首页

> 学术期刊知识库

首页 学术期刊知识库 问题

生物代谢组学投稿

发布时间:

生物代谢组学投稿

代谢组是测定细胞内所有代谢小分子(如TAC里面各种代谢产物)的含量,蛋白质组是测定体内各种蛋白质含量。 相同点大概就是都主要是靠质谱 蛋白质组已经比较成熟,有很好的搜库(鉴定)手段,以及比较好定量手段,如SILAC,TMT等方法,一次一般可以测量几千个蛋白 代谢组(可能不同的机构会有不同,以下仅基于我了解到的数据)各个实验室一般需要建立自己的库,一般也就几百个小分子。一般会把质谱的正负离子模式都扫一下,暂时没有通用的定量方法,所以数据可信度不如蛋白质组高 一般蛋白质组更为常用,代谢组的话需要有特定的研究方向,比如研究脂肪代谢之类的,就针对那些油脂分子 PS:用质谱研究药物代谢和研究组学其实差别很大的,做组学的话如果不是某些特殊情况,你自己不会分析谱图也不是太影响结果,只要看得懂by离子就好了。看LZ的意思,估计是不需要用到蛋白质组了,代谢组我也只是刚开始做,只能说protocol我们用下面这个,具体的分析步骤得看实验室需求。代谢组学有一个很热门的应用,就是用来鉴定微生物的taxonomy。在不少大的生物技术公司和农业公司,除了用16S rRNA和基因组判定taxonomy,还会结合代谢组学的数据。而taxonomy的鉴定在这些大公司的微生物研发产品线里是很重要的一环

代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统生物学的重要组成部分。

它是关于生物体系内源代谢物质种类、数量及其变化规律的科学,研究生物整体、系统或器官的内源性代谢物质及其所受内在或外在因素的影响。

代谢组学利用高通量、高灵敏度与高精确度的现代分析技术,对细胞、有机体分泌出来的体液中的代谢物的整体组成进行动态跟踪分析,借助多变量统计分析方法,来辩识和解析被研究对象的生理、病理状态及其与环境因子、基因组成等的关系。

“代谢组学”是一种整体性的研究策略,其研究策略有点类似于通过分析发动机的尾气成分,来研究发动机的运行规律和故障诊断等的“反向工程学”的技术思路。

由于代谢组学着眼于把研究对象作为一个整体来观察和分析,也被称为“整体的系统生物学”。

通过现代超高效液相色谱/高分辨质谱联用仪等技术分析体液中的代谢物组成谱,并利用多变量统计分析技术,把所有代谢物的组成信息都整合到一起,为在系统和整体的层面上比较和分析生物的代谢特性开辟了新的技术路线,具有广阔的发展前景。

近几年来,已经有越来越多的学者将现代代谢组学技术运用到人体和动物的整体代谢与功能性研究中。

代谢组学创始人、英国帝国理工大学Jeremy Nicholson教授认为人体应该作为一个完整的系统来研究,应用代谢组学来理解疾病过程,与中医的整体观和辨“证”论治思维方式不谋而合。

代谢组学和中医中药的哲学观相吻合,代谢组学是研究中药最好的选择。

研究中药这种复杂混合物的毒性,代谢组学是最好的方法,选择不同产地、不同数量、不同组分的中药,做出代谢组图,根据组成变化与毒性、药效相对应,就可把有效的成分最大化,把有毒的东西剔除。

同样,代谢组学也是中药质量控制的主要研究手段,有利于中药的出口和国际化。

代谢组学与有着几千年历史的中医学在许多方面有相近的属性,它们的有机结合将可能有力地推动中医药理论的现代化进程。

代谢组学”可能成为我国传统医学走向国际化的通用语言。

上海系统生物医学研究中心与上海中医药大学合作,在用代谢组学研究中医肾阳虚证的分子机理、中药肾毒性的预测以及支持中药在国际市场的登记注册等方面已经取得很好成效,显示了代谢组学与中国传统中医药结合的强大生命力。

代谢组学是从整体上研究复杂生命现象的新兴学科。

研究代谢组学的关键是要发展大规模、并行化测定复杂混合体系中代谢物组成信息和对大量数据进行分析和建模的能力。

技术手段的发展是代谢组学发展的关键因素。

上海系统生物医学研究中心依托上海交通大学强大的工程学和理学研究力量,结合深厚丰富的临床和基础医学研究经验,致力于代谢组学研究具有相当的优势。

美国Waters公司是全球分析仪器领域的先导者,在复杂体系分析领域独树一帜,具有领先的分析平台, 配套的计算软件和雄厚的技术储备。

学科的发展催生学科研究工具的产生,近年来,他们根据代谢组学发展的要求,与代谢组学创始人Jeremy Nicholson教授合作,首创全球领先的超高效液相色谱UPLC技术,与高分辨质谱技术和计算技术结合,推出了以超高效液相色谱/高分辨质谱联用仪UPLC-QTOF为代表的代谢组学分析系统,一次可以从尿液样品中快速获取2万多个数据点,为从整体上深入把握人体的生理代谢状况,细致入微地刻画和反映人体的疾病过程,提供了先进可行的工具。

为了加快代谢组学的发展,特别是推动我国传统医药国际化的进程,上海系统生物医学研究中心和美国Waters公司决定成立国际一流的代谢组学联合实验室,并于2006年6月23日在上海交通大学举行了正式的签约仪式,双方承诺共同努力将此实验室建设成为我国发展代谢组学的研究基地,人员培训基地和生物医药新用途开发基地。

联合实验室将邀请代谢组学创始人、英国帝国理工大学Jeremy Nicholson教授担任顾问,计划每年定期在上海举行代谢组学高级研修班,这将极大的促进我国代谢组学的研究进展和增强及时跟踪国际前沿研究动向的能力,对于推动我国生物医药事业的发展具有十分重要的意义。

代谢组学(Metabonomics/Metabolomics)是20世纪90年代末期发展起来的一门新兴学科,是研究关于生物体被扰动后(如基因的改变或环境变化后)其代谢产物(内源性代谢物质)种类、数量及其变化规律的科学。代谢组学着重研究的是生物整体、器官或组织的内源性代谢物质的代谢途径及其所受内在或者外在因素的影响及随时间变化的规律。代谢组学通过揭示内在和外在因素影响下代谢整体的变化轨迹来反映某种病理生理过程中所发生的一系列生物事件。  代谢组处于基因调控网络和蛋白质作用网络的下游,所提供的是生物学的终端信息。如同我们在长江的上游建大坝或对江水改道,这些项目的生态影响会在下游的河道和地域体现出来一样,我们经常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么.

