化合物的配比不同,其属性也不同,物化性质也不同,这昱第一性原理。
呵呵 这个很简单啊 只要写1500字就好了啊 “这个CVD金刚石涂层刀具的热力研究”你去网上查下他的用处 怎么做出来的。。。然后在说明哪里哪里设计的好 哪里哪里设计的不好(说不好的时候一定要加个我认为) 再提出改进方案 这样就OK了啊 1500个字一定超的了呵呵~~ 还有就是你在网络上“借鉴”网络资源时要小心哦 国家规定两篇论文里面有连续500个字不变动(不包括标点符号)的话 你的论文就当抄袭的。。呵呵不过一般学校也不会怎么在意你的论文的。。楼主如果是转科毕业 只要你填好了就业协议书 就基本能过了 不需要太担心的 。。。。毕业论文可以赶时间赶出来的 一先开始是这样的 你不会人家也都不会的啊 学校一定会给你某个时间段。。和同学。指导老师一起把这项艰巨的任务完成的 呵呵 (本文纯属笔录 绝无抄袭 谢谢) 不想从网上找来的资料来回答你的问题 我觉得楼主既然知道从百度上发布问题就应该知道从这里找到答案 而且学。。要学习方法
摘要:密度泛函理论是研究材料基态物理性质的理论基础,而基于密度泛函理论的第一性原理计算则是研究材料基态性质的强大工具。通过计算,不仅可以解释材料的物理性质,而且可以模拟不同条件下材料的行为。这就可以为预测材料的新性能或者指导新材料的合成提供依据。本论文的目的就是利用基于密度泛函理论的第一性原理计算来研究几种磁性材料的电子结构和磁性机理。在计算中采用了WIEN2K程序包。WIEN2K程序包所采用的具体计算方法是全势线性缀加平面波方法,它是晶体电子结构计算中最精确的方法之一。有机化合物要获得宏观的磁性,除了顺磁中心以外,还要求分子在空间的排列要合适,以... 关键词:磁性材料密度泛函理论第一性原理电子结构授予学位:博士学科专业:凝聚
超硬材料因其具有高硬度、耐磨、热稳定性好等优良特性通常被作为削切工具和超硬涂层,在工业和国防领域有着广泛的应用。传统超硬材料通常由硼、碳、氮等轻质元素合成。1955年金刚石的合成和1957年立方氮化硼的合成成为了超硬材料发展史上的两座里程碑。近年来,过渡金属因具有高的价电子密度而受到人们的广泛关注。但过渡金属本身的硬度并不高,人们通过将硼、碳、氮等轻质元素掺入过渡金属中形成过渡金属轻质元素化合物,从而提高其硬度。如,常压下合成的 ReB2、OsB2和高压下合成的PtN2,都具有较高的体弹模量和剪切模量,被认为是潜在的超硬材料。因此,对过渡金属轻质元素化合物的研究成为了超硬材料研究的一个新热点。一些过渡金属硼化物能够在常压条件下合成,从而大大降低了生产成本,受到了研究者们的欢迎。我们采用基于粒子群优化算法的CALYPSO软件包结合第一性原理计算的方法对ReB3和IrB3的结构进行了预测和研究。通过结构预测我们发现了一些新结构:对称性为P-6m2、P63/mmc、P-3m1的ReB3和对称性为Amm2、P63/mmc、P-6m2、P-3m1的IrB3。其中对称性为P-6m2的ReB3和对称性为Amm2的IrB3可能分别为ReB3和IrB3的基态结构,且在0-100GPa的压强下它们一直为基态结构。通过声子谱的计算,这些结构均没有虚频,说明它们都是动力学稳定的。弹性性质的计算表明它们都是弹性稳定的。态密度穿过费米能级表明它们均具有金属性。P63/mmc-ReB3和P-6m2-ReB3的理论硬度分别达到37和30GPa,通过电子结构的分析我们发现它们具有高硬度的原因来自于它们结构中很强的B-B键和Re-B键。P63/mmc-ReB3和P-6m2-ReB3高的理论硬度使得它们有望成为新型的超硬材料。过渡金属氮化物中,过渡金属钽的氮化物因其出色的性能(例如化学稳定性,高硬度,高熔点,具有良好的热和电导性,以及超导等)始终是研究者们关注的焦点。我们采用基于粒子群优化的CALYPSO软件包对Ta-N系统6种不同配比的化合物进行了结构预测。预测得到的结构包括:P-6m2(187)-TaN、P-6m2(189)-TaN、C2/m(12)-TaN2、P4/mmm(123)-TaN3、P6cn(60)-Ta2N、P-4m2(115)-Ta2N3、P63cm(185)-Ta3N5。随后,我们采用第一性原理计算的方法对它们的结构、相稳定性、动力学稳定性、弹性性质和电子结构等进行了研究。其中 P-6m2(187)-TaN与先前实验上合成的δ-TaN结构相同,P-6m2(189)-TaN与先前实验上合成的ε-TaN结构相同。所有这些结构的形成焓在所研究的压强范围内(0-50GPa)都是负值,表明它们可以稳定存在。我们通过声子谱的计算来判断这些结构的动力学稳定性,发现除 P4/mmm(123)-TaN3以外的其它结构都不存在虚频,说明除 P4/mmm(123)-TaN3以外的结构都是动力学稳定的。弹性常数满足机械稳定性条件,表明它们都是弹性稳定的。除 TaN3以外,其它预测结构都具有较大的体弹模量(高于260 GPa),这表明它们都具有较强的抵抗体积形变的能力。P-6m2(187)-TaN具有较高的剪切模量,说明它具有较强的抵抗剪切形变的能力。对所有预测结构进行态密度计算,P63cm(185)-Ta3N5在费米面处出现了带隙,说明 Ta3N5是一种半导体材料。而其它结构的态密度穿过费米能级说明它们都是金属性质的。过渡金属化合物WB3和OsB3受到研究者们的广泛关注,但他们的基态结构还有待进一步确定。我们同样采用了CALYPSO软件包对WB3和OsB3进行了结构预测,得到的结构有:R-3m-WB3、P63/mmc-WB3、P-3m1-WB3、P-6m2-WB3、P-6m2-OsB3、P-3m1-OsB3、P6/mmm-OsB3。这些结构中,P-6m2-OsB3和R-3m-WB3分别为 OsB3和WB3的基态结构。声子色散曲线显示,除 P6/mmm-OsB3以外,其它结构均没有虚频出现,说明其它结构是动力学稳定的。R-3m-WB3和P63/mmc-WB3拥有较大的理论硬度(37GPa和38GPa),接近超硬材料的标准40GPa。这表明R-3m-WB3和P63/mmc-WB3可以作为潜在的超硬材料。电子结构的分析发现 R-3m-WB3和P63/mmc-WB3中存在很强的W-B键和B-B键。这就解释了它们稳定性好而且硬度较高的原因
碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.
纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。
在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感
河南工业大学( Henan University of Technology)位于河南省会郑州市,是河南省人民政府和国家粮食局共建高校;始建于1956年,先后隶属国家粮食部、商业部和国内贸易部;1959年开展本科教育,1981年开始硕士研究生教育,2013年开始博士研究生教育,2017年获批硕士研究生推免资格,2018年获批博士学位授予单位;1998年划归河南省管理,河南省人民政府和国家粮食局于2010年签约共建河南工业大学。2020年入选河南省特色骨干大学,2021年入选河南省“双一流”高校创建行动计划。,建校至今,学校坚持 “扎根中原,立足行业,服务全国,面向世界”的办学定位,严守“育人为本、质量立校、特色发展”的办学理念,秉承“明德、求是、拓新、笃行”的校训,大力弘扬“崇尚科学、勇于探索、报国兴学、自强不息”的工大精神,凝练形成了“团结进取,务实高效”的校风、“博学奉献”的教风和“勤奋诚信”的学风。,经过历代工大人的励精图治和薪火传承,学校已经发展成为一所以工学为主,涵盖理学、经济学、管理学、法学、文学、艺术学和农学等学科协调发展的多科性大学,不仅具备完整的学士、硕士、博士三级人才培养体系,而且作为第二单位成功入选国家首批 “ 2011协同创新计划”,是教育部“中西部高校基础能力建设工程”和“卓越工程师教育培养计划”建设高校,在推动行业、区域和国家经济社会发展,实现教育振兴的过程中做出了应有贡献,在人才培养、科学研究、社会服务等方面均取得了优异成绩。,一、师资队伍,现有专任教师 1960人,副高级以上职称教师934人,博士学位教师1000人;硕士生导师572人,博士生导师74人;汇聚了双聘院士、长江学者、国家杰出青年科学基金获得者、“百千万人才工程”国家级人选、国务院特贴专家、教育部新世纪优秀人才、中原学者、河南省教学名师等一大批学术带头人;拥有省级及以上高层次教学、研究团队26个。,建校以来,学校涌现出了陈启宗、路茜玉、张根旺、周乃如、汪璠、张国贤等一大批,在粮食、磨料磨具等行业领域具有重大贡献和社会影响力的知名专家、学者,他们潜心学术,立德树人,奖掖后进,功勋卓著,为我国粮食事业、磨料磨具行业及学校发展、社会进步作出了开拓性贡献,为后继者树立了榜样。,现任教师中,有国际标准化组织食品技术委员会谷物与豆类分会主席卞科教授、国际谷物科技协会主席王凤成教授、三届奥运会田径裁判王晏教授等知名专家,还有一批专家教授担任中国粮油学会、中国粮食工程建设委员会、全国磨料磨具标准化技术委员会、中国热处理学会、中国化学会有机化学磷化学专业委员会等学术组织理事长或副理事长职务,他们在各自的专业领域和教学岗位上,教书育人,竭诚奉献,堪称楷模。,二、学科专业,学校长期致力于粮食产后领域的基础理论及工程技术研究,构建了集储运、加工、装备、信息、管理等于一体的完整学科体系;拥有全国最完整的粮油食品学科群和实力雄厚的超硬材料学科群;农业科学、工程学、化学 3个学科ESI(Essential Science Indicators)全球前1%。建有3个博士后流动站,拥有22个学院, 74个本科专业,4个博士学位授权一级学科,21个硕士学位授权一级学科,13个硕士专业学位授权类别,24个省一级重点学科,“粮食产后安全及加工”学科群入选河南省首批优势特色学科建设工程;“食品科学与工程”等5个国家级特色专业、“粮食工程”等3个国家级综合改革试点专业、“食品科学与工程、粮食工程”和“计算机科学与技术”3个国家级卓越计划专业、16个省级名牌和特色专业、6个双学位专业;“机械设计制造及其自动化”等8个专业入选首批国家级一流本科专业建设点,“经济学”等29个专业入选河南省一流本科专业建设点,学校具有同等学力申请硕士学位授予权和高校教师硕士学位授予权。,三、人才培养,学校面向全国招生;是国家来华留学生自主招生高校,拥有 “中国政府奖学金”、“中国政府丝绸之路奖学金”和“河南省政府奖学金”培养资格;是全国硕士研究生推免高校、普通高等学校本科教学工作水平评估优秀单位;拥有“食品科学”国家级实验教学示范中心、国家级“粮油食品类工程应用型人才培养模式创新实验区”、“河南工业大学-河南中鹤纯净粉业有限公司工程实践教育中心”国家级大学生校外实践教育基地。,现有全日制在校生 38000余人,其中研究生3000人,外国留学生300余人;另有继续教育学生近1万人;先后为国家输送了22万余名合格毕业生,粮食行业半数以上的管理精英和技术骨干均出自本校,被誉为粮食行业的“黄埔军校”。,近五年,学生在各类竞赛中获国家级奖 621项、省部级奖1312项;全国硕士学位论文抽检合格率连年100%;国家“挑战杯”竞赛连续9届领跑河南;连续两次被教育部评为“全国普通高等学校毕业生就业工作先进集体”,先后荣获“全国就业50强高校”、全国“学校心理健康教育先进集体”等多项荣誉称号,人才培养质量获得社会高度认可和评价。,四、科学研究,学校拥有一支实力雄厚的科研队伍,长期致力于粮食产后领域的基础理论与工程技术研究,构建了集储运、加工、装备、信息、管理等于一体科学研究体系和特色;积极服务国家战略需求和行业、地方经济社会发展,在粮食储运、仓厂建设、粮食经济与物流管理、粮食精深加工与综合利用、粮食机械、超硬材料及磨料磨具等方面取得了一批重大研究成果,有力推动了行业科技进步和社会发展,产生了显著的经济社会效益;在 1978年全国科学技术大会、1986年国家科技攻关奖励大会上获国家奖励4项;近年来,先后荣获国家科技进步奖12项(其中一等奖1项、二等奖9项、三等奖2项),国家教学成果二等奖2项,中国标准创新贡献一等奖1项;2017年进入中国大学科技创新竞争力百强高校。