你好,希望我们可以帮你。相关资料在知网,万维网能查到资料。论文不会写,最关键的是要把心态放正,一步步来,多看点范文,看看别人怎么写的,食品安全与检测方面论文是我们特长,我们的服务特色:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。
全文地址 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。关键词:生物传感器;发酵工业;环境监测。一、 引言从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应用PCR的DNA生物传感器也越来越多。二、 研究现状及主要应用领域1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:pH=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligenes eutrophus (AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium Spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。
微量元素与人体健康内容概要 古往今来,探索生命之谜,保护人体健康、延年益寿已成为人类梦寐以求的美好愿望。目前已发现许多元素在人体内含量不足人体体重的万分之一,总量之和还不足人体体重的千分之一,故取名为微量元素。微量元素是人体中酶、激素、维生素等活性物质的核心成份,对人体的正常代谢和健康起着重要作用。现代医学证明,人体所含微量元素的多少与癌症、心血管疾病及人类的寿命有着密切的关系。本文旨在探索微量元素与人体健康之间的关系一、微量元素的概念所谓微量元素是针对大量元素而言的。人体内的大量元素又称为主要元素,共有11种,按需要量多少的顺序排列为:氧、碳、氢、氮、钙、磷、钾、硫、钠、氯、镁。其中氧、碳、氢、氮占人体质量的95%,其余约4%,而微量元素约占1%。在生命必需的元素中,金属元素共有14种,其中钾、钠、钙、镁的含量占人体内金属元素总量的99%以上,其余10种元素的含量很少。习惯上把含量高于的元素,称为常量元素,低于此值的元素,称为微量元素。人体若缺乏某种主要元素,会引起人体机能失调,但这种情况很少发生,一般的饮食含有绰绰有余的宏量元素。微量元素虽然在体内含量很少,但它们在生命过程中的作用不可低估。没有这些必需的微量元素,酶的活性就会降低或完全丧失,激素、蛋白质、维生素的合成和代谢也就会发生障碍,人类生命过程就难以继续进行。微量元素在人体中的主要功能是: 1.运载常量元素,把大量元素带到各组织中去。 2.充当生物体内各种酶的活性中心,促进新陈代谢。酶在生物体内是许多化学反应必不可少的催化剂,而许多微量元素却是酶的组成部分或激活剂。例如锌与200多种酶的活性或结构有关。 3.参与体内各种激素的作用。如锌可以促进性激素的功能,铬可促进胰岛的作用等。二、微量元素具体介绍目前,对于某些微量元素的功能尚不完全清楚,下面只作一简要介绍。1.碘碘在食物中主要以无机碘化物形式存在,其他形态的无机碘首先被吸收,然后被还原成碘化物。消化器官中的碘迅速地几乎完全被吸收。碘在人体内的含量约为25mg,其中一半分布在甲状腺内。甲状腺的作用是合成、分泌出一种甲状腺激素,它是促进人体生长发育和新陈代谢的重要激素,特别是对脑细胞的发育起决定作用。因此碘有“智力元素”之誉称。缺碘对人体会造成巨大损害,特别是对儿童、婴儿和孕妇。如果婴幼儿时期严重缺碘,其骨骼生长和大脑的发育将会受到严重影响,患呆小症,表现为身材矮小、行动迟缓、食欲不振、智力低下。另外,近年来医学研究表明,人体缺碘还能诱发乳腺癌、卵巢癌、子宫癌及甲状腺癌等。防治碘缺乏症最方便又经济的方法是食盐加碘,同时可经常食用含碘丰富的海产品如海虾、带鱼、海带、紫菜等。2.铁铁在周期表中属d区第Ⅷ族过渡金属,最常见的氧化态是Fe(Ⅲ)和Fe(Ⅱ)。Fe(Ⅲ)的电子构型是3d5,顺磁性;Fe(Ⅱ)的电子构型是3d6,其高自旋态有顺磁性,低自旋态是逆磁性的。Fe(Ⅲ)和Fe(Ⅱ)都是较强的路易斯酸,易形成立体构型为八面体的配合物。一般成年人体内含铁约3~5g,相当于一枚小铁钉的重量,主要存在血液当中。这些铁主要是以络离子的形式存在,可与血红素、蛋白质等形成血红蛋白和肌红蛋白,起到运输和贮存氧的作用。