植物代谢组学sci期刊

挺多的一 Journal of Natural Products国家:美国 出版者:美国化学会(ACS)纸版 ISSN: 0163-3864电子版 ISSN: 1520-60252007 影响因子: 总引用次数: 12,404内容简介:Journal of Natural Products发表天然产物研究方面的文章,投稿内容应该是关于天然产物的化学或生物化学方面的,或者是得到天然产物的系统的生物学方面的。具体的说就是微生物的次级代谢产物(包括抗生素和毒枝菌素);来自陆地和海洋动植物的生理活性物质;生物化学研究,包括生物合成和生物转化;发酵和植物组织培养;提取分离和结构鉴定以及新的天然产物的化学合成;天然产物的药理学研究。如果是发表新化合物的话,最好有有关生理活性方面的研究。发表的文章类型包括:全文、通讯、综述、短文等。二 Journal of Organic Chemistry (JOC)国家:美国出版者:美国化学会(ACS) 纸版 ISSN: 0022-3263电子版 ISSN: 1520-69042007 影响因子: 总引用次数: 85,315内容简介:JOC发表有机和生物有机化学方面各个理论和应用分支的新颖性基础研究投稿。一些比较重要的投稿将会提前放在JOC的主页上,并在下一期的纸质版中发表。三 Natural Product Research(即原来的Natural Product Letters)国家:英国出版者:Taylor & Francis纸版ISSN: 1478-6419电子版ISSN:1478-64272007 影响因子: 卷数:23原来每年发表14期,2008年开始每年发表18期,其中有14期发表在part A,4期发表在part B。Part A是有关合成和结构方面的;part B是有关有生物活性的天然产物的。内容简介:Natural Product Research发表天然产物化学方面的重要投稿,覆盖天然产物的化学和生物化学的各方面研究。论文的内容可以是天然产物(来自陆地和海洋的动物、植物和微生物)的结构阐明,化学合成和生物合成,以及化学-生物学交界领域的研究,如发酵化学,植物组织培养等。四 Natural Product Reports国家:英国出版者:Royal Society Chemistry纸版ISSN: 0265-0568电子版ISSN:1460-47522007影响因子: 总引用次数: 39,755内容简介:主要发表有关天然产物方面的重要的综述性文章,包括分离,结构鉴定,立体化学确定,生物合成,生物活性研究以及化学合成。该期刊涵盖的内容非常的广泛,许多文章讨论天然产物的生物无机化学,生物有机化学,化学生物学方面的内容,包括酶学,核酸,化学生态学,碳水化合物,一级和次级代谢产物,分析技术等。NPR上的文章有两种类型:Review articles:可以是某一方面的全面综述或者是对某一专家的研究工作的深入评论。文章的长度可达25页以上。Highlight articles:较短,不全面,是对某一专家的研究工作的快照。文章长度一般占4-6页。五 Organic Letters国家:美国出版者:美国化学会(ACS)纸版ISSN:1523-7060电子版ISSN:1523-70522007影响因子:内容简介:发表的论文内容包括有机化学(含有机金属和材料化学);物理和理论有机化学;天然产物的分离和合成;新的合成方法;生物有机和药物化学。Organic Letters 8年以来一直是有机化学领域影响因子最高的通讯类期刊。6 Chemical & Pharmaceutical Bulletin (CPB) 化学与制药简讯国家:日本出版者 : The Pharmaceutical Society of Japan日本药学会ISSN 0009-2363 ( PRINT) ISSN 1347-5223 (ONLINE)影响因子:(1960年创办)是日本药学会出版的主要英文期刊。CPB涵盖了药学研究的各个方面,主要有物理化学,无机化学,有机化学,天然产物化学,药物化学,分析化学,生药学,物理药剂学。7 Toxicon国家 美国出版者Elsevier Science刊号: 0041-0101【收费情况】 免费,摘要Commenced publication 1962影响因子 每年十六期一本研究源自动物,植物和微生物毒理问题的多学科期刊发表要求 刊载关于源自动植物和微生物的毒素的原始研究的文章 提供一个发表关于天然毒素的化学,药理 毒理及免疫学特性方面研究成果的文章的平台 :含有最初研究结果的,在化学,药理,免疫学特性的天然毒性方面的论文

9月23日,西北农林科技大学生命学院刘坤祥教授领衔的植物氮素营养团队和哈佛医学院Jen Sheen课题组的研究成果《NLP7转录因子是植物的一个硝酸盐受体》在《Science》在线发表。这是西北农林科技大学继7月份在《Cell》发表重要研究之后的又一重大成果。

刚刚! 西北农林科技大学又双叒叕发《Science》,台籍学者领衔!高分子科学前沿2022-09-23 08:02 ·浙江17氮元素是生物体构成的主要元素之一。氮是植物生长的主要限制因素,是农业生产力,动物和人类营养以及可持续生态系统的基础。光合植物通过将无机氮同化为维持植物和依赖它们的食物网的生物分子(DNA,RNA,蛋白质,叶绿素和维生素)来驱动陆地氮循环。为了与土壤中更喜欢有机氮或铵的微生物竞争,大多数植物已经进化出对硝酸盐可用性波动做出反应的调节途径。感知可用硝酸盐的植物将在几分钟内协调转录组,新陈代谢,激素,全系统芽和根的生长以及繁殖反应。长久以来科学家们只是能够在基因水平确定硝态氮是一种信号分子,但并不清楚植物感受它的机制。其次,氮肥是能源密集型生产并造成污染;此外,它在农业中的过度使用以提高作物产量,导致全球环境灾难性的富营养化。全球和区域研究表明,地球上的氮供应量正在下降。提高植物氮利用效率有助于可持续农业和生态系统保护。这些年,研究者们关于硝态氮的研究,一直热情不减,很多研究者们认为蛋白(也称为CHL1或)不仅仅是质膜细胞外硝酸盐转运体传感器(转感受器),同时也是硝酸盐的感受器,具有感受硝态氮的功能。但刘坤祥教授根据多年研究认为,CHL1/蛋白不是一个主要的硝酸盐感受器,他带领团队夜以继日地研究,尝试解释清楚这一机制。打开网易新闻 查看精彩图片 2022年9月23日,《Science》期刊刊登了西北农林大学、台湾籍教授刘坤祥团队和其合作团队在植物硝酸盐信号“开关”——NLP7蛋白的最新研究成果,相关论文题为 “NIN-like protein 7 transcription factor is a plant nitrate sensor” 在这项研究里,研究者们发现所有七个拟南芥 NIN 样蛋白 (NLP) 转录因子的突变消除了植物的初级硝酸盐反应和发展计划。 NIN-NLP7 嵌合体和硝酸盐结合的分析显示NLP7 通过其氨基末端对硝酸盐的感知被解除抑制。基因编码的荧光拆分生物传感器,mCitrine-NLP7,实现了植物中单细胞硝酸盐动力学的可视化。硝酸盐传感器NLP7 的结构域类似于细菌硝酸盐传感器 NreA。 保守残基的替换配体结合口袋损害了硝酸盐触发的 NLP7 控制转录、转运、新陈代谢、发育和生物量。这项结果表明转录因子NIN样蛋白7(NLP7)为主要的硝酸盐传感器。其中,刘坤祥教授和Jen Sheen为共同通讯作者,西北农林大学生命学院博士生刘孟红、林子炜,师资博士后陈斌卿以及Zi-Fu Wang为共同一作为共同第一作者,西北农林科技大学旱区作物逆境生物学国家重点实验室、生命学院、未来农业研究院为第一署名单位。组合 NLP 控制初级硝酸盐反应打开网易新闻 查看精彩图片 图 1.组合 NLP 转录因子是原发性硝酸盐反应和发育计划的核心。由于所有九个NLP基因都在拟南芥芽中表达。对硝酸盐介导的芽生长中单个nlp1-9单个突变体的分析显示,仅在nlp2和nlp7中存在统计学上显着的缺陷。为了规避NLP冗余并更好地定义NLP1-9的重叠或独特功能,我们进行了全基因组靶基因调查。每个NLP在土壤生长植物的转染叶细胞中瞬时表达小时,用于RNA测序(RNA-seq)分析。推定的NLP靶基因的分层聚类分析(日志2≥ 1 或 ≤ −1;P ≤)揭示了所有NLP激活先前通过微阵列、RNA-seq、片上染色质免疫沉淀(ChIP-chip)、ChIP-seq和启动子分析鉴定的通用原代硝酸盐响应性标记基因的能力。NLP2、NLP4、NLP7、NLP8 或 NLP9特异性激活了一些在调节生长素和细胞分裂素激素功能、细胞周期、代谢、肽信号传导以及芽和根分生组织活性方面具有已知功能的靶基因。NLP2和NLP7调节具有多种功能的更广泛的非冗余靶基因,这可能表现为在种子萌发后在nlp2或nlp7中观察到的生长缺陷。NLP6/7主要作为转录激活剂,而NLP2,4,5,8,9可以激活或抑制靶基因。NLP1,3,6比其他NLP调节的靶基因更少。例如,生长素生物合成基因TAR2仅被NLP2,4,5,7,8,9激活。这些结果与NLP变体在控制硝酸盐响应网络和导致土壤中生长的nlp2,4,5,6,7,8,9隔突变植物中发育迟缓的芽和根系发育的NLP变体一致。基因编码的荧光生物传感器可视化植物中的硝酸盐打开网易新闻 查看精彩图片 图 4.遗传编码的生物传感器检测转基因芽和根部的细胞内硝酸盐。配体-传感器相互作用可能触发传感器蛋白的构象变化。我们产生了一个遗传编码的荧光生物传感器mCitrine-NLP7,类似于基于单个荧光蛋白的葡萄糖生物传感器Green Glifon。我们假设硝酸盐结合的分裂米西特林-NLP7硝酸盐生物传感器(sCiNiS)将重建麦西特罗以发出荧光信号。预测的核定位信号(630断续器638)的NLP7突变为AAAAA,以避免与内源性NLP7的竞争,内源性NLP7在硝酸盐诱导后保留在细胞核中以进行转录活化.在转基因植物子叶的叶肉细胞和根尖的腔内膜细胞中,通过sCiNiS对细胞质硝酸盐进行定量共聚焦成像。在硝酸盐(10mM)后5分钟内检测到重组的mCitine荧光信号,但不是KCl,在正常发育的完整sCiNiS转基因幼苗中以单细胞分辨率诱导叶肉细胞和原代根尖细胞。土壤硝酸盐浓度可以从微摩尔到毫摩尔范围变化。我们使用不含硝酸盐的转基因幼苗测试了不同的硝酸盐浓度,并表明sCiNiS生物传感器在完整植物的单个叶肉细胞中检测到100μM至10mM的硝酸盐浓度范围,与敏感和特异性的硝酸盐结合K一致。植物中硝酸盐传感器的进化保护打开网易新闻 查看精彩图片 图 传感器域类似于NreA,具有用于硝酸盐感知和信号传导的保守残留物。为了在功能上定义NLP7中硝酸盐结合的必需残基,我们对硝酸盐-NreA晶型中定义的八种推定的硝酸盐结合残基进行了丙氨酸扫描诱变,并检查了无硝酸盐叶细胞中突变NLP7的硝酸盐反应。NLP7突变的四个残基,Trp395→阿拉(W395A),H404A,L406A或Y436A,在低硝酸盐()下显着降低硝酸盐诱导的4xNRE-min-LUC活性2小时。因为H404,L406和Y436在NLP2,4,5,6,8,9中是保守的,在硝酸盐结合域中具有相似的结构。我们接下来生成并分析了NLP7的双重(HL / AA)和三重(HLY / AAA)突变体,其消除了硝酸盐诱导的4xNRE-min-LUC活性。HLY硝酸盐结合残留物在作物植物结构相似的硝酸盐传感器域内的NLP7同源物中也是保守的,包括油菜籽BnaNLP7,大豆转基因NLP6,玉米ZmNLP6,小麦TaNLP7和水稻OsNLP3。我们建议NLP7及其同源物可以作为硝酸盐传感器,保存在从炭藻植物到被子植物的光合植物中,包括真双子叶植物和单子叶植物,但不是叶绿素。总结:作者揭示了光合植物用来感知无机氮的调节机制,然后激活植物信号网络和生长反应。我们的见解可能会建议提高作物氮利用效率,减少肥料和能源投入以及减轻温室气体排放引起的气候变化的途径,以支持更可持续的农业。来源:高分子科学前沿声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!特别声明:本文为网易自媒体平台“网易号”作者上传并发布,仅代表该作者观点。网易仅提供信息发布平台。