,现有小麦和玉米深加工国家工程实验室、粮食储运国家工程实验室、粮食信息处理与控制省部共建教育部重点实验室、粮食储藏与安全教育部工程研究中心、中国粮食物流研究培训中心、国家大豆改良中心精深加工研究所(郑州)等 35个省部级、国家级科研平台;建有中国粮食博物馆预博馆;是国家粮食行业郑州培训基地;设有河南省高校首家院士工作站、物流研究中心、粮食经济研究中心、超硬材料及制品工程技术研究中心等15个地厅级科技平台;校内还有岩土工程研究所、物流研究所等54个校级学术研究机构和100余个教学、科研、实习、实训平台。,五、办学条件,占地总面积 万平方米,建筑总面积万平方米;拥有莲花街校区、嵩山路校区、中原路校区三个校区;建有高标准的教学大楼和现代化的学生公寓;是河南省高校“数字化校园”示范单位、“智慧校园”和“网络学习空间”建设试点单位。,建有食品工程、建筑工程、物理学、化学、力学、电工电子、机械基础等各种、各类基础实验室、专业实验室、工程训练中心、实验教学示范中心、虚拟实验教学中心、本科实验教学中心和工程训练中心;配备有大批先进的实验仪器设备,教学科研仪器设备总值 亿元,10万元以上仪器设备860台(套);学校图书馆是原商业部批准的“全国粮油学科文献情报中心”,藏书万余册,自建粮油食品、超硬材料与磨料磨具2个专题特色数据库;《河南工业大学学报( 自然科学版 ) 》是全国中文核心期刊和中国科技核心期刊;先进、齐全的教学科研设施,优雅宜人的校园环境,为教学、科研、管理和生活服务提供了坚实的条件基础。,作为一所办学特色鲜明的省局共建高校,如今的河南工业大学正在党的十九大精神指引下,以 “实现高等教育内涵式发展,办人民满意高等教育”为宗旨,满怀信心的朝着有特色高水平工业大学的建设目标而努力奋斗。
河南大学是一本。河南大学是河南省人民政府与中华人民共和国教育部共建高校,入选世界一流学科建设高校、高等学校学科创新引智计划(111计划)。 河南大学有国家级特色专业9个,省优势特色学科建设学科6个,省级特色专业22个;国家级专业综合改革试点4个,省级专业综合改革试点10个;国家级卓越法律人才教育培养基地1个,国家级卓越医生教育培养计划项目1个,省级卓越医生教育培养计划项目2个。 世界一流学科建设学科:生物学 省级优势学科重点建设学科:地理学、生物学 省级特色学科重点培育学科:应用经济学 一级学科省级重点学科:哲学、理论经济学、应用经济学、法学、政治学、马克思主义理论、教育学、心理学、体育学、中国语言文学、外国语言文学、新闻传播学、考古学、中国史、世界史、数学、物理学、化学、地理学、生物学、生态学、统计学、光学工程、电子科学与技术、控制科学与工程、计算机科学与技术、土木工程、化学工程与技术、基础医学、临床医学、药学、中药学、管理科学与工程、工商管理、艺术学理论、音乐与舞蹈学、戏剧与影视学、美术学、设计学 二级学科省级重点学科:图书情报与档案管理、建筑学、口腔医学
河南工业大学地址在河南省郑州市高新区莲花街100号,该校是一所以工学为主,涵盖理学、经济学、管理学、法学、文学、艺术学和农学等学科协调发展的多科性大学。
一、师资队伍
现有专任教师1633人,副高级以上职称教师836人,博士学位教师729人;硕士生导师513人,博士生导师53人;汇聚了双聘院士、*、国家杰出青年科学基金获得者、“百千万人才工程”国家级人选、国务院特贴专家、教育部新世纪优秀人才、中原学者、河南省教学名师等一大批学术带头人;拥有省级及以上高层次教学、研究团队26个。
建校以来,学校涌现出了陈启宗、路茜玉、张根旺、周乃如、汪璠、张国贤等一大批,在粮食、磨料磨具等行业领域具有重大贡献和社会影响力的知名专家、学者,他们潜心学术,立德树人,奖掖后进,功勋卓著,为我国粮食事业、磨料磨具行业及学校发展、社会进步作出了开拓性贡献,为后继者树立了榜样。
现任教师中,有国际标准化组织食品技术委员会谷物与豆类分会主席卞科教授、国际谷物科技协会主席王凤成教授、三届奥运会田径裁判王晏教授等知名专家,还有一批专家教授担任中国粮油学会、中国粮食工程建设委员会、全国磨料磨具标准化技术委员会、中国热处理学会、中国化学会有机化学磷化学专业委员会等学术组织理事长或副理事长职务,他们在各自的专业领域和教学岗位上,教书育人,竭诚奉献,堪称楷模。
二、学科专业
学校长期致力于粮食产后领域的基础理论及工程技术研究,构建了集储运、加工、装备、信息、管理等于一体的完整学科体系;拥有全国最完整的粮油食品学科群和实力雄厚的超硬材料学科群;现有20个学院, 67个本科专业,拥有3个博士学位授权一级学科,20个硕士学位授权一级学科,7个硕士专业学位授权类别,24个省一级重点学科,“粮食产后安全及加工”学科群入选河南省首批优势特色学科建设工程;“食品科学与工程”等5个国家级特色专业、“粮食工程”等3个国家级综合改革试点专业、“食品科学与工程、粮食工程”和“计算机科学与技术”3个国家级卓越计划专业、16个省级名牌和特色专业、6个双学位专业,学校具有同等学力申请硕士学位授予权和高校教师硕士学位授予权。
三、人才培养
学校面向全国招生;是国家来华留学生自主招生高校,拥有“中国政府奖学金”、“中国政府丝绸之路奖学金”和“河南省政府奖学金”培养资格;是全国硕士研究生推免高校、普通高等学校本科教学工作水平评估优秀单位;拥有“食品科学”国家级实验教学示范中心、国家级“粮油食品类工程应用型人才培养模式创新实验区”、“河南工业大学-河南中鹤纯净粉业有限公司工程实践教育中心”国家级大学生校外实践教育基地。
现有全日制在校生34000余人,其中研究生1500余人,外国留学生50余人;另有继续教育学生18000余人;先后为国家输送了近20万名合格毕业生,粮食行业半数以上的管理精英和技术骨干均出自本校,被誉为粮食行业的“黄埔军校”。
近五年,学生在各类竞赛中获国家级奖340项、省部级奖772项;全国硕士学位论文抽检合格率连年100%;国家“挑战杯”竞赛连续5届居全国前40名,连年位居河南省高校前列;连续两次被教育部评为“全国普通高等学校毕业生就业工作先进集体”,先后荣获“全国就业50强高校”、全国“学校心理健康教育先进集体”等多项荣誉称号,人才培养质量获得社会高度认可和评价。
