国现有城镇贫困人口3100万以上,1999年享受社会保障的总人数不足300万,2000年不足400万。在最低生活保障覆盖范围之外,传统的民政救济对象是"无劳动能力"的人,是为数较少的边缘群体。而在体制转轨中,"有劳动能力"却失去工作机会的人,也已经陷入贫困的境地,他们的基本生活也应得到保障。事实上,这部分人中的绝大多数既拿不到下岗职工基本生活费,又不能享受最低生活保障待遇,他们约占城市"下岗"、"失业"、"待岗"总人数的70%以上。3、农村社会保障亟待发展。有的人提出,同二元经济结构相适应,我国的社会保障体系也呈明显的二元化特征:在城市,建立了面向企业劳动者的社会保险制度;在农村,则实行家庭保障与集体救助相结合而以前者为主的保障制度,作为现代社会保障体系核心内容的社会保险,未在农村建立。有的人提出,我国农村社会保障制度的建立已经与国际劳动组织的有关条约存在巨大差距。有的人提出,农村社会保障发展滞后的根本原因是政府财政支出方面的失误。中央财政用于社会保障的支出占中央财政总支出的比例,加拿大为39%,日本为37%,澳大利亚为35%,我国只有10%左右,而这10%的投入也是绝大部分给了城镇职工。4、下岗失业人员的社会保障水平低下。我国城镇失业保险覆盖率极其低下,仅覆盖正式职工,并不包括农村就业人员和城镇非职工人员。目前,国家用于失业保险金的经费占GDP的比重还很低。国家用于下岗失业保险的经费包括两部分:一是发放下岗职工基本生活费,属于临时性财政支出,其中包括企业支付的一部分费用;二是失业保险基金支出。二者合计占GDP的比重,1996年为 %,1999年提高到;二者合计占职工工资总额的比重1996年为,1999年为。5、立法滞后。在我国,除1953年颁布的《劳动保险条例》可视为社会保障立法外,还没有第二部社会保障法律。虽制定了规定和条例,但不能代替法律的作用。首先,规定和条例不具备法律的权威性,执行起来有相当大的回旋余地。其次,有的规定或条例规定得较早,已不适应改革开放的需要。最后,有的规定和办法具有明确的临时性,即权宜之计。这些都不利于我国社会保障制度的建立和健康发展。二、应建立什么样的养老金筹资模式我国社会养老保险制度十多年的改革,虽然在保险范围、筹资渠道、养老金发放办法等方面发生了很大的变化,但筹资模式一直没有变化。尽管现行的养老保险制度设有个人帐户,但由于是空帐运行,所以实质上仍属于现收现付式。对于这种制度,人们有不同的看法。第一种观点,建立以基金制为主的养老保险体系,强化企业补充养老保险。持这种观点的人认为,有人担心我国证券市场不发达,发展基金制的养老保险时机还不成熟,这种担心是不必要的。(1)养老基金的积累有一个过程,刚开始能投资于证券市场的养老金总量是有限的,政府还有充分的时间完善证券市场。(2)政府可以根据证券市场的发展状况逐步放松对养老金的投资限制。(3)改革之初可以通过合资等方式引进国外基金管理的人才和经验,提高国内基金管理水平。为建立三支柱(第一支柱为基本养老保险,第二支柱为企业补充养老保险,第三支柱为个人储蓄性养老保险)的养老保险体系,应降低基本养老保险过高的替代率,通过税收优惠等措施强化企业补充保险,并实行企业和个人的强制缴费。基本保险个人帐户不但要严格与社会统筹帐户相分离,条件成熟后还应纳入企业补充养老保险的范畴。有的人认为,如果保持现收现付制度不变,养老金制度的隐性债务将随着制度覆盖范围的扩大和给付水平的提高而不断积累。我国过去的养老金制度覆盖范围小,积累的债务水平比较低,但如果今后继续保持现收现付制度,在未来高速人口老龄化来临时,将面临更加严重的财务问题。第二种观点,当前养老金筹资模式不宜转向基金制。持这种观点的人认为,首先,我国社会养老保险的筹资模式没有转向基金式的必要性。(1)伴随着人口老化,我国的少儿负担率将趋于下降,未来人口的总负担系数不会大幅度增加,这将有利于我国应付人口老化。(2)我国的国民储蓄率已经过高,而且没有大幅度下降的迹象,养老社会保险的筹资模式不具备转轨的经济理论基础。其次,我国养老社会保险的筹资模式转轨的可能性不大。目前我国城镇企业养老社会保险的缴费率已经相当高,企业的平均缴费率达到20%,有些地方甚至超过了25%。显然,用进一步提高缴费率的办法来实现筹资模式的转轨是不大可能的,转轨的惟一办法就是政府另外拿钱。由于目前我国预算内的财政资金还十分紧张,政府根本无法从中拿出足够的钱用于转轨。