American Journal of Preventive Medicine《美国预防医学杂志》美国ISSN:0749-3797,1984年创刊,全年8期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载预防医学基础和应用研究论文。涉及的学科包括流行病学、遗传学、营养学、毒理学和社会科学;应用的领域包括卫生管理、传染病防治、职业医学、环境卫生、航空航天医学、老年病、母婴保健、计划生育等。Annales de Génétique《遗传学纪事》法国ISSN:0003-3995,1958年创刊,全年4期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。法国遗传学会的会刊。刊载遗传学研究论文、技术札记、文摘和消息。Biochimie《生物化学》法国ISSN:0300-9084,1914年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载有关酶学、遗传学、免疫学、微生物学和高分子结构等方面的研究论文及评论。Biomolecular Engineering《生物分子工程》荷兰ISSN:1389-0344,1983年创刊,全年6期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子,2005年EI收录30篇。研究分子生物学、细胞生物学、免疫学、生物化学和遗传学中使用的新技术、材料及器械。刊载研究论文和综论。Cancer Genetics and Cytogenetics《癌遗传学与细胞遗传学》美国ISSN:0165-4608, 1979年创刊,全年16期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载癌细胞与分子的基础研究论文。反映癌遗传学和细胞遗传学领域的最新研究进展。Current Opinion in Genetics & Development《遗传学与发育新见》英国ISSN: 0959-437X, 1991年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。著名遗传学权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、疾病遗传学、遗传组织与变异、细胞繁殖、发育模式与机理等方面的研究进展评论。附近期有关学科主要论文索引。Developmental Biology《发育生物学》美国ISSN:0012-1606,1959年创刊,全年24期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。著名生物学权威专业性学术期刊,从分子、细胞和遗传的水平上研究动植物发育、变异、生长、再生和组织修复的机能。发表论文。European Journal of Medical Genetics《欧洲医学遗传学》ISSN: 1769-7212,2005年创刊,Elsevier Science出版社,主要刊载关于给类人研究和医学遗传学以及基因实验模型方面的论文。European Journal of Pharmacology: Molecular Pharmacology《欧洲药理学杂志:分子药理浙江工业大学图书馆信息咨询部编 Elsevier Science 出版社期刊投稿指南 60学分册》荷兰ISSN:0922-4106,1989年创刊,全年12期,Elsevier Science出版社,刊载分子水平的药理学、药效学、神经系统药理学等方面的研究论文和简报,内容涉及分子神经传递,信号转导机理,蛋白质受体的遗传反应等。Human Immunology《人类免疫学》美国ISSN:0198-8859,1980年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载人类免疫系统和其他脊椎动物模拟系统的研究论文。侧重于组织适应性和免疫遗传学的研究。Infection, Genetics and Evolution《传染、遗传和进化》荷兰ISSN:1567-1348,2001年创刊,全年4期,Elsevier Science出版社。主要刊载遗传学领域,包括疾病等的传染、遗传、进化等方面的论文。Journal of Molecular Biology《分子生物学杂志》英国ISSN:0022-2836,1959年创刊,全年50期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载原始论文,论述分子生物学的各个方面,涉及基因结构、复制及解译机理、蛋白质、核酸等大分子的结构和性质、细胞和发育生物学、分子遗传学等。Molecular Genetics and Metabolism《分子遗传学与新陈代谢》美国ISSN:1096-7192,1976年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。1998年前刊名为Biochemical and Molecular Medicine,从生物化学和分子生物学角度对人体正常代谢和代谢病进行研究。发表原始论文、短评和简讯。Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis《突变研究-突变原理与分子结构》荷兰ISSN:1388-2112,1964年创刊,Elsevier Science出版社。主要刊载关于包括遗传变异基因的作用,并体现突变,可变化合物的代谢方式到以不同的身份和修复受损DNA的细胞复制等方面的论文。Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。Mutation Research/Reviews in Mutation Research《突变研究-突变研究评论》荷兰ISSN:1383-5742,1964年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。主要刊载突变和疾病的关系,涵盖人类基因组研究进展(包括演变和功能基因突变检测技术)与临床应用遗传学、基因治疗、环境健康风险评估,遗传毒理学和环境突变(包括遗传因素调节活性剂环境)等方面的论文。Trends in Genetics《遗传学趋势》英国ISSN:0168-9525,1985年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、变异、发育方面的评论、札记和书评,涉及临床遗传学、遗传学与社会、应用技术与人口遗传学等问题。