四、科学研究
学校拥有一支实力雄厚的科研队伍,长期致力于粮食产后领域的基础理论与工程技术研究,构建了集储运、加工、装备、信息、管理等于一体科学研究体系和特色;积极服务国家战略需求和行业、地方经济社会发展,在粮食储运、仓厂建设、粮食经济与物流管理、粮食精深加工与综合利用、粮食机械、超硬材料及磨料磨具等方面取得了一批重大研究成果,有力推动了行业科技进步和社会发展,产生了显著的经济社会效益;在1978年全国科学技术大会、1986年国家科技攻关奖励大会上获国家奖励4项;近年,先后荣获国家科技进步奖10项(其中一等奖1项、二等奖7项、三等奖2项),国家教学成果二等奖2项,中国标准创新贡献一等奖1项;2017年进入中国大学科技创新竞争力百强高校。
现有小麦和玉米深加工国家工程实验室、粮食储运国家工程实验室、粮食信息处理与控制省部共建教育部重点实验室、粮食储藏与安全教育部工程研究中心、中国粮食物流研究培训中心、国家大豆改良中心精深加工研究所(郑州)等32个省部级、国家级科研平台;建有中国粮食博物馆预博馆;是国家粮食行业郑州培训基地;设有河南省高校首家院士工作站、物流研究中心、粮食经济研究中心、超硬材料及制品工程技术研究中心等14个地厅级科技平台;校内还有岩土工程研究所、物流研究所等54 个校级学术研究机构和100余个教学、科研、实习、实训平台。
五、办学条件
占地总面积万平方米,建筑总面积万平方米;拥有莲花街校区、嵩山路校区、中原路校区三个校区;建有高标准的教学大楼和现代化的学生公寓;是河南省高校“数字化校园”示范单位、“智慧校园”和“网络学习空间”建设试点单位。
建有食品工程、建筑工程、物理学、化学、力学、电工电子、机械基础等各种、各类基础实验室、专业实验室、工程训练中心、实验教学示范中心、虚拟实验教学中心、本科实验教学中心和工程训练中心;配备有大批先进的实验仪器设备,教学科研仪器设备总值亿元,10万元以上仪器设备759台(套);学校图书馆是原商业部批准的“全国粮油学科文献情报中心”,藏书万余册,自建粮油食品、超硬材料与磨料磨具2个专题特色数据库;《河南工业大学学报( 自然科学版 ) 》是全国中文核心期刊和中国科技核心期刊;先进、齐全的教学科研设施,优雅宜人的校园环境,为教学、科研、管理和生活服务提供了坚实的条件基础。
作为一所办学特色鲜明的省局共建高校,如今的河南工业大学正在党的十九大精神指引下,以“实现高等教育内涵式发展,办人民满意高等教育”为宗旨,满怀信心的朝着高水平教学研究型工业大学的建设目标而努力奋斗。
1.复合材料学报 2.无机材料学报 3. 功能材料 4. 材料导报5. 材料研究学报6.材料科学与工程学报师 7.材料工程.
学位(学术)论文参考文献著录格式示例
1、专著
著者.书名[M].版本,出版地:出版者,出版年:页次.
示例:
[1] 赵国藩,彭少民,黄承逵,等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999:2-4.
[2] MATKOVICH V J. Boron and Refractory Borides[M]. Berlin: Springer-Verlag, 1977:457-466.
2、专著中析出文献
作者.题名[A].见(in):原文献责任者.书名[M].版本.出版地:出版者,出版年:页次. 示例:[1] 吴科如.水泥基复合材料[A].见:吴人洁主编.复合材料[M].天津:天津大学出版社,2000:197-223.
[2] SEYFERTH D. Applications of transition metal compounds in the preparation of usefulsilicon-containing ceramics[A]. in: AUNER N ed. Organosilicon Chemistry: From Molecular to Materials[M]. Weinheim: VCH Verlages Gesellschaft,1994:269-274.
3、论文集中析出文献
作者.题名[A].见(in):编者.文集名[C]. 出版地:出版者,出版年:页次.
示例:
[1] 马保国,何永佳,吕林女.高性能混凝土配合比设计[A].见:姚燕主编.新型高性能混凝土耐久性的研究与工程应用[C].北京:中国建材工业出版社,2004:410-415.
[2] Ehsani M R, Saadatmanesh H, Tao S. Bond of GFRP rebars to ordinary-strength concrete[A]. in:Nanni A, Charles W, Dolan ed. International Symposium: Fibre-reinfoced-Plastic Reinforcement for Concrete Structures[C]. Detroit, Michigan: ACI SP-138, 1993: 333-346
4、会议论文
作者.题名[A].会议名称[C].会址,会议年份:页次.
示例:
[1] 王春印,杨光华.钢筋-钢纤维混凝土牛腿承载力的试验研究[A].全国第三届纤维水泥与纤维混凝土学术会议论文集[C].武汉,1990: 514-519
[2] Tokumaru M,Naruse T, Mizutani J, et al. Development and constrution of durable aramidFRP ground anchors[A]. Proceedings of Second International RILEM Symposium: FRPRCS-2[C]. London, 1995: 696-703
5、报告
著者. 题(篇)名[R].报告题名,编号,出版地:出版者,出版年:页次.