甲醇充分燃烧研究论文

节约、合理利用能源,保护环境气态燃料比液态燃料燃烧充分,液态燃料比固态燃烧充分,把固态变成液态可以燃烧的更充分,减少能源浪费煤燃烧不充分会产生CO,既浪费又有污染,而且煤中含有杂质,比如S燃烧后会产生SO2污染空气

燃烧是一种同时伴有放热和发光效应的激烈的化学反应。放热、发光、生成新物质(如木料燃烧后生成二氧化碳和水份并剩下碳和灰)是燃烧现象的三个特征。燃烧是一种氧化反应,其中氧气是最常见的氧化剂,但氧化剂并不限于氧气,氧化并不限于同氧的化合。 燃料燃烧放出的热量,至今仍是人们的主要能量来源,其目的不是制备生成物,而是获得能量。研究燃料充分燃烧的条件与方法不仅对节约能源、提高燃料的利用率至关重要,而且,对减少因不完全燃烧产生的CO等有害气体、烟尘等对空气的污染,也具有重要意义。一般说来,燃料在空气中的燃烧,是燃料和空气中氧气的氧化还原反应。为使燃料充分氧化,应保证有足够的空气。同时,为保证固体和液体燃料燃烧充分,增大燃料与空气的接触面(固体燃料粉碎、液体燃料以雾状喷出等)也是有效的措施。燃烧的条件:1.可燃物(不论固体,液体和气体,凡能与空气中氧或其它氧化剂起剧烈反应的物质,一般都是可燃物质,如木材,纸张,汽油,酒精,煤气等)2.充足的氧气3.达到物质的着火点灭火的基本原理及方法:燃烧必须同时具备三个条件,采取措施以至少破坏其中一个条件则可达到扑灭火灾的目的.,灭火的基本方法有三个:(1)冷却法: 将燃烧物质降温扑灭,如木材着火用水扑灭;(2)窒息法:将助燃物质稀释窒息到不能燃烧反应,如用氮气、二氧化碳等惰性气体灭火。(3)隔离法:切断可燃气体来源,移走可燃物质,施放阻燃剂,切断阻燃物质,如油类着火用泡沫灭火机。当今世界常用燃料:煤、石油和天然气是当今世界上最重要的三大矿物燃料,又是化学工业中极为重要的原料,它们又细分为(1)固体燃料:木柴、烟煤、揭煤、无烟煤、木炭、焦炭、煤粉等;(2)液体燃料;汽油、煤油、柴油、重油等;(3)气体燃料:天然气、人工煤气、液化石油气等清洁燃料:液氨、酒精、液氢(最清洁的燃料,燃烧产物是水)、甲醇等

人民教育出版社高一化学 第一册 第一章 第三节 化学反应中能量的变化及课后阅读材料很详细哦~~~

煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。下面是我整理了煤化工生产技术论文,有兴趣的亲可以来阅读一下!

煤化工及甲醇生产技术探索

摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。

关键词:煤化工;甲醇;温度;化学反应;化学式

中图分类号:Q946文献标识码: A

1煤气化原理

在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:

吸收热量:C - H2O → C O + H2C + C O2→ 2C O

发散热量:C + O2→ C O2C +12O2→ C O

变换反应:C O + H2O → C O2+ H2

从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。

2变换工段

甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:

C O + H2O → C O2+ H2

这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:

2C O + 2H2→ C O2+ C H

2C O → C + C O2

C O + 3H2→ C H4+ H2O

C O + H2→ C + H2O

C O2+ 4H2→ C H4+ 2H2O

C O2+ 2H2→ C + 2H2O

化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。

3甲醇生产中的注意事项

1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。

2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。

4 甲醇生产工艺模拟

传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。

在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排

出。

需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。

精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。

参考文献:

[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.

[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.

[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.

[4] 金建德. 煤制甲醇工业装置工艺改造措施[J]. 天然气化工2011 36(3):67-69.

[5] 李雅静,张述伟,管凤宝等. 煤制甲醇过程低温甲醇洗流程的模拟与改造 [J]. 化工设计通讯. 2013(2) :15-18.