植物代谢组学论文影响因子

太高难度你应该发表到大学的论坛上去

蔬菜是人们日常生活中不可或缺的食品,但蔬菜又是易于富集硝酸盐的作物,人体吸收的硝酸盐80% 以上来自于蔬菜[1]。故硝酸盐含量是评价蔬菜品质的重要指标之一。虽然硝酸盐对人体没有直接的毒害作用,但进入人体后,会在微生物的作用下还原为有毒的亚硝酸盐,它可与人体血红蛋白反应,使之失去载氧功能,造成高铁血红蛋白症。长期摄入亚硝酸盐会造成智力迟钝[2]。另一方面。亚硝酸盐还可间接与人类摄取的其它食品、医药品、残留农药等成分中的次级胺反应,在胃腔中(pH=3)形成强致癌物—— 亚硝胺,从而诱发消化系统癌变[3]。因此,硝酸盐污染问题已引起人们的普遍关注,世界各国学者对蔬菜硝酸盐积累及其控制途径进行了日益广泛和深入的研究。近年来许多研究单位对蔬菜中的硝酸盐污染以及如何控制进行了大量的研究。影响蔬菜硝酸盐积累的因素很多,与蔬菜的种类品种有关,与水分、温度、光照有关,也与施氮量、氮肥种类、施氮方法等因素有关,但施肥是非常重要的因素之一。要减少蔬菜硝酸盐含量,一是要进行合理施肥,控制施肥种类、数量,掌握好施肥方法等。二是调节水、温、光等环境条件,从而达到控制植株根系对NO3-的吸收速率,降低其吸收量,进而加速硝酸盐在植物体内的代谢的目的。 2 影响蔬菜硝酸盐含量的因素 2.1内部因素 影响蔬菜硝酸盐含量的内部因子主要包括:蔬菜种类、品种、部位和生育期,这些因子主要受遗传因子所控制[4]。 2.2.1 蔬菜种类不同其硝酸盐含量差异明显。现在研究证实,不同蔬菜种类的硝酸盐含量从大到小的次序为根菜类> 叶菜类> 瓜类> 茄果类。 2.2.2 同一种类蔬菜不同品种硝酸盐含量也不相同,如莴苣Bellone品种叶片中硝酸盐含量为2878mg/kg,而Tornade品种硝酸盐含量仅为123mg/kg,2个品种间硝酸盐含量差异十分悬殊。 2.2.3 蔬菜不同部位的硝酸盐含量也有很大差异,一般而言,根>茎>叶>果;叶柄>叶片;外叶(下部叶)>内叶(上部叶)。 2.2.4 生育期对于菠菜而言,其体内硝酸盐含量随着生育期的延长而降低,这可能是由于随菠菜生育期推进其吸收土壤硝酸盐能力下降,或随植株增大硝酸盐相对量降低造成的。因此菠菜不宜提早收获。 2.2外部因素 蔬菜积累硝酸盐的过程也受外部其他环境因素如土壤水分、光照、温度、栽培措施等显著影响[5]。 2.2.1光 光照对植物体内的硝酸盐代谢起着极为重要的作用,是决定植株硝酸盐含量的主要因素之一。光照强度、光周期和光照持续时间均影响植株硝酸盐含量。在低光照强度下,植株积累大量的硝酸盐, 而在较高的光强下,硝酸盐的积累减少[6]。光照影响植株硝酸盐含量的主要原因是硝酸还原酶活性受光照强度的调节,而且光照正常条件下, 光合作用良好,植株生长量大,吸入的硝酸盐被稀释而不致累积很多,同时光合作用可提供硝酸还原的能量,使之转化为铵态氮,因此也有利于减少硝酸盐的累积[7]。 2.2.2 温度 温度高低影响植物对硝酸盐的吸收速率。在适温范围内,随温度升高,植物生长速度加快,根系对硝酸盐的吸收也加快,促进植株地上部生长,NRA也随之提高使植株体内硝酸盐积累减少。温度降低,根系吸收硝酸盐能力减弱,同时,NRA也因温度降低而减弱,以致硝酸盐积累增加[8]。 2.2.3 水分 硝态氮的吸收、运输与水分运动密切相关。质流是水分驱动的物质运动,而质流对作物吸收硝态氮的贡献率达70%-90%。蒸腾作用的持续进行,使溶解于水中的硝态氮向植物体内各处移动,分布于不同器官的组织内部及外部空间的水分中。另外,硝态氮的代谢也离不开水分[9]。 2.2.4 氮肥供应 大部分蔬菜为喜硝态氮作物,于是人们为追求高产而盲目追施硝态氮肥,而NO3-含量却随氮肥用量增加而不断升高,不能及时被还原。另一方面,施肥方法不当,基肥不足,追肥次数偏多,导致硝酸盐积累增加。 3 降低硝酸盐含量的控制途径和措施 综上所述,有关影响植物体内硝酸盐积累的因素是多方面的,作物之间的差异也十分明显,因此要有效降低硝酸盐的积累首先要分析研究对象所特有的影响因子,针对主要因子通过明确的调控措施,达到降低硝酸盐积累的目的。 3.1 施肥措施 蔬菜硝酸盐严重超标,除了与蔬菜的种类、品种、遗传特性不同有关外,一个重要影响因素是:施用化肥,超量施肥,重施氮肥,没有均衡的控制和调节土壤肥力。控制蔬菜硝酸盐过量残留的措施是,严格控制氮肥的施用量,少施化学氮肥,应以有机肥为主。因为有机肥矿化速度慢,不会导致硝酸盐在植株体内明显积累,并能提高蔬菜的产品质量和口感度[10]。 3.1.1 合理施用氮肥 ⑴搭配施用不同形态的氮肥 邱孝煊等报道,每公顷氮素用量450Kg,空心菜中硝酸盐含量,氯化铵<硫酸铵<尿素<碳酸氢铵<硝酸铵.施氯化铵的空心菜硝酸盐比其它化学氮肥低10%以上,这与氯化铵中的Cl-能抑制硝化作用有关。李海云等报道,铵态氮和硝态氮的比例不同影响硝酸盐的积累量,经多种蔬菜试验表明,NH4+-N所占比例越大,NO3-含量降低越明显。其原因在于NH4+被植物吸收后立即参加含氮有机物的形成,而NO3-则要先还原,后一过程需消耗额外能量并在相应酶系参与下进行。因此,施铵态氮肥可使蔬菜硝酸盐含量减低。朱祝军等研究的结果是,对不结球生长的营养液中,铵态氮和硝态氮浓度(mmol/L)比例以1:1为最佳。[11] ⑵适宜的氮肥施用量 氮素是植物生命活动的必需养分,且需要量在各元素中居首位。任祖金等报道,偏施和滥用氮肥,是造成蔬菜硝酸盐积累的重要原因,提出300Kg/hm2为氮肥用量的临界值。在保证产量的同时,适当降低氮肥施用量能降低硝酸盐的富集。 ⑶严格掌握氮肥的施用方法 氮肥要深施、早施。深施可以减少氮素挥发,延长供肥时间,提高氮肥利用率。早施则利于蔬菜植株早发快长,延长肥效,减少硝酸盐积累。还应根据蔬菜种类、栽培条件、气候条件等灵活施肥。无公害蔬菜生产过程中,其硝酸盐含量是不断变化的。据研究,随着氮肥追肥时间的推移,蔬菜体内的硝酸盐含量有逐渐减少的趋势。对蔬菜来讲,追肥的时间应安排在采收前30天,追肥的原则为“少量多次”[12]。 ⑷控制氮肥施用时间 研究结果表明,追氮后8天是蔬菜收获上市的安全始期,随着时间延长,硝酸盐累积具有明显下降趋势,至追氮后18天,蔬菜体内硝酸盐分别比始期下降% ~% 。因此,得出蔬菜“攻头控尾”的施氮技术模式[13]。 3.1.1有机肥无机肥配合施用 菜田施用有机肥是一项降低蔬菜硝酸盐积累,提高产品营养价值的有益的农业措施。这是因为生物降解有机质是个渐进过程,养分释放缓慢,适合于蔬菜对养分吸收;土壤中有机质能促进土壤反硝化过程,从而有效降低土壤中硝态氮浓度。和氮肥相比,施有机肥能降低蔬菜50% 的NO3-的积累量 。据此,要广辟肥料,确保蔬菜生产对有机肥的需求。但有机肥施用量过大,也会引起蔬菜中硝酸盐的大量积累,菜田有机肥施用量最大限量为60t·hm2。 化学氮肥与厩肥、土杂肥配合施用,能有效控制和降低蔬菜中的硝酸盐积累。通常无机氮与有机氮的比为l:1;氮、磷、钾三要素的比例,100天以内的短季节蔬菜为l:,长季节蔬菜为l:。[14] 3.1.2 推广测土配方施肥、平衡施肥技术 测土配方施肥,是控制蔬菜硝酸盐积累的重要措施之一。大量研究结果表明,氮肥施用量与蔬菜体内硝酸盐含量呈正相关,磷、钾肥的施用量则与之呈负相关。这是由于:钾在植物体内能促进蛋白质的合成,钾的浓度越高,促进作用越强,从而提高了氮的利用率,蔬菜中K含量每递增% ,NO3-量下降% ;磷是硝酸还原酶和亚硝酸还原酶的重要组成部分,参与NO3-的还原和同化。高祖明等指出,N、K比过大是造成叶菜NO3-积累的重要原因,且缺磷比增氮更易引起叶菜组织内NO3-积累。因此,在蔬菜生产上应大力推广测土配方施肥技术,做到缺什么补什么,缺多少补多少。达到平衡施肥。这样,不仅能降低蔬菜中硝酸盐的含量,而且增产效果十分显著[15]。 3.1.4 叶面喷施微肥 施用微量元素肥料,对于减少蔬菜中硝酸盐的积累有一定的效果。蔬菜收获前lO天,叶面喷施微肥,能提高产量和品质,收获前1天用草酸、甘氨酸等喷洒,可明显降低蔬菜中的硝酸盐含量。近年来的研究结果表明,叶面喷施钼、锰等微肥,对降低蔬菜硝酸盐积累有良好的效果。这是因为钼和锰元素在植物体内参与硝态氮的还原过程,钼是硝酸还原酶的组成部分,锰是多种代谢酶的活化剂。对蔬菜叶面喷施钼肥和锰肥,能激活蔬菜体内的硝酸还原酶,从而使蔬菜体内硝态氮的还原同化量超过其吸收量,降低蔬菜硝酸盐的含量。 叶菜类不能叶面施氮肥。叶面喷施直接与空气接触,铵离子易变成硝酸根离子被叶片吸收,硝酸盐积累增加,又不耐贮存[16]。 3.2 改善生态条件 3.2.1 改善光照条件,增加光照时间 保证正常光照,是硝酸盐在植物体内同化并降低其浓度的决定条件之一。露地和保护地条件下光照强度降低20% ,蔬菜硝酸盐含量增加150%; 强光照下可使菠菜的硝酸盐含量较之弱光照来得低。正常光照条件下,光合作用良好,植株生长量大,吸入的硝酸盐可被稀释而不致积累太多,同时还促进硝酸还原酶的合成,程高其活性,并为硝酸还原提供能量,因此有利于硝酸盐含量的下降[17]。 3.2.2 改善土壤水分供应状况 研究表明,土壤水分充足时,蔬菜的生长量可提高%~% ,而硝酸盐含量却降低%~ %,硝酸盐还原酶活性也明显降低。因此,在蔬菜生产中应注意水分管理,避免由于缺水造成水分胁迫[17]。 在干旱情况下,蔬菜的硝酸还原酶的合成受阻,分解加快,硝态氮积累显著增加。因此,在收获前几天进行灌水,可使硝酸盐含量下降。 3.3 配合使用氮肥抑制剂 为降低和控制蔬菜硝酸盐的含量,目前国外普遍采用氮抑制剂来抑制土壤硝化细菌的活性,从而达到减少土壤和蔬菜中硝酸盐积累的目的。在现有的氮抑制剂中,使用效果较好的首推双氰胺(DCD)。在氮肥中,添加10~20%的双氰胺与单施尿素相比,可使青菜茎叶中的硝酸盐含量降低10~30%。将双氰铵与碳铵一起施用效果更佳,可使叶柄和叶片中的硝酸盐含量减少25~45%。[18] 因此,蔬菜在施用氮肥时,应按纯氮量的10~20%添加双氰胺,与化肥拌匀后施用,控制硝酸盐积累的效果最佳。 3.4 选育低富集硝酸盐的品种 由于硝酸盐积累存在遗传差异,所以选育低积累的品种被认为是控制蔬菜硝酸盐含量的有效方法之一,低硝酸盐含量已成为育种的1个重要目标。国外有育成硝酸盐富集力弱的菠菜新品种的报道,但国内目前还没有选育成功低积累的蔬菜品种。随着对蔬菜硝酸盐积累的遗传规律的进一步认识,特别是随着现代分子生物技术的发展,利用基因工程选育低富集硝酸盐品种必将成为重要的发展方向。 3.5 调整收获时期和时间 由于不同生长发育阶段的蔬菜硝酸盐含量不同,一些蔬菜生长前期大于后期,所以,适当晚收有利于降低蔬菜中的硝酸盐,降低幅度可达数倍甚至数十倍。另外,光照、温度等外部因素对蔬菜硝酸盐积累也有明显影响。因此,生产中应根据1d内温度和光照变化的节奏确定适宜的收获时间,同时应根据光、温等条件的季节变化以及蔬菜生长发育进程确定适宜的收获时期。[20] 4 存在的问题与展望 目前,蔬菜体内硝酸盐的积累问题已引起广大科研工作者的关注,而且在这一领域的研究已取得了一些成果,但是,尚缺乏控制效果好、简单易行的方法。一些控制硝酸盐积累的措施目前还很难用于生产实践,另外一些方法控制效果不太明显,还有一些方法或观点虽在理论上成立,但目前还没有取得应用成果。我国目前蔬菜生产条件及农民的科技水平,特别是目前国内生产者对产量的追求以及消费市场对供应量的要求决定了在短期内难以显著降低氮肥的施用量(氮肥是蔬菜体内硝酸盐的主要来源),因此,不降低氮素投人,如何控制蔬菜硝酸盐积累就成为一个重要研究课题。针对这一研究目标,从营养互作,水氮互作等营养生理以及代谢方面出发进行NO3-的转化的基础研究就显得非常必要。另外,由于蔬菜种类繁多,遗传基础及适宜生长条件、同化利用硝酸盐能力差异较大,所以,无论是关于硝酸盐积累过程的基础研究还是控制措施的探讨均要有明确针对性。 5 小结 综上所述,通过调整施肥措施、改善生态条件、使用抑制剂、选育低富集硝酸盐的蔬菜品种、调整收获时期和时间等,对减少蔬菜中硝酸盐累积量有很大的作用,应该对菜农加强宣传,采用合理的技术措施来减少蔬菜中硝酸盐累积,既使菜农节约肥料成本、增产增收,又减小对消费者的危害。