示例:
[1] 钢纤维增强钢筋混凝土深梁受力性能研究[R].郑州:郑州大学新型复合建筑材料研究所,2001:58.
[2] Benmokrane B, Eng P,Michael H. Xu, . Design and Applications of Aramid andCarbon Fiber-Reinforced Plastic(FRP) Ground Anchor[R]. Sherbrooke: University of sherbrooke, 1996: 238.
6、学位论文
著者.题(篇)名[D].学位授予单位,保存地:保存者,年份.
示例:[1] 赵军. 钢筋钢纤维增强部分混凝土构件力学性能及设计方法的'研究[D].哈尔滨:哈尔滨建筑大学博士学位论文,2000.
7、连续出版物
著者.题(篇)名[J].刊名,出版年,卷号(期号):页次.
示例:[1] 邓宗才.钢纤维混凝土的抗压疲劳特性研究[J].建筑结构,2000,30(9):53-55
[2] Clarke J L, Waldron P. The reinforcement of concrete structures with advancedcomposites[J]. The Structural Engineer,1996,74(17/3):56-61
8、专利文献
发明者.专利题名[P].专利国别,专利文献种类,专利号.出版年-月-日. 示例:[1]潘树明.高温超导薄膜的制造方法[P].CN Patent, . [2] DAVID T, SCARINGELLA D, NASHUA N,et al. Method for densifying and refurbishing brakes[P]. US Patent, .
9、技术标准
责任起草者.标准代号 标准顺序号-发布年 标准名称[S].出版地:出版者,出版年.
示例:[1] 全国量与单位标准化技术委员会.GB 3100-3102-93 量与单位[S].北京:中国标准出版社,1994.
[2] 中国工程建设标准化协会. CECS 38:92 钢纤维混凝土设计与施工规程[S].北京:中国计划出版社,1996.
注:1.[M],[A],[C],[D],[J],[P],[R],[S]等代表文献类型。
2.西文作者均采用姓在前、名在后的著录格式,姓全用大写。作者三人以上的,用缩写符号“et al.”或者“等”。
行业主要上市企业:西部超导(688122)、永鼎股份(600105)、汉缆股份(002498)、综艺股份(600700)、中天科技(600522)等。
本文核心观点:超导行业市场规模、超导行业竞争格局、超导行业产业链等
行业概况
1、定义
超导是指在一定温度条件下物质电阻突然消失的现象,超导体是指能够产生超导现象的物质。1911年,荷兰科学家昂尼斯(Onnes)发现,在液氦()低温条件下水银的电阻突降为零。这种在低温条件下物质电阻突然消失的现象被称为超导现象,转变温度称为临界温度(Tc)。
超导材料是指在一定条件下,具有直流电阻为零和完全抗磁性的材料。目前,已发现有46中元素和几千种合金、化合物可以成为超导材料。超导材料按照其化学成分可以划分为元素材料、合金材料、化合物材料和超导陶器。
超导材料根据临界转变温度的不同可以划分为低温超导材料和高温超导体材料。
2、产业链剖析
超导材料产业链上游为矿资源,如钇、钡、铋、锶、硼等金属;中游是超导材料,如YBCO、BSCCO和MgB2等;下游是超导应用产品,如超导电缆、超导限流器、超导滤波、超导储能以及超导发电机等。
超导材料产业链上游为原材料,如铌、钛、钇、钡、铋、锶、硼等金属材料,中游为超导材料相关公司,如江苏中天科技、特变电工、西部超导、青岛汉缆、北京英纳超导等,下游为超导设备应用。
行业发展历程:我国超导行业进展基本与国际同步
根据国家新材料产业发展战略咨询委员会的分析,整体而言,我国在超导材料领域的研究进展基本与国际同步。其中,低温超导材料、超导电子学应用以及超导电工学应用领域的研究已达到或接近国际先进水平。我国NbTi线材性能和性价比已优于发达国家,Nb3Sn线材综合水平与发达国家相当。
行业政策背景:行业更加规范化
近年来,国家制定了一系列“超导”相关规定以及政策,目的在于为了规范行业内生产经营活动,加强监督管理,促进行业进一步发展。行业主要重点政策汇总如下:
行业发展现状
1、供给端:研发机构主要以院校为依托
国内超导技术研究起步较早,清华大学超导实验室从20世纪90年代就开始进行超导技术研究,但是国内的超导行业产业化起步较晚,由于较高的技术壁垒,直到2011年国内才第一次实现超导产品产业化批量生产和销售。
目前,国内涉及超导的研究机构有中国科学院物理研究所、中国科学技术大学、南京大学、中国科学院电工研究所、中国科学院等离子体物理研究所等,超导相关论文篇数均在600篇以上,总的来说,研发机构主要以院校为依托。
研发企业数量方面,根据智慧芽专利网站的统计,截至2022年3月,我国共有29087家公司申请超导相关专利,15700家院校及科研所申请超导技术专利。
2、需求端:超导技术在各行业的发展中有着重要的研究和开发价值
超导材料是一项具有远大战略意义的高新技术,可以广泛用于电子通信、医疗设备、交通运输、电力能源等领域,其中超导技术在MRI、超导限流器、超导电缆等产品开发中均已成功应用。可以看出,超导技术在各行业的发展中有着重要的研究和开发价值。
我国的超导技术在电力及能源的主要应用集中在超导电缆、超导变压器等产的技术研发和应用。超导产业主要应用在医疗设备领域的技术主要是超导磁体技术,主要应用在核磁共振等方面。在通信领域被广泛的应用于无线通信网的建设中,充分发挥其优势。
行业竞争格局
1、区域竞争:超导行业相关企业主要集中于广东省、山东省、江苏省等省份
从区域分布来看,超导行业相关企业集中于广东省、山东省、江苏省以及陕西省等省份。
2、企业竞争:在超导材料领域已拥有一大批代表性企业
我国在超导材料领域已拥有一大批代表性企业,主要包括西部超导、英纳超导、上海超导、上海上创超导、苏州新材料研究所、宝胜科技、海泰超导、综艺超导、百利机械装备以及原力辰超导等。