当人体缺铁时会影响血红蛋白和肌红蛋白的形成,从而使血液中的红细胞数量或血红蛋白含量降低,影响载氧量,引起整个肌体的生理紊乱,这就是贫血。据世界卫生组织调查,缺铁性贫血是世界通病,婴幼儿贫血的根源在于缺铁。许多儿童呈“豆芽菜”体型,缺铁也是一个重要原因。防止人体缺铁最方便的方法是通过饮食调节,多食用含铁质较多的动物肝脏和其它内脏,其次是瘦肉、蛋黄。在一些蔬菜和水果中也含有较多的铁质。另外使用铁锅炒菜也能补充人体铁质。在酸性条件下人体肠胃有利于铁的吸收,因此在食物中含有带酸性的维生素C有利于铁的吸收和利用。3.氟氟是卤族元素,价电子构型是2s22p5,电负性最高(),是最活泼的非金属。在水溶液中以F-离子形式存在。单质氟(F2)是淡黄绿色气体,有强烈的刺激性。其典型的化学性质是强氧化性:常温下能同多种物质反应,高温下几乎能同所有的物质作用。现代医学已确认氟是人体必需的微量元素,对牙齿、骨骼具有重要作用。正常人骨骼中含氟约在,在牙齿中氟的含量约在。微量的氟在人体中有利于钙和磷的利用及在骨骼中沉积,可加速骨骼的形成,增加骨骼的硬度,并能刺激成骨细胞增生。微量的氟能被牙釉质中的羟磷灰石吸附,形成坚硬质密的保护层,从而抑制喜酸细菌的活性,对牙齿起到保护作用。当饮用水中含氟量降低时就会患龋齿,不仅危害牙齿,还可导致其他口脑疾病的产生。世界卫生组织已把龋齿列为继心血管病和癌症之后的第三大疾病。为了预防龋齿,可采取增氧措施,如饮用水加氟、使用含氟牙膏,食用含氟食品及饮料如贝类、海蛰、葡萄酒、茶饮料等。4.钼钼是周期系中d区ⅥB族第二过渡系元素。Mo的价电子构型为4d55s1,有从-2到+6的多种氧化态,其低氧化态不稳定,常见的氧化态是+4、+5、+6。形成多酸型配合物是高氧化态钼的特征。微量元素钼在人体内分布很广,成年人体内含钼总量约9mg,在体内分布以肝内含量最高,肾其次。近年来研究表明,缺钼可导致神经异常,智力发育迟缓,影响骨骼生长。更为严重的是人体内含钼量降低可提高食管癌的发病率。众所周知,亚硝胺类致癌物是诱发食管癌的重要因素,亚硝胺类的前体是亚硝酸盐和胺类,它们在适当的酸碱条件下合成亚硝胺。亚硝酸盐主要来自环境中的NO3-,因此降低NO3-的来源是阻断食管癌高发的有效措施。钼是一重有实用意义的抗癌元素,它能有效降低亚硝胺前体NO3-和NO2-,抑制亚硝胺类致癌物的产生。钼的摄入量与饮食有关,动物肝肾、谷物、豆类物质含钼丰富,实为补钼佳品。5.钒 正常成年人体内共含钒约25mg,血液中钒含量甚微,人体内钒多集中在骨骼和牙齿中。钒能刺激人体的造血功能,使血红蛋白及红细胞均增多,促进人体的造血功能得以改善。钒还能抑制胆固醇的合成,减轻诱发动脉硬化的程度。若人体内钒的含量降低则导致骨骼发育不正常,生长缓慢,生殖功能受损。另外,牙釉质和牙本质都属于羟磷灰石,钒可以置换到羟磷灰石中,起到预防龋齿的作用。日本学者研究表明,糖尿病患者与体内钒含量的降低有一定的关系。6.锌 锌位于元素周期表ⅡB族。在化合物中锌以+2价氧化态存在,它具有一个充满的3d电子壳层,故稳定性强。锌能在许多生物学过程中被利用。它是一个强路易斯酸。锌是人体中约200种的组成成份,亦是许多的催化剂。缺锌後各种含锌的活性降低,DNA、RNA和蛋白质的合成减少,氨基酸的代谢紊乱。由於锌与很多、核酸及蛋白质的合成密切相关,通过DNA和RNA聚合的作用,促进蛋白质的吸收和合成、细胞的分裂生长和再生。所以锌对婴幼儿和青少年的生长发育有重要的营养意义。如果缺锌可发生缺锌侏儒,补锌可消除缺锌侏儒。锌通过乙氨基酸的媒介,增进食欲和消化机能。还通过唾液内含锌蛋白━味觉素作介质影响味觉和食欲。人和动物缺锌後味觉和食欲减退,补锌即可以改善。现已将食欲降低、偏食、异食癖等列为婴幼儿缺锌的早期表现。有人认为妊娠初期味觉、嗅觉异常也与缺锌有关。缺锌损害免疫功能、生殖功能等。7.铜铜是人体必需的微量元素之一,在成年正常人体内含量约为60~120mg,分布在身体各部分,在肝、脑、心脏及肾内浓度较高。在血液中铜主要存在于红细胞和血清中。与铁相似,铜也参与人体内的造血过程,催化血红蛋白的合成,同时又是人体内的一些金属酶的组成成分。若人体内铜的含量降低则神经、肌肉及肝脏等组织中的氧化代谢就无法得到调节,人体就会出现动作失调、神经失常等症状。若在婴幼儿时期严重缺铜,会导致发育迟缓、肝脾肿大、厌食等疾病。若成年人严重缺铜则会出现血管破裂、内出血及骨骼变脆等疾病。当人体缺乏铜时,在膳食方面可多食肉类、蛋类、豆类、粗粮、蔬菜等含铜丰富的食品或服用铜制剂药物。8.硒 在周期表中,Se是ⅥA族元素,与氧、硫同族。