请见下面两个链接:第一个影响因子,第二个影响因子,都是植物生理方面的国际顶级杂志。

1植物次生代谢产物的概念1891年,Kossel明确提出了植物次生代谢(secondary metabolism)的概念。植物次生代谢产物是指植物体中一大类并非生长发育所必需的小分子有机化合物,其产生和分布通常有种属、器官、组织和生长发育期的特异性。少数小分子有机物在代谢途径上与次生产物比较相似,但具有明显的生理功能,因而不把它们视为次生代谢产物,如萜类成分赤霉素、脱落酸、均为植物激素,另外如胡萝b素为光合作用所必需。随着研究的深入,植物次生代谢的概念有待进一步明确。2植物次生代谢物的种类植物次生代谢物种类繁多,结构迥异,人们至今已发现有黄酮类、酚类、香豆素、木质素、生物碱、糖苷、萜类、甾类、皂苷、多炔类、有机酸等。一般分为酚性化合物、萜类化合物、含氮有机物三大类。2.1酚类主要包括黄酮类、简单酚类和醌类等,主要由磷酸烯醇式丙酮酸到分支酸的生物合成途径而来,称莽草酸途径,这也是芳香族化合物的来源。黄酮类是以苯色酮环为基础具有C、C、CH结构的酚类化合物。生物前体为苯丙氨酸和马龙基辅酶A(malonyl CoA),据B环的连接位置又分为2一苯基衍生物(黄酮醇、黄酮等),3一苯基衍生物(异黄酮)和4一苯基衍生物(新黄酮)。根据三碳结构的氧化程度又分为花色苷类、黄酮类、黄酮醇类及黄烷酮等。黄酮类成分有许多用于心血管疾病的治疗如芦丁。还有一些是植保素如异黄酮类。简单酚类是含有一个被羟基取代苯环化合物,分布于植物各种组织、器官中,有些参与调节植物生长的作用,有些是植保素或与植物异株相克有关。醌类是由苯式多环烃碳氢化合物(如萘、葸等)衍生的芳香二氧化合物,根据其环系统可分为苯醌、萘醌和蒽醌。醌类是植物主要呈色剂之一。有些醌类是抗菌、抗癌的重要成分如胡桃醌和紫草宁。2.2萜类 萜类是由异戊二烯单元组成的化合物,通过异戊二烯途径f又称甲羟戊酸途径)合成。现在已研究发现,在植物细胞器质体中存在着第二条途径——丙酮酸/磷酸甘油醛途径,胡罗b素、单萜和二萜通过该途径合成。两条途径差异就是异戊烯基焦磷酸(IPP)形成机制不一样。甲羟戊酸途径IPP前体为甲羟戊酸,而丙酮酸/磷酸甘油醛途径的前体是在转酮酶的作用下,由丙酮酸和3一磷酸甘油醛缩合而成的5一磷酸木酮糖,丙酮酸提供2一c骨架,而3一磷酸甘油醛则提供3一c骨架。根据萜类分子结构通常分为低等萜类和高等萜类,现已知萜类己超过2万种。2.3含氮化合物 大多数含氮化合物是从普通氨基酸合成的,主要有生物碱、胺类、非蛋白氨基酸、生氰苷和芥子油苷,多具有防御作用。生物碱是一类含氮的天然产物,多为药用植物主要有效成分,有些是植保素。现已深入研究的有烟草的烟碱、毗咯啶生物碱、毒藜碱、毛莨科的小檗碱,曼陀罗的莨菪碱、东莨菪碱等。胺类是NH中的氢的不同取代物。通常由氨基酸脱羧或醛转氨而产生,在植物中分布广泛,常存在于花部,具臭味。有些胺类与植物的生长发育有关,如离体条件下多巴胺能促进石斛提前开花。非蛋白氨基酸是不组成植物蛋白的氨基酸,常有毒,多存在于豆科。因与蛋白氨基酸相似,易被错误掺入蛋白质,多为代谢拮抗物。生氰苷是一类由脱羟氨基酸形成的0一糖苷,氰苷来自于2一C和氨基。生氰苷是植物生氰过程中产生HCN的前体。生氰苷与植物趋避捕食有关。芥子油苷主要存在于芸薹属植物,其经硫葡糖苷酶(thioglucosidase)水解,生成糖苷配基(aglycone),然后自发分解为异硫氰苷(isothiocyanate)和腈(nitrile)。这些产物对草食动物有毒。但植物未受伤害之前芥子油苷和硫葡糖苷酶是分隔开的。2.4多炔类、有机酸类等 多炔类主要分布于菊科、伞形科植物。有机酸分布广泛。研究表明有些有机酸如水杨酸、茉莉酸在植物信号传导中起重要作用。3植物次生产物对环境胁迫的防御作用 植物生长环境中的温度、水分、光照、大气、盐分、养分等都会对植物的生长产生各种各样的影响甚至胁迫。为了提高植物对生态环境的适应性,植物一方面可在形态结构上发生变化,另一方面可以在生理生化上发生变化,而一些次生物质则成为后一种适应的物质基础。在植物耐旱、抗寒和耐盐性研究中都发现次生代谢产物都在其中发挥重要作用。3.1温度 温度是调节植物代谢水平的主要环境因子,对植物的次生代谢也有很大影响。有研究表明,黄豆在低温下培养24h,根部总酚酸、染料木黄酮(genistein)、大豆黄素(daidzein)和染料木苷(genistin)的代谢水平显著增高。低温条件下,在栀子、苹果、山梨、石榴中发现有与抗低温有关的多元醇如甘油、山梨醇、甘露醇等的积累。冷平等(2001年)研究认为,在低温锻炼后,植物体内强还原性酚类物质花青素苷的含量显著增加,可以明显提高苹果、桃、及柿树的抗寒性。DudtJF等(1994年)通过研究认为,低温胁迫条件可能造成活性氧在树体内积累,而黄酮类物质上的羟基具有强的供电子能力,能以单电子转移的方式清除超氧负离子或其他自由基。清除或控制由低温胁迫所产生的生物自由基可能是酚类物质保护植物机体免受损伤的重要机理之一[41。闫杰研究也证明:水杨酸2.0mmol/L浸种处理能显著缓解高温胁迫对幼苗造成的伤害,提高黄瓜幼苗的耐热性;水杨酸在黄瓜幼苗4叶l心期进行叶面喷施处理,高温胁迫条件下,水杨酸0.1mmo]]L显著提高幼苗的耐热性。表明水杨酸可以提高黄瓜幼苗的耐热性及耐旱性,使其保护酶活性提高,增加Pro含量,减少MDA积累对膜造成的伤害。3.2水分 在干旱胁迫下,植物组织中次生代谢产物的浓度常常上升,包括氰甙、其他硫化物、萜类化合物、生物碱、单宁和有机酸等。在受到中度干旱胁迫的针叶树中,低分子量萜类化合物的浓度升高,同时树脂酸和单萜的组成发生变化,而橡胶受到严重干旱胁迫后橡胶浆汁的流速和产量均下降。干旱胁迫导致喜树(Camptothecaacuminata)叶片中喜树碱的含量增加[71,高山红景天(Rhodiolasachalinensis)根中的红景天苷含量也因土壤含水量而变化[8],轻度的水分胁迫则有利于乌拉尔甘草(Glycyrrhizauralensis)中甘草酸的积累。渗透胁迫下多种植物在体内积累渗透调节物质甜菜碱,有研究报告甜菜碱醛脱氢酶的基因表达量与甜菜碱含量平行增加。闫杰的研究证明,在干旱胁迫下,水杨酸2.0mmol/L浸种处理能提高黄瓜幼苗的耐旱性;水杨酸在黄瓜幼苗4叶1心期进行叶面喷施处理,水杨酸0.1mmol/L能显著缓解干旱胁迫对幼苗造成的伤害J。这些都与次生代谢产物在平衡无机阳离子、维持膜的稳定性和清除自由基等作用有重要关系。对某些耐旱植物的研究,发现其脱落酸和脯氨酸含量较高。小麦在发生萎蔫的4h内,脱落酸含量即增加达40倍;在大麦的不同抗旱性品系中,抗性的强弱与其体内脯氨酸含量高低间具很高的相关性。脱落酸能促使气孔关闭,而气孔开放时间的缩短或使其只在晚间开放是植物提高保水力从而增强抗旱能力的途径之一。实验证明,在叶片施用脱落酸(浓度为0.02g/cm)能有效地使气孔关闭,几天内就足以减少50%以上的水分消耗。脯氨酸含量提高的意义尚不清楚,但其含量高低与抗旱性强弱之间的这种相关性,至少说明它与抗旱性有关。3.3光照 光强、光质和日照长短都对植物次生代谢有影响。林中植物上部阳生叶中酚类物质含量要比下部阴生叶中多,非洲热带雨林植物中的酚含量与光照强度正相关。温室中的烟草补加紫外光照射时绿原酸含量增加到对照的5倍,受红光照射时则产生较多的生物碱、较少的酚。大棚中生长的欧洲赤松fPinussylvestris)由于光照强度低于棚外,树脂油和单萜类物质含量也较低。遮荫导致高山红景天根中的红景天苷含量降低,但却增加了喜树叶片中的喜树碱含量。红光成分增加提高高山红景天根中的红景天苷含量n”,而蓝光成分增加则提高喜树叶片中的喜树碱含量。Saleem研究认为,不同光照条件下植物次生代谢产物含量的变化是一种生物学适应性响应。3.4营养条件 许多盐生植物体内有甜菜碱和脯氨酸的大量积累。实验表明,淡土植物和盐生植物由非盐条件逐步转移至高盐分环境中都能诱导脯氨酸生成量的逐步增加。测定一系列对盐分具不同敏感性的植物中甜菜碱浓度的结果表明,增加盐分能引起甜菜碱的增加并伴随脯氨酸水平的提高。也有一些植物中,累积的则是山梨醇、右旋肌醇甲醚等。盐生植物累积的这些化合物都易溶于水。因而研究人员认为,盐水植物通过在细胞内积累这些无毒溶质可以平衡由于液泡内无机离子(如Na等)积累所造成的细胞质渗透压的变化,从而对细胞起保护作用。Hattenschwiler等发现植物体内的多酚浓度随土壤肥力下降而增加;Yu等等通过测定生长在酸l生贫瘠土壤上的植物体内多酚,揭示了多酚具有减少养分流失、除去铝毒害、提高磷的有效性和调节氮循环等作用。3.5二氧化碳的浓度 大气中CO2的浓度一直在增加,这种变化不仅作用于植物的初生代谢,也影响次生代谢。一些研究工作观察到,伴随着大气中CO2浓度的升高,落叶树叶片中单宁的浓度升高,盐生车前(Plantagomaritima)叶片中咖啡酸含量和根部的香豆素(verbascoside)含量也增加。CO2浓度倍增条件下,垂枝桦(Betulapendula)幼苗的类黄酮、原花青素(pmanthocyanidins)的浓度和欧洲赤松体内仪一蒎烯的浓度均提高。人参(Panaxginseng)根部在高浓度的CO2,下增加了总酚酸和类黄酮的含量,而这个过程与葡萄糖、6一磷酸脱氢酶、莽草酸脱氢酶、苯丙氨酸解氨酶、肉桂醇脱氢酶、咖啡酸过氧化物酶和绿原酸过氧化物酶的活性增强密切相关[161。3.6UV—B辐射 中波紫外辐射(LW—B,280320nm)对植物的影响是近年来的研究热点,大量研究表明,UV—B辐射增强对植物最一致的影响是诱导植物叶片中的紫外吸收物质主要是酚类化合物如类黄酮、黄酮醇、花色素苷以及烯萜类化合物如类胡萝卜素、树脂等,其中类黄酮最主要),并且也观察到在uV—B辐射下类黄酮合成途径的苯丙氨酸解氨酶和查尔酮合成酶以及其它分支点酶的酶量增加或活性加强。uV—B辐射诱导紫外吸收物质含量增加的现象出现在不同类型的植物中,如欧洲云杉(Piceaabies)、垂枝桦、水稻(oryzasariva)、拟南芥(Arabidopsisthaliana)等。类黄酮等次生代谢产物在植物体内可起紫外“吸收屏障(uV—filter)”的作用,从而增强植物抗紫外辐射的能力。 环境污染 一些研究表明,环境污染可导致植物次生代谢产物的组成和含量发生变化,如酚类等化合物对各种形式的污染物均有反应。在重金属及SO2,污染下,受污染程度最重的垂枝桦(B.pubescens)中低分子量酚的含量最高,总酚含量(单个酚化合物总和1比对照区的高20%。不过也有研究表明,SO2,污染使垂枝桦的几种具有抗氧化和防御作用的酚类物质如杨梅苷(myricitrin)、焦儿茶酚(catechin)、3、4一二羟基丙酰(3、4一theta2dihydroxypropiophenone)和原花色素(proanthocyanidins)的量减少了。增加乙烯的释放量是植物对大气污染危害的普遍反应,在紫花苜蓿、大豆、西红柿、落叶松、欧洲赤松和挪威云杉中都观察到这一现象。总之,植物可以改变某些次生代谢产物的组成和含量来减轻环境污染的毒害作用。