点击下页还有更多>>>煤化工生产技术论文

年产甲醇制烯烃毕业论文

煤制油我国总的能源特征是“富煤、少油、有气”。2003年我国总能源消费量达亿吨油当量,其中,煤炭占,石油占,天然气占,水电占,核能占。我国拥有较丰富的煤炭资源,2000~2003年探明储量均为1145亿吨,储采比由2000~2001年116年下降至2002年82年、2003年69年。而石油探明储量2003年为32亿吨,储采比为年。在较长一段时间内,我国原油产量只能保持在亿吨/年的水平。煤炭因其储量大和价格相对稳定,成为中国动力生产的首选燃料。在本世纪前50年内,煤炭在中国一次能源构成中仍将占主导地位。预计煤炭占一次能源比例将由1999年、2000年、2003年达到2005年50%左右。我国每年烧掉的重油约3000万吨,石油资源的短缺仍使煤代油重新提上议事日程,以煤制油己成为我国能源战略的一个重要趋势。煤炭间接液化技术由煤炭气化生产合成气、再经费-托合成生产合成油称之为煤炭间接液化技术。“煤炭间接液化”法早在南非实现工业化生产。南非也是个多煤缺油的国家,其煤炭储藏量高达亿吨,储采比为247年。煤炭占其一次能源比例为。南非1955年起就采用煤炭气化技术和费-托法合成技术,生产汽油、煤油、柴油、合成蜡、氨、乙烯、丙烯、α-烯烃等石油和化工产品。南非费-托合成技术现发展了现代化的Synthol浆液床反应器。萨索尔(Sasol)公司现有二套“煤炭间接液化”装置,年生产液体烃类产品700多万吨(萨索尔堡32万吨/年、塞库达675万吨/年),其中合成油品500万吨,每年耗煤4950万吨。累计的70亿美元投资早已收回。现年产值达40亿美元,年实现利润近12亿美元。我国中科院山西煤化所从20世纪80年代开始进行铁基、钴基两大类催化剂费-托合成油煤炭间接液化技术研究及工程开发,完成了2000吨/年规模的煤基合成油工业实验,5吨煤炭可合成1吨成品油。据项目规划,一个万吨级的“煤变油”装置可望在未来3年内崛起于我国煤炭大省山西。中科院还设想到2008年建成一个百万吨级的煤基合成油大型企业,山西大同、朔州地区几个大煤田之间将建成一个大的煤“炼油厂”。最近,总投资100亿美元的朔州连顺能源公司每年500万吨煤基合成油项目已进入实质性开发阶段,计划2005年建成投产。产品将包括辛烷值不低于90号且不含硫氮的合成汽油及合成柴油等近500种化工延伸产品。我国煤炭资源丰富,为保障国家能源安全,满足国家能源战略对间接液化技术的迫切需要,2001年国家科技部”863”计划和中国科学院联合启动了”煤制油”重大科技项目。两年后,承担这一项目的中科院山西煤化所已取得了一系列重要进展。与我们常见的柴油判若两物的源自煤炭的高品质柴油,清澈透明,几乎无味,柴油中硫、氮等污染物含量极低,十六烷值高达75以上,具有高动力、无污染特点。这种高品质柴油与汽油相比,百公里耗油减少30%,油品中硫含量小于0.5×10-6,比欧Ⅴ标准高10倍,比欧Ⅳ标准高20倍,属优异的环保型清洁燃料。山西煤化所进行”煤变油”的研究已有20年的历史,千吨级中试平台在2002年9月实现了第一次试运转,并合成出第一批粗油品,到2003年底已累计获得了数十吨合成粗油品。2003年底又从粗油品中生产出了无色透明的高品质柴油。目前,山西煤化所中试基地正准备第5次开车,计划运行6个月左右。目前世界上可以通过”煤制油”技术合成高品质柴油的只有南非等少数国家。山西煤化所优质清洁柴油的问世,标志着我国已具备了开发和提供先进成套产业化自主技术的能力,并成为世界上少数几个拥有可将煤变为高清洁柴油全套技术的国家之一。据介绍,该所2005年将在煤矿生产地建一个10万吨/年的示范厂,预计投资12亿~14亿元,在成熟技术保证的前提下,初步形成"煤制油"产业化的雏形。据预测,到2020年,我国油品短缺约在2亿吨左右,除亿吨需进口外,”煤制油”技术可解决6000万~8000万吨以上,投资额在5000亿元左右,年产值3000亿~4000亿元,其中间接液化合成油可生产2000万吨以上,投资约1600亿元,年产值1000亿元左右。