Se的价电子构型是4s24p4,有多种氧化态(-2,0,+4,+6),其高氧化态常以含氧酸根形式存在,-2价的低氧化态为H2Se或-SeH。这些存在形式与同族元素S相应氧化态的化合物极相似。硒是人体必需的微量元素之一,与人类健康息息相关。在人体内硒在心脏中的含量最高,它对心肌起到保护作用。如果人体缺乏硒,机体细胞就会缺乏自我保护功能,所以全身的组织、脏器功能缺乏。在心脑血管方面表现尤为突出:脑内动脉硬化加重,脑血栓、脑栓塞的发生也会增多,而且脑动脉硬化及脑血栓、脑栓塞通常治疗效果不好;在肝脏的急、慢性炎症期,由于硒的缺乏,肝脏也会缺乏自我保护功能;在消化系统方面,由于缺硒,可出现消化性溃疡、原因不明的乳糜样腹泻。同时,缺硒后全身免疫系统的免疫功能低下,抗感染能力下降,甚至可以导致癌症的发生。食物中海味、小麦、大米、大蒜、芥菜及肉类中含硒量较高。所以身体健康正常的人每天通过合理调节膳食,一般可以满足身体对硒的需要。9.铬 在由胰岛素参与的糖或脂肪的代谢过程中,铬是必不可少的一种元素,也是维持正常胆固醇所必需的元素。铬可协助胰岛素发挥作用,防止动脉硬化,促进蛋白质代谢合成,促进生长发育。但当铬含量增高,如长期吸入铬酸盐粉,可诱发肺癌。10.钴 在周期表中,钴和铁相邻,属d区第Ⅷ族过渡金属。价电子构型3d74s2。有多种氧化态,常见的重要氧化态是Co(Ⅱ)、Co(Ⅲ)。在通常情况下,Co2+离子稳定,Co3+离子氧化性强。它们皆有较强的配位能力,能与多种配体形成配合物,其立体几何构型以八面体为主。钴是维生素B12分子的一个必要组分,B12是形成红细胞所必需的成分。钴对蛋白质、脂肪、糖类代谢、血红蛋白的合成都具有重要的作用,并可扩张血管,降低血压。但钴过量可引起红细胞过多症,还可引起胃肠功能紊乱,耳聋、心肌缺血。11.锰 锰参与许多酶催化反应,是一切生物离不开的。五、总结随着社会工业化的发展及人们生活方式的改变也影响到人体内微量元素的平衡并导致许多疾病,如婴儿母乳喂养不足引起某些微量元素缺乏使婴儿生长发育异常并易患疾病;食物加工的过于精细会丢失某些微量元素从而导致饮食中微量元素的缺乏,饮食的过于单调使体内微量元素失衡引起疾病;而由于铝制品炊具的广泛应用使人体内铝元素的过多及其它微量元素的失衡可引起老年性痴呆。微量元素的补充主要依靠食物,因此人们的饮食应当丰富多样、粗细搭配,以维持体内微量元素含量的正常与均衡,如有明显缺乏或过量引起相关疾病者应尽早就医及时给予药物治疗。 微量元素与人类健康有密切关系。它们的摄入过量、不足、或缺乏都会不同程度地引起人体生理的异常或发生疾病。微量元素最突出的作用是与生命活力密切相关,仅仅像火柴头那样大小或更少的量就能发挥巨大的生理作用。值得注意的是这些微量元素必须直接或间接由土壤供给。根据科学研究,到目前为止,已被确认与人体健康和生命有关的必需微量元素有18种,即有铁、铜、锌、钴、锰、铬、硒、碘、镍、氟、钼、钒、锡、硅、锶、硼、铷、砷等。这每种微量元素都有其特殊的生理功能。尽管它们在人体内含量极小,但它们对维持人体中的一些决定性的新陈代谢却是十分必要的。一旦缺少了这些必需的微量元素,人体就会出现疾病,甚至危及生命。国外曾有报道:机体内含铁、铜、锌总量减少,均可减弱免疫机制(抵抗疾病力量),降低抗病能力,助长细菌感染,而且感染后的死亡率亦较高。微量元素在抗病、防癌、延年益寿等方面都还起着不可忽视的作用。 微量元素与人类健康密切相关。近年来,微量元素被认为是关系到人类健康和长寿的一个充满希望的新领域,已引起国内外营养界和医学界的普遍重视。微量元素一旦摄入过量将对人体造成严重的破坏,甚至危及人的生命安全。近几年来由于环境污染的加剧,由于人体过度摄入微量元素而引起的中毒事件频频发生,很多公共疾病的罪魁祸首便是微量元素。附录:汞中毒事例:疯猫跳海从1953年到1956年,在日本熊本县水俣湾附近的小渔村,出现了许多怪异的现象。一向温顺的猫变得步态不稳,抽筋麻痹,最后疯狂地跳入水中溺水而死,当时人们谓之“自杀猫”。更令人惊讶的是,人群中出现了大批口齿不清、步态不稳、面部痴呆的患者,进而发展为耳聋眼瞎,全身麻木,最后精神失常,他们时而酣睡不醒,时而兴奋异常,身体弯曲成弓,高叫而死。各种猜测与流言不胫而走,恐怖笼罩着周围地区,这就是闻名世界的日本公害事件之一——“水俣病事件”。后经调查研究于1962年才确定水俣病的发生是由于汞的环境污染,特别是长期食用被污染的鱼贝类引起的甲基汞慢性中毒。这是由水俣氮肥厂排出的含氯化甲基汞(CH3HgCl)的废水污染海域后所造成的后果。