业务竞争格局方面,各家公司涉足低温超导产业链领域均不相同。与低温超导产业链相关的领域包括NbTi锭棒和线材、Nb3Ti线材、超导磁体和超导设备。全球各家公司所涉足的领域均有不同,仅有少数几家公司掌握低温超导线材的生产技术,分布在英德日中等国家。
在NbTi锭棒领域,国内仅有西部超导掌握相关技术,西部超导NbTi合金铸锭、棒材的工程化制备相关技术获授权专利6项,相关技术成果获国家技术发明二等奖,产品实现了批量化生产且成功应用于ITER项目及MRI超导线材制备任务。
在超导线材领域,西部超导采用“青铜法”和“内锡法”两种方法生产Nb3Sn线材,其他公司目前还未进行布局。
在超导磁体领域,有多家企业拥有制备能力,国内主要有宁波健信、西部超导和潍坊新力,成都奥泰拥有自由的超导磁体工厂,但所生产产品不对外出售。
在超导设备领域,目前高端超导MRI市场被GE、PHILIPS、SIEMENS三家国外公司垄断,主流产品以为主,而SIEMENS已经开始量产7T产品。国内成都奥泰、苏州安科等多家企业目前已实现、3T超导MRI的商业化生产。
行业发展前景及趋势预测
1、未来中国超导市场将保持较快发展的速度发展
随着实用化高温超导材料制备和产业化技术的突破性进展,各国政府和大企业对超导电气技术的应用研究开发给予了大力支持。超导电缆、超导限流器、超导变压器、超导储能系统、超导电机、多功能集成超导电力装置和超导变电站是实现超导电气技术重大革新的基础,是超导应用技术这一战略性新兴产业中最具市场潜力和应用价值的关键技术。
虽然目前国内从事超导材料制备和超导应用的企业都处于持续亏损的境地,但由于超导技术的先进性和在特定领域的不可替代性,未来前景广阔,各家超导机构仍保持着对超导技术的持续投入,超导产业发展前景良好。
2、超导行业集中度会进一步提升
我国超导行业经历了打破国外垄断、传统产业爆发和新型产业部署三个阶段,随着我国发展云计算、人工智能、大数据的热情越来越高涨,我国超导支出额以及市场规模总额都已增长到较大规模,预计未来随着数字经济、新基建等战略实施,我国超导市场规模将继续增长。
以上数据参考前瞻产业研究院《中国超导行业发展前景与投资战略规划分析报告》。
论文由9个主要部分组成:(1)封面;(2)毕业论文任务书;(3)本人声明;(4)论文目录;(5)论文摘要;(6)论文正文;(7)参考文献;(8)附录;(9)致谢。
具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T
纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。
用google上去搜索就行!
超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法。这是我为大家整理的超声波焊接技术论文,仅供参考!
超声波焊接的研究与展望
摘要:超声波焊接的节能、环保、操作方便等突出优点,越来越受到人们的重视。超声波焊接已广泛应用在众多领域。本文简单介绍了超声波焊接的基本原理。概述了超声波焊接的国内发展现状,并对超声波焊接的发展做了展望。
关键词:超声波 焊接 研究现状
0 引言
1950年美国人发明了超声波焊接技术,该技术作为特种连接技术,在工业生产中得到广泛应用。另外,超声波焊接技术还广泛应用于电子工业、电器制造、新材料的装备、航空航天及核能工业、食品包装盒、高级零件的密封技术等方面。超声波焊接的优点主要表现为:节能、环保、操作方便,这种技术对我国建设资源节约型、环境友好型的社会起着很大的促进作用。
1 超声波焊接原理及特点[1]
超声波焊接作为一种特殊焊接方法,通常情况下是指利用超声波频率(大于16KHZ)的机械振动能量,将同种或异种金属、半导体、塑料及金属陶瓷等进行连接。通过超声波对金属进行焊接时,一方面不需要向工件输送电流,另一方面没有将高温热源引入工件,在焊接过程中,在静压力的作用下,将弹性震动能量转变为工件间的摩擦功、形变能,以及有限的温升等。在母材不发生熔化的情况下,实现接头间的冶金结合,因此,超声波焊接属于固态焊接。
工频电流在超声波发生器的作用下,进一步转变为超声波频率(15~16KHZ)d的振荡电流。通过磁致收缩效应,换能器将电磁能转换成弹性机械振动能。放大器的作用是对振幅进行放大,同时借助耦合杆和上声极与并工件进行耦合。如果换能器、放大器、耦合杆和上声极的自振频率相互一致,在这种情况下,系统将会产生谐振,从而将弹性振动能传递给静压力F的工件。两种薄材工件通过此种能量之间的转换被粘接在一起。
2 国内研究现状
超声波金属焊接的研究现状
崔岩[2]研究超声波焊在坦克铝件焊修中的应用,对铝及铝合金的焊接性进行了详尽的分析,认为保证焊点质量稳定的重要因素是谐振频率的精度。在超声波焊接过程中,由于机械负荷是多变的,失谐现象会随机出现,进而使得焊点质量不稳定。根据超声波焊的特点,制订相应的焊接规范。大量实验证明:通过超声波对铝及铝合金进行焊接,金属表面致密的氧化膜可以有效地去除,进而保证了焊接质量。
华南理工大学杨圣文等人[3]推导了铜片-铜管太阳能集热板超声波焊接接头区域理论区域温度公式,并利用人工热电偶法测得焊接区域温度,分析了实测温度偏差产生的原因,结合焊接接头的扫描电镜(SEW)图片进行对比分析,研究了铜片-铜管超声波焊接接头的形成机理。结果表明:超声波焊接是基于接头区域微齿顶端处高温、纯净金属发生塑性变形后表面充分贴合两个因素基础上的金属键合和机械嵌合而形成接头的物理冶金过程。
南京航空航天大学机电学院的张秋峰[4]研究了1Cr18Ni9Ti与TC4异种金属的固态扩散焊接工艺,在现有的基础上采用超声波加载固态扩散焊的工艺。金相试验分析结果表明:采用超声波加载扩散焊接工艺,使不锈钢和钛形成了良好的连接。
哈尔滨工业大学的闫久春、孙小磊[5]等,在敞开环境下研究了一种适合复杂结构,并且能够进行可靠连接的“超声波振动辅助钎焊技术”原理,同时对铝基复合材料、铝合金、陶瓷/铝、玻璃/铝焊接的初步试验结果进行了描述。焊接结果表明:在钎焊过程中,通过施加适当的超声波振动,母材表面氧化膜可以有效地去除,进一步促进了母材与钎料的润湿。在低温、大气环境下,获得了具备微观组织结构和力学性能良好的连接接头。