从经济效益层面看,建设规模为50万吨/年的”煤制油”生产企业,以原油价不低于25美元的评价标准,内部收益率可达8%~12%,柴油产品的价格可控制在2000元/吨以内。而此规模的项目投资需45亿元左右。目前,包括山西煤化所在内的七家单位已组成联盟体,在进行”煤制油”实验对比中实行数据共享;不久将有吨高清洁柴油运往德国进行场地跑车试验;2005年由奔驰、大众等厂商提供车辆,以高清洁柴油作燃料,进行从上海到北京长距离的行车试验,将全面考察车与油料的匹配关系、燃动性及环保性等。目前”煤制油”工业化示范厂的基础设计工作正在进行之中,预计可在2010年之前投入规模生产。我国与南非于2004年9月28日签署合作谅解备忘录。根据这项备忘录,我国两家大型煤炭企业神华集团有限责任公司和宁夏煤业集团有限责任公司将分别在陕西和宁夏与南非索沃公司合作建设两座煤炭间接液化工厂。两个间接液化工厂的首期建设规模均为年产油品300万吨,总投资分别为300亿元左右。通过引进技术并与国外合资合作,煤炭间接液化项目能够填补国内空白,并对可靠地建设“煤制油”示范项目有重要意义。萨索尔公司是目前世界上唯一拥有煤炭液化工厂的企业。从1955年建成第一个煤炭间接液化工厂至今已有50年的历史,共建设了3个煤炭间接液化厂,年处理煤炭4600万吨,年产各种油品和化工产品760多万吨,解决了南非国内40%的油品需求。中科院与神华集团有关”铁基浆态床合成燃料技术”签约,标志着该技术的产业化指日可待。铁基浆态床合成燃料技术是中科院山西煤化所承担的”十五”中科院创新重大项目和国家”863”计划项目,得到了国家和山西省及有关企业的支持。经过两年多的努力,已经研发出高活性和高稳定性铁系催化剂、千吨级浆态床反应工艺和装置等具有自主知识产权的技术。截至2004年10月已完成了1500小时的中试运转,正在为10万吨/年工业示范装置的基础设计收集数据,已基本形成具有我国自主知识产权的集成性创新成果。与神华集团的合作,将促进对我国煤基间接合成油技术的发展起到积极的作用。壳牌(中国)有限公司、神华集团和宁夏煤业集团于2004年11月签署谅解备忘录,共同开发洁净的煤制油产品。根据谅解备忘录,在为期6到9个月的预可行性研究阶段,三方将就壳牌煤制油(间接液化)技术在中国应用的可行性进行研究,内容包括市场分析、经济指标评估、技术解决方案和相关规定审核以及项目地点的确定。据了解,神华集团和宁夏煤业集团将分别在陕西和宁夏各建设一座煤炭间接液化工厂。计划中的两个间接液化工厂的首期建设规模均为年产油品300万吨,初步估计总投资各为300亿元左右。云南开远解化集团有限公司将利用小龙潭褐煤资源的优势,建设年产30万吨甲醇及10万吨二甲醚项目、年产50万吨或100万吨煤制合成油项目,以及利用褐煤间接液化技术生产汽油。该公司计划于2006年建成甲醇及二甲醚项目,产品主要用于甲醇燃料和二甲醚民用液化气。煤制合成油项目因投资大、技术含量高,解化集团计划分两步实施:2005年建成一套年产1万吨煤制油工业化示范装置;2008年建成年产50万吨或100万吨煤制合成油装置。目前,年产2万吨煤制油工业化示范项目已完成概念性试验和项目可行性研究报告。该项目将投资7952万元,建成后将为企业大型煤合成油和云南省煤制油产业起到示范作用。由煤炭气化制取化学品的新工艺正在美国开发之中,空气产品液相转化公司(空气产品和化学品公司与依士曼化学公司的合伙公司)成功完成了由美国能源部资助亿美元、为期11年的攻关项目,验证了从煤制取甲醇的先进方法,该装置可使煤炭无排放污染的转化成化工产品,生产氢气和其他化学品,同时用于发电。1997年4月起,该液相甲醇工艺(称为LP MEOH)开始在伊士曼公司金斯波特地区由煤生产化学品的联合装置投入工业规模试运,装置开工率为,验证表明,最大的产品生产能力可超过300吨/天甲醇,比原设计高出10%。它与常规甲醇反应器不同,常规反应器采用固定床粒状催化剂,在气相下操作,而LP MEOH工艺使用浆液鼓泡塔式反应器(SBCR),由空气产品和化学品公司设计。