代谢组学文章可以投什么期刊

中药学论文选题依循“系统中药学”思想,创新中药教育理念。

中医药论文题目选题参考:

1、中医药诊治慢性疲劳综合征的思路与方法。

2、中医药临床随机对照试验报告规范(征求意见稿)。

3、循征医学与中医药临床研究。

4、中医药抗消化性溃疡复发的机理研究进展。

5、中医药抗体力性疲劳的整体思辨与应用前景。

6、中医药在抗肝纤维化治疗中的优势。

7、中医药诱导肿瘤细胞凋亡的可行性探讨。

8、中医药对免疫功能影响的综述与评析。

9、关于中医药抗运动性疲劳的立法思考。

10、代谢组学技术在中医药关键科学问题研究中的应用前景分析。

11、中文期刊发表的中医药系统综述或Meta-分析文章的质量评价。

12、中医药与多脏器功能障碍综合征(MODS)。

13、中医药传统文化与现代质量控制。

14、代谢组学技术在中医药关键科学问题研究中的应用前景分析。

15、老年期痴呆的中医药研究思路。

16、《黄帝内经》建构中医药理论的基本范畴—四时。

17、《黄帝内经》建构中医药理论的基本范畴——运数。

18、中医药研究中有关自由基研究近况。

19、《黄帝内经》建构中医药理论的基本范畴——证验。

20、《黄帝内经》建构中医药理论的基本范畴——意识。

北大中文核心医学论文发表期刊推荐,如下:

1.中国老年学

2.实用医学

3.中国实用护理

4.山东医药

5.重庆医学

《欧洲药物科学杂志》、《药代动力学与药效学杂志》。药代动力学,全称“药物代谢动力学“,是研究药物在人体内代谢过程的学科,英文期刊有JournalofPharmacokineticsandPharmacodynamics《药代动力学与药效学杂志》、《欧洲药物代谢和药代动力学杂志》、《欧洲药物科学杂志》。国际英文期刊简单理解就是是国外以英文为出版语言的期刊,其实国际英文期刊与国内期刊在概念和类别上有很多类似之处,国际英文期刊也可以整体分为两大类,那就是普通期刊和核心期刊,很多作者一提到国际英文期刊首先想到SCI、EI、ISTP等,这几类期刊可以算作是国际期刊的核心期刊。

《中华内分泌代谢杂志》是中华医学会主办、反映我国当代内分泌代谢研究的高级学术刊物,主要报道在内分泌代谢领域中,国内和与国外合作的最新研究成果、临床诊疗经验,以及与临床密切结合的基础理论和技术研究。在强调刊出文章的先进性和科学性的同时,也十分重视临床的实用性和论文的可读性,力图为提高我国内分泌代谢病学的医、教、研水平作出应有的贡献。