继水俣镇之后,日本于1964年、1973年先后在西海岸的阿贺野川流域的新浮县境内,明海南部沿岸的有明町等地发生了第二次、第三次水俣病。据报导,第一次水俣病患者558人(72人死亡),第二次332人(14人死亡),第三次10人,前后共计900人,实际受害人数远远超过这个数字,仅水俣镇受害居民就有1万人左右。三次事件均是由含汞废水污染水源后引起的。痛痛病继水俣病之后,日本又发现了一种怪病。患病初期,患者只是感到腰部和手足等处关节疼痛,后来又发展为神经痛、及至骨骼软化、萎缩、自然骨折、在剧痛难忍中丧生。对死者进行尸体解剖发现,他们全身多处骨折,有的竟达到73处,身高也缩短了几十厘米。这种病因不明的疾患,就被称为“痛痛病”。经过调查,痛痛病发生在日本富山县神通川下游镉污染地区,病因就是当地居民长期钦用被镉金属污染的河水和食用此水灌溉的含镉稻米。这些镉是从哪里来的呢?原来,日本三井金属矿业公司在神通川上游开设了炼锌厂,炼锌厂经年累月向神通川排放废水,其中含有大量镉离子,于是镉便由食物链进入人体,积累到一定的数量后便引发了痛痛病。痛痛病事件从1955年一直延续到70年代。据统计,1963年至1979年共有患者130人,其中81人真的痛死了。拿破仑之死和自贡恐龙绝灭之谜不可一世的法兰西第一帝国君主拿破仑于1821年在圣赫勒拿岛死去。拿破仑究竟死于何人之手?100多年来一直是个谜。随着科技的发展,20世纪70年代,科学家用重要的环境污染“监测器”——头发,分段分析其微量元素的浓度,以了解各时期内微量元素的摄人情况。结果发现拿破仑的头发里砷的含量比正常人高出40倍,而圣赫勒拿岛上的食用水中含有较多的砷。历史之谜终于揭开,叱咤风云的拿破仑,死于慢性砷中毒。无独有偶,近年来我国科学家在研究国内外罕见的十分壮观的我国四川省自贡市恐龙遗址时,发现这里大量石化了的恐龙骨骼与残骸重重堆积的奇异景象竟同样是由微量元素砷所造成的。地质学家通过多年研究,发现自贡恐龙骨骼中砷的含量达100—300mg/kg,比一般动物骨骼高出数百倍至数干倍,对此地岩中残存的碳化植物的碎片进行化学分析后,发现当时植物中砷的含量高达100~1000mg/kg。正是自贡当年格外丰盛的水草和参天大树,使云集在这里的众多恐龙发生积累性的慢性食物中毒而大批死亡以致绝灭。盛极一时的大恐龙,断送在元素砷之手。微量元素对人体健康起着不可低估的作用,目前还有很多微量元素之谜等待我们去揭破。相信随着科学技术的不断发展,对微量元素的研究将有重大突破,这将为人类健康带来新的曙光。
你好,希望我们可以帮你。相关资料在知网,万维网能查到资料。论文不会写,最关键的是要把心态放正,一步步来,多看点范文,看看别人怎么写的,食品安全与检测方面论文是我们特长,我们的服务特色:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。
不能喝。。火锅的汤一直在开。。还有已经涮了那么多东西里面的嘌呤很多。。最好别喝。。
如何认识食品中的亚硝酸盐论h 我知道
大部份不应该喝。若是自家火锅,汤底是骨头汤,在开涮前喝;如是火锅料的,无论是自家的还是外面的,涮前涮后都不要喝,勿论是否卫生,绝对是没营养的。
微量元素与人体健康内容概要 古往今来,探索生命之谜,保护人体健康、延年益寿已成为人类梦寐以求的美好愿望。目前已发现许多元素在人体内含量不足人体体重的万分之一,总量之和还不足人体体重的千分之一,故取名为微量元素。微量元素是人体中酶、激素、维生素等活性物质的核心成份,对人体的正常代谢和健康起着重要作用。现代医学证明,人体所含微量元素的多少与癌症、心血管疾病及人类的寿命有着密切的关系。本文旨在探索微量元素与人体健康之间的关系一、微量元素的概念所谓微量元素是针对大量元素而言的。人体内的大量元素又称为主要元素,共有11种,按需要量多少的顺序排列为:氧、碳、氢、氮、钙、磷、钾、硫、钠、氯、镁。其中氧、碳、氢、氮占人体质量的95%,其余约4%,而微量元素约占1%。在生命必需的元素中,金属元素共有14种,其中钾、钠、钙、镁的含量占人体内金属元素总量的99%以上,其余10种元素的含量很少。习惯上把含量高于的元素,称为常量元素,低于此值的元素,称为微量元素。人体若缺乏某种主要元素,会引起人体机能失调,但这种情况很少发生,一般的饮食含有绰绰有余的宏量元素。微量元素虽然在体内含量很少,但它们在生命过程中的作用不可低估。没有这些必需的微量元素,酶的活性就会降低或完全丧失,激素、蛋白质、维生素的合成和代谢也就会发生障碍,人类生命过程就难以继续进行。