当合成气进入SBCR,它藉催化剂(粉末状催化剂分散在惰性矿物油中)反应生成甲醇,离开反应器的甲醇蒸气冷凝和蒸馏,然后用作生产宽范围产品的原料。LP MEOH工艺处理来自煤炭气化器的合成气,从合成气回收25%~50%热量,无需在上游去除CO2(常规技术需去除CO2)。生成的甲醇浓度大于97%,当使用高含CO2原料时,含水也仅为1%。相对比较,常规气相工艺所需原料中CO和H2应为化学当量比,通常生成甲醇产品含水为4%~20%。当新技术与气化联合循环发电装置相组合,又因无需化学计量比例进料,可节约费用美元/加仑。由煤炭生产的甲醇产品可直接用于汽车、燃气轮机和柴油发电机作燃料,燃料经济性无损失或损失极少。如果甲醇用作磷酸燃料电池的氢源,则需净化处理。煤炭直接液化技术早在20世纪30年代,第一代煤炭直接液化技术—直接加氢煤液化工艺在德国实现工业化。但当时的煤液化反应条件较为苛刻,反应温度470℃,反应压力70MPa。1973年的世界石油危机,使煤直接液化工艺的研究开发重新得到重视。相继开发了多种第二代煤直接液化工艺,如美国的氢-煤法(H-Coal)、溶剂精炼煤法(SRC-Ⅰ、SRC-Ⅱ)、供氢溶剂法(EDS)等,这些工艺已完成大型中试,技术上具备建厂条件,只是由于经济上建设投资大,煤液化油生产成本高,而尚未工业化。现在几大工业国正在继续研究开发第三代煤直接液化工艺,具有反应条件缓和、油收率高和油价相对较低的特点。目前世界上典型的几种煤直接液化工艺有:德国IGOR公司和美国碳氢化合物研究(HTI)公司的两段催化液化工艺等。我国煤炭科学研究总院北京煤化所自1980年重新开展煤直接液化技术研究,现已建成煤直接液化、油品改质加工实验室。通过对我国上百个煤种进行的煤直接液化试验,筛选出15种适合于液化的煤,液化油收率达50%以上,并对4个煤种进行了煤直接液化的工艺条件研究,开发了煤直接液化催化剂。煤炭科学院与德国RUR和DMT公司也签订了云南先锋煤液化厂可行性研究项目协议,并完成了云南煤液化厂可行性研究报告。拟建的云南先锋煤液化厂年处理(液化)褐煤257万吨,气化制氢(含发电17万KW)用原煤253万吨,合计用原煤510万吨。液化厂建成后,可年产汽油万吨、柴油万吨、液化石油气万吨、合成氨万吨、硫磺万吨、苯万吨。我国首家大型神华煤直接液化油项目可行性研究,进入实地评估阶段。推荐的三个厂址为内蒙古自治区鄂尔多斯市境内的上湾、马家塔、松定霍洛。该神华煤液化项目是2001年3月经国务院批准的可行性研究项目,这一项目是国家对能源结构调整的重要战略措施,是将中国丰富的煤炭能源转变为较紧缺的石油资源的一条新途径。该项目引进美国碳氢技术公司煤液化核心技术,将储量丰富的神华优质煤炭按照国内的常规工艺直接转化为合格的汽油、柴油和石脑油。该项目可消化原煤1500万吨,形成新的产业链,效益比直接卖原煤可提高20倍。其副属品将延伸至硫磺、尿素、聚乙烯、石蜡、煤气等下游产品。这项工程的一大特点是装置规模大型化,包括煤液化、天然气制氢、煤制氢、空分等都是世界上同类装置中最大的。预计年销售额将达到60亿元,税后净利润亿元,11年可收回投资。甘肃煤田地质研究所煤炭转化中心自主研发的配煤液化试验技术取得重大突破。由于配煤液化技术油产率高于单煤液化,据测算,采用该技术制得汽柴油的成本约1500元/吨,经济效益和社会效益显著。此前的煤液化只使用一种煤进行加工,甘肃煤炭转化中心在世界上首次采用配煤的方式,将甘肃大有和天祝两地微量成分有差别的煤炭以6:4配比,设定温度为440℃、时间为60秒进行反应,故称为“配煤液化”。试验证明,该技术可使煤转化率达到,使油产率提高至,所使用的普通催化剂用量比单煤液化少,反应条件相对缓和。甘肃省中部地区高硫煤配煤直接液化技术,已由甘肃煤田地质研究所完成实验室研究,并通过专家鉴定,达到了国际先进水平。同时,腾达西北铁合金公司与甘肃煤田地质研究所也签署投资协议,使”煤制油”产业化迈出了实质性一步。