现代生物医学进展在线投稿

现代生物医学进展》是核心期刊,核心期刊是国内学术水平比较高的期刊,而且对论文的要求也是比较高的,所以选择在核心期刊上发表文章的作者都是具备一定的写作能力的

投稿须知凡是和生物医学有关或者是生物科学最新研究领域的论文均可投稿,因为我们旨在办一个以生物医学为主的综合性生命科学杂志。我们会在最短时间内对来稿做出录用与否的答复,欢迎从事自然科学领域的各个专业科研人员、研究生踊跃投稿,我们将为广大的研究人员提供相对较高的稿酬。 文稿要求◆基本要求:1.本刊重视论文的原创性、科学性、先进性、实用性,强调新颖性与创新点。2.投稿论文应论点明确,资料可靠,结构完整、逻辑严密、层次清晰、图表规范、描述客观、论据充分、论证严谨、文字精炼。全文字数一般不超过5 000字(包括摘要、图、表和参考文献)。3.来稿一律进行检索查重,正文中连续30个字与已发表文献雷同且未明确注明出处,即视为抄袭;抄袭率超过10%,直接退稿。请在投稿前严格按照本刊《投稿须知与写作模版》整理全文。★文中所有数字、英文字母均须采用TimesNewRoman字体,字号与其所在段落的字体设置保持一致。全文段落采用倍行距,两端对齐(除图、表外)。l论文题目:三号宋体&TimesNewRoman,加粗,应简明确切地反映文章的主题,一般不超过25个字。l作者及单位:采用五号宋体&TimesNewRoman,姓名在文题之下,排好顺序,通讯作者用△(上标)标注。单位写在姓名下方,若各作者为不同单位,则需在姓名右上角以序号表示,工作单位应写全称,注明科室,后加省、城市、邮政编码和国籍。作者姓氏的英文字母需全部大写。英文单位书写格式为:科室/专业,医院/学院,所属高校/部门,城市,省份,邮编,国籍。l摘要和关键词:采用五号宋体&TimesNewRoman,字数不得少于300。关键词一般3-5个,之间用分号(全角)隔开。ABSTRACT要求实词一般不少于300个。l 基金项目:标明基金类别、项目名称及基金编号。作者简介:姓名(出生年-),性别,学历,职称,主要研究方向,电话,E-mail。通讯作者:姓名,性别,学历,职称,主要研究方向,E-mail。l正文格式及层次:全文采用五号宋体&TimesNewRoman字体。一级标题采用四号宋体,加粗;二级标题采用小四号宋体,加粗;三级标题采用五号宋体,加粗(标题最好不多于三级)。一级标题与二级标题后回车,空两格书写正文;三级标题后空三格直接书写正文。各标题下的内容用五号宋体&TimesNewRoman书写,标点符号使用中文全角。l正文中的表格:采用小五号宋体&TimesNewRoman,居中。表格必须为三线表格,表名位于表格上方;注释位于表格下方,左对齐、小五号TimesNewRoman。表名(表文题)需中英文对照,表内文字与表下注释只需显示英文形式(不要出现中文)。“表1”用“Table1”表示。l正文中的图片:采用小五号宋体&TimesNewRoman,居中,图名(图文题)和图序必须提供中英文对照(加粗),图内文字与注释只需显示英文形式(不要出现中文)。“图1”用“”表示。图片应保证良好的清晰度和对比度(像素300以上)。图片应标注缩放标尺。公式需要自行编辑,不得复制图片等格式的公式,且公式后面需用圆括号注明公式编号,示于公式行右端,全文公式统一依前后顺序编号。文中公式、表格、图的编排方式需统一。文中引用时仅需交代为“由或见图、公式、表…”。l符号用法:标点符号遵照国家标准GB/T15834-1995标点符号的用法。量和单位采用国际单位制遵照国家标准GB3100-3102-93。如:统计学符号t检验用小写“t”,F检验用英文大写“F”,卡方检验用希文小写“χ2”,样本相关系数用英文小写“r”,自由度用希文小写“υ”,样本数用英文小写“n”,概率用英文大写“P”(非斜体)等。文中所有计量单位与数字之间必须空一格,如50g,μ,10%。l参考文献:必须以作者亲自阅读的近2-3年发表的学术类论文为准,通常引用与论文观点或数据密切相关的国内外最新研究进展。本刊要求论著参考文献不得少于20条,综述不得少于30条。近5年发表的文献应占70%以上,其中近3年发表的文献比例不低于30%。对于已被某一期刊采用而尚未刊出的文章,可列入参考文献,但必须提供作者姓名、文献标题、期刊名称、年份(如有卷号,也需提供),然后加“[Epubaheadofprint]”。“参考文献(References)”(居中,五号宋体&TimesNewRoman)。本刊要求参考文献均统一采用英文撰写,中文文献必须写出其相应的英文翻译(可在国际、国内检索系统下载原文),标点符号均用英文半角。引文序号须用中括号“[n]”表示(在文中需置于文字的右上角)。引文作者姓名的第一个字母需大写,姓和名之间空一格,少于三位作者的应全部列出,之间用逗号隔开(英文半角);三位以上作者只列出前三位,其余用“etal.”表示,“etal.”后加引文题目,题目后加文献标识符,标识符后加“.”,然后空一格加期刊名称。例:[1]WangPeng,YuMin,WangJia-jun,–9andSystemicInflammationResponseSyndrome[J].ProgressinModernBiomedicine(现代生物医学进展),2012,12(5):998-1000[2]李友邕,周碧燕,覃李线,等.急性呼吸道感染患儿白细胞计数、内毒素、C反应蛋白水平变化及临床意义[J].现代生物医学进展,2012,12(18):3522-3445LiYou-yong,ZhouBi-yan,QinLi-xian,[J].ProgressinModernBiomedicine,2012,12(18):3522-3445[3]ChapmanPB,HauschildA,RobertC,[J].NEnglJMed,2011,364(26):2507-2516[4]HumphrisJL,JohnsAL,SimpsonSH,[J].Cancer,2014,14.[Epubaheadofprint][5] 徐光, 郭凌晨, 石莎, 等. 治疗阿尔茨海默病的新策略:脑啡肽酶[J]. 现代生物医学进展, 2009, 9(6): 1151-1153Xu Guang, Guo Ling-chen, Shi Sha, et al. New Strategy of Alzheimer’s Disease Treatment: Neprilysin[J]. ProgressinModernBiomedicine, 2009, 9(6): 1151-1153[6] 方玉. 用于增生性疾病的中频微电场/电流治疗技术研发[D]. 北京: 清华大学, 2010Fang Yu. The Development of intermediate Frequency Micro-Electric Fields/ Current Therapy Technique for Proliferative Diseases[D]. Beijing: Tsinghua University, 2010[7] 中华人民共和国国家档案局. 科学技术研究课题档案管理规范(DA/T2-1992)[Z]. 1992-07-20The State Archives Bureau. Scienceand Technology Research Archives Management Practice (DA/T2-1992)[Z].1992-07-20[8] 档案馆建筑设计规范(JGJ25-2010)[S]. 北京: 中国建筑工业出版社, 2010Code for Design of Archives Buildings (JGJ25-2010)[S]. Beijing: China Construction Industry Press, 2010注:中图分类号采用《中国图书馆分类法》(第5版)进行分类。多个主题的文章可标识2个或3个分类号。文献标识码:论著类用“A”,技术方法类用“B”,管理性文章“C”,报道性文章“D”,文件、资料用“E”。

《健康必读》《按摩与康复医学》 《中外健康文摘》 《医药前沿》 《求医问药》 《当代医学》《大家健康》《核心 现代生物医学进展》 《核心 吉林大学学报医学版》 《核心 中国医药导刊》 《核心 中国妇幼保健》 《核心 贵阳中医学院学报》《核心 中国老年学》

普刊其实是没有级别的,人家给你说的国家级省级,都是忽悠你的,只有普刊和核心期刊之分

相关百科

热门百科

首页
发表服务