微量元素在人体中的主要功能是: 1.运载常量元素,把大量元素带到各组织中去。 2.充当生物体内各种酶的活性中心,促进新陈代谢。酶在生物体内是许多化学反应必不可少的催化剂,而许多微量元素却是酶的组成部分或激活剂。例如锌与200多种酶的活性或结构有关。 3.参与体内各种激素的作用。如锌可以促进性激素的功能,铬可促进胰岛的作用等。二、微量元素具体介绍目前,对于某些微量元素的功能尚不完全清楚,下面只作一简要介绍。1.碘碘在食物中主要以无机碘化物形式存在,其他形态的无机碘首先被吸收,然后被还原成碘化物。消化器官中的碘迅速地几乎完全被吸收。碘在人体内的含量约为25mg,其中一半分布在甲状腺内。甲状腺的作用是合成、分泌出一种甲状腺激素,它是促进人体生长发育和新陈代谢的重要激素,特别是对脑细胞的发育起决定作用。因此碘有“智力元素”之誉称。缺碘对人体会造成巨大损害,特别是对儿童、婴儿和孕妇。如果婴幼儿时期严重缺碘,其骨骼生长和大脑的发育将会受到严重影响,患呆小症,表现为身材矮小、行动迟缓、食欲不振、智力低下。另外,近年来医学研究表明,人体缺碘还能诱发乳腺癌、卵巢癌、子宫癌及甲状腺癌等。防治碘缺乏症最方便又经济的方法是食盐加碘,同时可经常食用含碘丰富的海产品如海虾、带鱼、海带、紫菜等。2.铁铁在周期表中属d区第Ⅷ族过渡金属,最常见的氧化态是Fe(Ⅲ)和Fe(Ⅱ)。Fe(Ⅲ)的电子构型是3d5,顺磁性;Fe(Ⅱ)的电子构型是3d6,其高自旋态有顺磁性,低自旋态是逆磁性的。Fe(Ⅲ)和Fe(Ⅱ)都是较强的路易斯酸,易形成立体构型为八面体的配合物。一般成年人体内含铁约3~5g,相当于一枚小铁钉的重量,主要存在血液当中。这些铁主要是以络离子的形式存在,可与血红素、蛋白质等形成血红蛋白和肌红蛋白,起到运输和贮存氧的作用。当人体缺铁时会影响血红蛋白和肌红蛋白的形成,从而使血液中的红细胞数量或血红蛋白含量降低,影响载氧量,引起整个肌体的生理紊乱,这就是贫血。据世界卫生组织调查,缺铁性贫血是世界通病,婴幼儿贫血的根源在于缺铁。许多儿童呈“豆芽菜”体型,缺铁也是一个重要原因。防止人体缺铁最方便的方法是通过饮食调节,多食用含铁质较多的动物肝脏和其它内脏,其次是瘦肉、蛋黄。在一些蔬菜和水果中也含有较多的铁质。另外使用铁锅炒菜也能补充人体铁质。在酸性条件下人体肠胃有利于铁的吸收,因此在食物中含有带酸性的维生素C有利于铁的吸收和利用。3.氟氟是卤族元素,价电子构型是2s22p5,电负性最高(),是最活泼的非金属。在水溶液中以F-离子形式存在。单质氟(F2)是淡黄绿色气体,有强烈的刺激性。其典型的化学性质是强氧化性:常温下能同多种物质反应,高温下几乎能同所有的物质作用。现代医学已确认氟是人体必需的微量元素,对牙齿、骨骼具有重要作用。正常人骨骼中含氟约在,在牙齿中氟的含量约在。微量的氟在人体中有利于钙和磷的利用及在骨骼中沉积,可加速骨骼的形成,增加骨骼的硬度,并能刺激成骨细胞增生。微量的氟能被牙釉质中的羟磷灰石吸附,形成坚硬质密的保护层,从而抑制喜酸细菌的活性,对牙齿起到保护作用。当饮用水中含氟量降低时就会患龋齿,不仅危害牙齿,还可导致其他口脑疾病的产生。世界卫生组织已把龋齿列为继心血管病和癌症之后的第三大疾病。为了预防龋齿,可采取增氧措施,如饮用水加氟、使用含氟牙膏,食用含氟食品及饮料如贝类、海蛰、葡萄酒、茶饮料等。4.钼钼是周期系中d区ⅥB族第二过渡系元素。Mo的价电子构型为4d55s1,有从-2到+6的多种氧化态,其低氧化态不稳定,常见的氧化态是+4、+5、+6。形成多酸型配合物是高氧化态钼的特征。微量元素钼在人体内分布很广,成年人体内含钼总量约9mg,在体内分布以肝内含量最高,肾其次。近年来研究表明,缺钼可导致神经异常,智力发育迟缓,影响骨骼生长。更为严重的是人体内含钼量降低可提高食管癌的发病率。众所周知,亚硝胺类致癌物是诱发食管癌的重要因素,亚硝胺类的前体是亚硝酸盐和胺类,它们在适当的酸碱条件下合成亚硝胺。亚硝酸盐主要来自环境中的NO3-,因此降低NO3-的来源是阻断食管癌高发的有效措施。钼是一重有实用意义的抗癌元素,它能有效降低亚硝胺前体NO3-和NO2-,抑制亚硝胺类致癌物的产生。钼的摄入量与饮食有关,动物肝肾、谷物、豆类物质含钼丰富,实为补钼佳品。5.钒 正常成年人体内共含钒约25mg,血液中钒含量甚微,人体内钒多集中在骨骼和牙齿中。钒能刺激人体的造血功能,使血红蛋白及红细胞均增多,促进人体的造血功能得以改善。钒还能抑制胆固醇的合成,减轻诱发动脉硬化的程度。