为给甘肃省”煤制油”产品升级换代提供资源保障,该省同甘肃煤田地质研究所就该省中部地区高硫煤进行”煤制油”产业化前期研究开发。经专家测定,产油率一般可达到%,如配煤产油率可达%。该项目付诸实施后,将为甘肃省华亭、靖远、窑街等矿区煤炭转化和产业链的延伸积累宝贵的经验。神华集团”煤制油”直接液化工业化装置巳正式于2004年8月底在内蒙古自治区鄂尔多斯市开工。这种把煤直接液化的”煤制油”工业化装置在世界范围内是首次建造。神华煤直接液化项目总建设规模为年产油品500万吨,分二期建设,其中一期工程建设规模为年产油品320万吨,由三条主生产线组成,包括煤液化、煤制氢、溶剂加氢、加氢改质、催化剂制备等14套主要生产装置。一期工程主厂区占地面积186公顷,厂外工程占地177公顷,总投资245亿元,建成投产后,每年用煤量970万吨,可生产各种油品320万吨,其中汽油50万吨,柴油215万吨,液化气31万吨,苯、混合二甲苯等24万吨。为了有效地规避和降低风险,工程采取分步实施的方案,先建设一条生产线,装置运转平稳后,再建设其它生产线。2007年7月建成第一条生产线,2010年左右建成后两条生产线。神华集团有限责任公司2003年煤炭产销量超过1亿吨,成为我国最大的煤炭生产经营企业。据称,如果石油价格高于每桶22美元,煤液化技术将具有竞争力。神华集团将努力发展成为一个以煤炭为基础,以煤、电、油(化)为主要产品的大型能源企业集团。到2010年,神华集团煤炭生产将超过2亿吨;自营和控股发电装机容量将达到2000万千瓦;煤炭液化形成油品及煤化工产品能力达1000万吨/年;甲醇制烯烃的生产能力达到1亿吨/年。2020年,其煤炭生产将超过3亿吨;电厂装机容量达到4000万千瓦;煤炭液化形成油品和煤化工产品能力达3000万吨/年。目前,煤炭直接液化世界上尚无工业化生产装置,神华液化项目建成后,将是世界上第一套煤直接液化的商业化示范装置。煤炭间接液化也仅南非一家企业拥有工业化生产装置。美国正在建设规模为每天生产5000桶油品的煤炭间接液化示范工厂。云南省也将大力发展煤化工产业,并积极实施煤液化项目。云南先锋煤炭直接液化项目预可行性研究报告已于2004年5月通过专家评估。项目实施后,”云南造”汽油、柴油除供应云南本省外,还可打入省外和国际市场,同时也将使云南成为继内蒙古后的第二大”煤变油”省份。云南省先锋煤炭液化项目是我国利用国外基本成熟的煤炭直接液化技术建设的首批项目之一。云南煤炭变油技术将首先在先锋矿区启动,获得成功经验后在其他地方继续推广。即将兴建的云南煤液化厂估算总投资103亿元,项目建设期预计4年,建成后年销售额34亿元,年经营成本亿元,年利润亿元。云南省煤炭资源较为丰富,但是石油、天然气严重缺乏。先锋褐煤是最适合直接液化的煤种。在中国煤科总院试验的全国14种适宜直接液化的煤种中,先锋褐煤的活性最好,惰性组分最低,转化率最高。液化是一个有效利用云南大量褐煤资源的突破口,洁净煤技术是发展的方向,符合国家的产业政策。”煤变油”将使云南省煤炭资源优势一跃成为经济优势。一旦”煤变油”工程能在全省推广,全省150亿吨煤就能转化为30亿吨汽油或柴油,产值将超过10万亿元。

MTO及MTG的反应历程主反应为:2CH3OH→C2H4+2H2O3CH3OH→C3H6+3H2O甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,一直还没有统一认识。Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~和~。从国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要手段之一。金属离子的引入会引起分子筛酸性及孔口大小的变化,孔口变小限制了大分子的扩散,有利于小分子烯烃选择性的提高,形成中等强度的酸中心,也将有利于烯烃的生成。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

相关百科

热门百科

首页
发表服务