南昌大学的朱政强等人[6]用电子背散射衍射(EBSD)方法来研究超声波焊接下铝合金AA6061的微观组织变化,从微观角度里加深对超声波金属焊接的理解。通过实验,得到原始铝箔和焊接后铝箔的品粒取向差分布图。通过分析品粒取向、晶粒结构和晶界特征了解超声波焊接对铝合金组织和结构的影响。
超声波非金属焊接的研究现状
郭毓峰[7]对12μm聚对笨二甲酸乙二醇酯(PET)/30μm聚乙烯(PE)薄膜超声波焊接工艺进行了研究,发现焊接振幅在2-10μm,对焊接接头热合强度的影响不大;在焊接振幅4-7μm出现了焊接接头的热合强度最大值。焊接接头的热合强度随着焊接时间的延长和焊接压力的增大表现出先增大后减小的变化规律。通过对不同工艺参数下焊接区域的结晶程度进行分析,其结果显示,接头的结晶程度影响着PET/PE薄膜焊接接头热合强度,焊接区域试样的结晶程度随着焊接时间、焊接振幅、焊接压力增加先减小后增大,焊接接头的热合强度先升高后降低。
赵钢[8]等人研究超声波焊接在汽车传感器封装中的应用。讲述了通过对材料、焊接方法的选择和焊口及工装设计与制造过程设计,来实现汽车传感器封装的方法。
赵仕彬[9]研究了超声波焊接在连接器中的应用。简明扼要地介绍了超声波焊接的原理,结合面的设计方法、设计要点,以及在连接器中的具体应用和使用范围。
西北工业大学的聂中明[10]研究了高电阻CdZnTe半导体(简称CZT)接触电极与引线的超声波焊接。认为:CZT晶片经机械抛光表面处理后,通过离子溅射法制备的金电极与外引线间具有较高的超声波焊合率,能获得最佳焊点质量的电极厚度为180nm。此外,确定CZT接触电极制备工艺后,楔入压力成为影响CZT接触电极与引线超声波焊接质量的主要因素,焊接功率则为次要因素。
3 总结
目前,对超声波金属的焊接机理认识不足,超声金属焊接作为一种固相焊接方法,或者说是金属间的“键合”过程,在焊接过程中,是否无金属熔化还有待进一步研究。还有在材料焊接中应用超声波,虽然焊接效果比较好,但是对于由超声波发生器、声学系统与机械系统相结合的整个系统来说,在稳定性、可操作性、可靠性等方面依然存在问题,所以声学系统的设计,以及声学系统与试件之间的连接方式等都非常重要。另外,从微观力学的角度研究超声波振动对晶粒和织构的影响也是未来研究的重要方向。
参考文献:
[1]李小明,李彦生,韩景芸.基于超声波焊接技术的快速成型方法研究[J].机床与液压,2007,35(3):4-6.
[2]崔岩.超声波焊在坦克铝件维修中的应用[J].工业技术经济,2000,19(3):114-116.
[3]杨圣文,吴泽群,陈平池.铜片-铜管太阳能集热板超声波焊接试验研究[J].焊接,2005(9):32-35.
[4]张秋峰.钛与不锈钢的超声波扩散焊接[J].机械工程与自动化,2008(1):125-127.
[5]闫久春,孙小磊.超声波振动辅助钎焊技术[J].焊接,2009(3):6-12.
[6]朱政强,马国红,.铝合金AA6061超声波焊接下组织演变分析[A].第七届中国机器人焊接学术与技术交流会议文集[C],2008:107-110.
[7]郭毓峰.聚对苯二甲酸乙二醇酯/聚乙烯薄膜的超声波焊接[J].宇航材料工艺,2010(4):53-55.
[8]赵钢,曹智,董双辉.超声波焊接在汽车传感器封装中的应用[J].沈阳航空工业学院学报,2007(4):25-28.
[9]赵仕彬.超声波焊接在连接器中的应用[J].机电元件,2006(4):36-39.
[10]聂中明,傅莉,任洁,查钢强.CdZnTe接触电极与引线的超声波焊接[J].中国有色金属学报,2009,19(5):919-923.
超声波焊接技术在工业产品设计中的应用探索
【摘 要】本文通过对超声波焊接技术原理的阐述及对超声波影响因素的探究,分析超声波焊接技术的优劣,结合笔者的设计实践,探索超声波焊接技术的发展,抛砖引玉,就基于超声波焊接技术未来的应用领域进行探索。
【关键词】超声波;焊接技术;工业产品
Ultra-sonic Welding Technology in the Application of Industrial Product Design’s Exploration
HE Jun-hua1 MA Wen-juan2 LV Shuang-shuang3 WENG Mao-hong1 GUAN Jun1 GONG Yun1
( of Engineering, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;
of Agricultural and Food Science, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;
of Landscape Architecture and Architecture, Zhejiang A&F University, Lin’an Zhejiang, 311300, China)
【Abstract】The article through to the illustration of the principle of ultra-sonic welding and the affecting factors of ultra-sonic probe, analyseing the advantages and disadvantages of ultra-sonic welding technology, combined with the author’s design practice, explore the development of ultrasonic welding technology, topic and is based on the exploration on the application felid of ultra-sonic welding technology in the future.