若人体内钒的含量降低则导致骨骼发育不正常,生长缓慢,生殖功能受损。另外,牙釉质和牙本质都属于羟磷灰石,钒可以置换到羟磷灰石中,起到预防龋齿的作用。日本学者研究表明,糖尿病患者与体内钒含量的降低有一定的关系。6.锌 锌位于元素周期表ⅡB族。在化合物中锌以+2价氧化态存在,它具有一个充满的3d电子壳层,故稳定性强。锌能在许多生物学过程中被利用。它是一个强路易斯酸。锌是人体中约200种的组成成份,亦是许多的催化剂。缺锌後各种含锌的活性降低,DNA、RNA和蛋白质的合成减少,氨基酸的代谢紊乱。由於锌与很多、核酸及蛋白质的合成密切相关,通过DNA和RNA聚合的作用,促进蛋白质的吸收和合成、细胞的分裂生长和再生。所以锌对婴幼儿和青少年的生长发育有重要的营养意义。如果缺锌可发生缺锌侏儒,补锌可消除缺锌侏儒。锌通过乙氨基酸的媒介,增进食欲和消化机能。还通过唾液内含锌蛋白━味觉素作介质影响味觉和食欲。人和动物缺锌後味觉和食欲减退,补锌即可以改善。现已将食欲降低、偏食、异食癖等列为婴幼儿缺锌的早期表现。有人认为妊娠初期味觉、嗅觉异常也与缺锌有关。缺锌损害免疫功能、生殖功能等。7.铜铜是人体必需的微量元素之一,在成年正常人体内含量约为60~120mg,分布在身体各部分,在肝、脑、心脏及肾内浓度较高。在血液中铜主要存在于红细胞和血清中。与铁相似,铜也参与人体内的造血过程,催化血红蛋白的合成,同时又是人体内的一些金属酶的组成成分。若人体内铜的含量降低则神经、肌肉及肝脏等组织中的氧化代谢就无法得到调节,人体就会出现动作失调、神经失常等症状。若在婴幼儿时期严重缺铜,会导致发育迟缓、肝脾肿大、厌食等疾病。若成年人严重缺铜则会出现血管破裂、内出血及骨骼变脆等疾病。当人体缺乏铜时,在膳食方面可多食肉类、蛋类、豆类、粗粮、蔬菜等含铜丰富的食品或服用铜制剂药物。8.硒 在周期表中,Se是ⅥA族元素,与氧、硫同族。Se的价电子构型是4s24p4,有多种氧化态(-2,0,+4,+6),其高氧化态常以含氧酸根形式存在,-2价的低氧化态为H2Se或-SeH。这些存在形式与同族元素S相应氧化态的化合物极相似。硒是人体必需的微量元素之一,与人类健康息息相关。在人体内硒在心脏中的含量最高,它对心肌起到保护作用。如果人体缺乏硒,机体细胞就会缺乏自我保护功能,所以全身的组织、脏器功能缺乏。在心脑血管方面表现尤为突出:脑内动脉硬化加重,脑血栓、脑栓塞的发生也会增多,而且脑动脉硬化及脑血栓、脑栓塞通常治疗效果不好;在肝脏的急、慢性炎症期,由于硒的缺乏,肝脏也会缺乏自我保护功能;在消化系统方面,由于缺硒,可出现消化性溃疡、原因不明的乳糜样腹泻。同时,缺硒后全身免疫系统的免疫功能低下,抗感染能力下降,甚至可以导致癌症的发生。食物中海味、小麦、大米、大蒜、芥菜及肉类中含硒量较高。所以身体健康正常的人每天通过合理调节膳食,一般可以满足身体对硒的需要。9.铬 在由胰岛素参与的糖或脂肪的代谢过程中,铬是必不可少的一种元素,也是维持正常胆固醇所必需的元素。铬可协助胰岛素发挥作用,防止动脉硬化,促进蛋白质代谢合成,促进生长发育。但当铬含量增高,如长期吸入铬酸盐粉,可诱发肺癌。10.钴 在周期表中,钴和铁相邻,属d区第Ⅷ族过渡金属。价电子构型3d74s2。有多种氧化态,常见的重要氧化态是Co(Ⅱ)、Co(Ⅲ)。在通常情况下,Co2+离子稳定,Co3+离子氧化性强。它们皆有较强的配位能力,能与多种配体形成配合物,其立体几何构型以八面体为主。钴是维生素B12分子的一个必要组分,B12是形成红细胞所必需的成分。钴对蛋白质、脂肪、糖类代谢、血红蛋白的合成都具有重要的作用,并可扩张血管,降低血压。但钴过量可引起红细胞过多症,还可引起胃肠功能紊乱,耳聋、心肌缺血。11.锰 锰参与许多酶催化反应,是一切生物离不开的。五、总结随着社会工业化的发展及人们生活方式的改变也影响到人体内微量元素的平衡并导致许多疾病,如婴儿母乳喂养不足引起某些微量元素缺乏使婴儿生长发育异常并易患疾病;食物加工的过于精细会丢失某些微量元素从而导致饮食中微量元素的缺乏,饮食的过于单调使体内微量元素失衡引起疾病;而由于铝制品炊具的广泛应用使人体内铝元素的过多及其它微量元素的失衡可引起老年性痴呆。微量元素的补充主要依靠食物,因此人们的饮食应当丰富多样、粗细搭配,以维持体内微量元素含量的正常与均衡,如有明显缺乏或过量引起相关疾病者应尽早就医及时给予药物治疗。 微量元素与人类健康有密切关系。它们的摄入过量、不足、或缺乏都会不同程度地引起人体生理的异常或发生疾病。微量元素最突出的作用是与生命活力密切相关,仅仅像火柴头那样大小或更少的量就能发挥巨大的生理作用。值得注意的是这些微量元素必须直接或间接由土壤供给。根据科学研究,到目前为止,已被确认与人体健康和生命有关的必需微量元素有18种,即有铁、铜、锌、钴、锰、铬、硒、碘、镍、氟、钼、钒、锡、硅、锶、硼、铷、砷等。这每种微量元素都有其特殊的生理功能。尽管它们在人体内含量极小,但它们对维持人体中的一些决定性的新陈代谢却是十分必要的。一旦缺少了这些必需的微量元素,人体就会出现疾病,甚至危及生命。国外曾有报道:机体内含铁、铜、锌总量减少,均可减弱免疫机制(抵抗疾病力量),降低抗病能力,助长细菌感染,而且感染后的死亡率亦较高。微量元素在抗病、防癌、延年益寿等方面都还起着不可忽视的作用。 微量元素与人类健康密切相关。近年来,微量元素被认为是关系到人类健康和长寿的一个充满希望的新领域,已引起国内外营养界和医学界的普遍重视。微量元素一旦摄入过量将对人体造成严重的破坏,甚至危及人的生命安全。近几年来由于环境污染的加剧,由于人体过度摄入微量元素而引起的中毒事件频频发生,很多公共疾病的罪魁祸首便是微量元素。附录:汞中毒事例:疯猫跳海从1953年到1956年,在日本熊本县水俣湾附近的小渔村,出现了许多怪异的现象。一向温顺的猫变得步态不稳,抽筋麻痹,最后疯狂地跳入水中溺水而死,当时人们谓之“自杀猫”。更令人惊讶的是,人群中出现了大批口齿不清、步态不稳、面部痴呆的患者,进而发展为耳聋眼瞎,全身麻木,最后精神失常,他们时而酣睡不醒,时而兴奋异常,身体弯曲成弓,高叫而死。各种猜测与流言不胫而走,恐怖笼罩着周围地区,这就是闻名世界的日本公害事件之一——“水俣病事件”。后经调查研究于1962年才确定水俣病的发生是由于汞的环境污染,特别是长期食用被污染的鱼贝类引起的甲基汞慢性中毒。这是由水俣氮肥厂排出的含氯化甲基汞(CH3HgCl)的废水污染海域后所造成的后果。继水俣镇之后,日本于1964年、1973年先后在西海岸的阿贺野川流域的新浮县境内,明海南部沿岸的有明町等地发生了第二次、第三次水俣病。据报导,第一次水俣病患者558人(72人死亡),第二次332人(14人死亡),第三次10人,前后共计900人,实际受害人数远远超过这个数字,仅水俣镇受害居民就有1万人左右。三次事件均是由含汞废水污染水源后引起的。痛痛病继水俣病之后,日本又发现了一种怪病。患病初期,患者只是感到腰部和手足等处关节疼痛,后来又发展为神经痛、及至骨骼软化、萎缩、自然骨折、在剧痛难忍中丧生。对死者进行尸体解剖发现,他们全身多处骨折,有的竟达到73处,身高也缩短了几十厘米。这种病因不明的疾患,就被称为“痛痛病”。经过调查,痛痛病发生在日本富山县神通川下游镉污染地区,病因就是当地居民长期钦用被镉金属污染的河水和食用此水灌溉的含镉稻米。这些镉是从哪里来的呢?原来,日本三井金属矿业公司在神通川上游开设了炼锌厂,炼锌厂经年累月向神通川排放废水,其中含有大量镉离子,于是镉便由食物链进入人体,积累到一定的数量后便引发了痛痛病。痛痛病事件从1955年一直延续到70年代。据统计,1963年至1979年共有患者130人,其中81人真的痛死了。拿破仑之死和自贡恐龙绝灭之谜不可一世的法兰西第一帝国君主拿破仑于1821年在圣赫勒拿岛死去。拿破仑究竟死于何人之手?100多年来一直是个谜。随着科技的发展,20世纪70年代,科学家用重要的环境污染“监测器”——头发,分段分析其微量元素的浓度,以了解各时期内微量元素的摄人情况。结果发现拿破仑的头发里砷的含量比正常人高出40倍,而圣赫勒拿岛上的食用水中含有较多的砷。历史之谜终于揭开,叱咤风云的拿破仑,死于慢性砷中毒。无独有偶,近年来我国科学家在研究国内外罕见的十分壮观的我国四川省自贡市恐龙遗址时,发现这里大量石化了的恐龙骨骼与残骸重重堆积的奇异景象竟同样是由微量元素砷所造成的。地质学家通过多年研究,发现自贡恐龙骨骼中砷的含量达100—300mg/kg,比一般动物骨骼高出数百倍至数干倍,对此地岩中残存的碳化植物的碎片进行化学分析后,发现当时植物中砷的含量高达100~1000mg/kg。正是自贡当年格外丰盛的水草和参天大树,使云集在这里的众多恐龙发生积累性的慢性食物中毒而大批死亡以致绝灭。盛极一时的大恐龙,断送在元素砷之手。微量元素对人体健康起着不可低估的作用,目前还有很多微量元素之谜等待我们去揭破。相信随着科学技术的不断发展,对微量元素的研究将有重大突破,这将为人类健康带来新的曙光。