【Key words】Ultra-sonic; Welding technology; Industrial product
在工业产品制作中,经常会用到一些工业材料,像塑料、金属、木材等一些其他工业材料。在日常生活中我们经常会看到某件产品不只用一种材料来制作;我们也经常看到一件产品由多个部分组成、并且各部分之间还会产生空隙,这不仅会影响产品的质量,还会影响产品的美观度。这就要求把它们彼此之间焊接起来。随着技术的发展,人们对焊接技术的要求越来越高,目前传统的焊接技术不但成本较高,而且焊接的质量不高,往往会产生细小的缝隙。因此人们希望运用新的焊接技术来提高产品的质量。
1943年,在总结前人理论和实践的基础上,美国的Behl发明了超声波焊,从此推动了超声波焊接技术的发展。由于超声波焊接技术具有节能、无须装配散烟散热装置、焊接时无须焊接附件、成本低、效率高、密封性好、易实现自动化生产等优点,超声波焊接技术发展的越来越快。
1 超声波焊接技术在工业产品中的应用现状
像在航空航天、核能工业、电子工业等这样一些精度要求很高的工业产品领域中,使用传统的焊接技术很难达到技术要求,而且成本高、效率低。目前,超声波焊接技术在各行各业都有广泛的应用,像医疗机械、包装、五金等行业;能焊接的产品也很多,像汽车零部件、光学镜头、U盘等。
2 超声波焊接技术的原理和特点
超声波是一种频率高于20000赫兹的声波,因此能量大。超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法[1]。超声波作用于热塑性的塑胶表面时,会产生每秒上万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声波能量传到焊区,又由于焊区即两个焊接的交界面处声阻比较大,因此会产生局部高温。又由于塑料制品导热性差,一时还不能及时散发出聚集的能量,因此能量就会聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定的压力后,就会使其融合成为一体。当超声波停止作用后,让压力再持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,从而达到焊接的目的。在对金属进行超声波焊接时,既不向工件输送电流也不向工件施以高温热源,只是在静压力作用之下,将弹性振动能量转变为工件界面间的摩擦功、形变能及有限的温升,使得焊接区域的金属原子被瞬间激活,两相界面处的分子相互渗透,最终实现金属焊件的固态连接。其焊接原理示意图如图1所示[2]。
超声波焊接技术的优点
与传统焊接技术相比较,超声波焊接技术有如下优点:(1)焊接速度快、焊接精度高、焊接焊点强度高;(2)焊接范围广、稳定性好、被焊接后的工件变形很小;(3)焊接物表面清洁美观、平整光滑;(4)焊接时,不需添加焊接剂,对被加工物不产生污染、不产生有害气体,因此是一种环保的焊接方法;(5)焊接时,只需提供较小的动力即可进行焊接,耗能低;(6)操作简单、成本低、效率高、密封性好。
图1 超声波金属焊接原理示意图
超声波焊接技术的缺点
尽管超声波焊接技术有很多的优点,但也存在不足之处,因此不得不加以重视。超声波焊接技术有如下缺点:(1)对超声波焊接机理的认识还不够全面;(2)对金属进行焊接时,焊件不能太厚;(3)对超声波焊接技术的影响因素比较多,不易进行把握分析和总结;(4)制造一些大功率的超声波焊接机成本高、而且比较困难;(5)对焊接好后的工件进行焊接处质量检测比较困难,因此给大批量生产带来阻碍。 3 影响超声波焊接质量的因素
虽然超声波焊接技术有众多优点,但其焊接质量与熔融量、材料的材质等因素有关,概括起来主要包括以下几方面的因素,如图2所示。
图2 影响超声波焊接质量的因素
(1)焊接材料的材质:一般来说焊接质量与材料的物性和材料的改性有关。材料的物性包括材料的弹性模量、摩擦系数、热导率、熔点等。物件的焊接质量与材料的弹性模量、摩擦系数、热导率成正比,与其密度、熔点成反比。材料的改性指的是在适宜的工艺条件下加入一些填料以改善材料的原有性能,使其满足客户的使用要求。在适宜的工艺条件下加入一些性能相近的材料,可以提高焊接接头强度。
(2)焊头与焊件的接触面:焊接面的清洁度、材料表面的粗糙度会影响焊件的焊接质量。增加材料的表面粗糙度可以提高焊接质量;焊接面的清洁度越高,焊接质量也越高。
(3)其他因素:焊接技术的工艺参数、焊接件的结构、连接形式、焊接时的熔融量、超声波的功率等。为达到最佳的焊接效果,在产品研发阶段,要对这些因素进行综合考虑。
4 超声波焊接技术在工业产品设计中的应用案例
正如以上所述,基于超声波焊接技术的产品研发,先要进行综合考虑影响焊接质量的因素,然后结合产品的市场前景,产品的成本,生产技术要求等条件,合理生产设计要素。
下面仅就一个设计案例――美国苹果公司发明的超声波塑料与金属焊接专利技术进行解读,从实践的角度来理解超声波焊接技术在实际中的应用。原有技术的不足:在还没有发明这项专利技术之前,所有的便携式设备(如手机)不能将金属与塑料进行融合,因此某些部件不能用塑料部件来代替,这样生产出来的手机不仅厚重、外形呆板而且缺少个性,设计上也不够自由、缺少灵活性。并且制作成本高、操作复杂、使用不方便,按键操作过多时,会接触不灵。解决案例:采用全新的超声波塑料与金属焊接技术,在手机内部某些部件使用塑料材质,减轻了手机的重量的同时也减少了金属的使用量。在壳体方面采用一次成型工艺,使外壳更加简约、流畅,操作简单,设计灵活,给人一种高端、大气的感觉。先进的超声波焊接技术一般还要使用多种材料融合的技术工艺,设计更加的自由和灵活,设计线条采用极简主义的风格,色彩上运用浅色,给人轻松、愉悦的感觉。在结构上更符合超声波焊接工作原理,使焊接质量更佳。
5 针对超声波焊接技术应用的案例得出的结论和展望
通过这次调研,作者通过对超声波焊接技术的了解,对超声波焊接技术应用进行研究,由于条件有限,在调查研究过程中还有不足之处,在此将在调研过程中涉及到的问题及解决办法总结一下,为后面进一步研究做铺垫。针对焊接质量的问题,我们得出在焊接时应保持接触面清洁和材料表面的粗糙度。要了解用户需求,针对特定的用户进行设计,设计出多种不同的外观形态,为不同的客户量身打造;在设计时还应该考虑情趣化的问题,设计出更加有情趣化的产品,营造轻松愉悦的环境。针对超声波焊接技术在产品设计中的展望,作者经过探索发现可以在工作时增加音乐播放功能,使焊接过程轻松、愉快。未来的超声波焊接技术也将更加的人性化。
【参考文献】
[1]关长石,费玉石.超声波焊接原理与实践[J].机械设计与制造,2004(6).
[2]朱政强,吴宗辉,范静辉.超声波金属焊接的研究现状与展望[J].焊接技术,2010,39(12).