全文地址 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。关键词:生物传感器;发酵工业;环境监测。一、 引言从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应用PCR的DNA生物传感器也越来越多。二、 研究现状及主要应用领域1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:pH=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligenes eutrophus (AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium Spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。
化工专业毕业论文开题报告范文
1.引言
中国有82%的人饮用浅井和江河水,其中水质污染严惩细菌超过卫生标准的占了75%,受到有机物污染的饮用水人口约亿。长期以来,人们一直认为自来水是安全卫生的。但是,因为水污染,如今的自来水已不能算是卫生的了。一项调查显示,在全世界自来水中,测出的化学污染物有2221种之多,其中有些确认为致癌物或促癌物。从自来水的饮用标准看,中国尚处于较低水平,自来水目前仅能采用沉淀、过滤、加氯消毒等方法,将江河水或地下水简单加工成可饮用水。自来水加氯可有效杀除病菌,同时也会产生较多的卤代烃化合物,这些含氯有机物的含量成倍增加,是引起人类患各种胃肠癌的最大根源。目前,城市污染的成分十分复杂,受污染的水域中除重金属外,还含有甚多农药、化肥、洗涤剂等有害残留物,即使是把自来水煮沸了,上述残留物仍驱之不去,而煮沸水中增加了有害物的浓度,降低了有益于人体健康的溶解氧的含量,而且也使亚硝酸盐与三氯甲烷等致癌物增加,因此,饮用开水的安全系数也是不高的。据最新资料透露,目前中国主要大城市只有23%的居民饮用水符合卫生标准,小城镇和农村饮用水合格率更低。水污染防治当务之急,应确保饮用水合格。为此应加大水污染监控力度,设立供水水源地保护区。母亲河黄河1972年第一次断流,1997年断流226天,近700公里河床干涸。海河300条支流,无河不干,无河不臭。华北地下水严重超采,形成面积7万多平方公里的世界上最大的地下水漏斗区,地面下沉,海水入侵。全国668个城市中,有400多个供水不足,100多个严重缺水。上世纪九十年代末以来,土地沙化速度上升到每年3400多平方公里。
更可怕的是,中国水资源总量还在下降。1997年总量为27855亿立方米,而2004年就降到24130亿立方米。从上世纪50年代以来,长江上游20多条河流平均萎缩了。世界自然基金会3月19日发表报告,将长度与水量均为世界第三的长江列入世界面临干涸的10条大河之一。水体污染影响工业生产、增大设备腐蚀、影响产品质量,甚至使生产不能进行下去。水的污染,又影响人民生活,破坏生态,直接危害人的健康,损害很大。目前,人们已意识到不能以破坏生态环境来发展经济,这样的代价太大了。中国已提出社会经济可持续发展和保护人民的身体健康的战略,对整治水域污染采取了一系列强有力的措施。
水污染处理有三种方法:物理法、化学法、生物降解法。
物理法:废水处理方法的选择取决于废水中污染物的性质、组成、状态及对水质的要求。一般废水的处理方法大致可分为物理法、化学法及生物法三大类。
利用物理作用处理、分离和回收废水中的污染物。例如用沉淀法除去水中相对密度大于1的悬浮颗粒的同时回收这些颗粒物;浮选法(或气浮法)可除去乳状油滴或相对密度近于1的悬浮物;过滤法可除去水中的悬浮颗粒;蒸发法用于浓缩废水中不挥发性的可溶性物质等[2]。
化学法:利用化学反应或物理化学作用回收可溶性废物或胶体物质,例如,中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相中溶解度不同的“分配”,回收酚类、重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌等[2]。
生物法:利用微生物的生化作用处理污水中的.有机物。例如,生物过滤法和活性污泥法用来处理生活污水或有机生产污水,使有机物转化降解成无机盐而得到净化[2]。
长期以来污水多采用活性污泥法处理,也是世界各国应用最广泛的一种生物处理流程,具有处理能力高,出水水质好的优点。
2.课题名称、专业年级、学生、指导老师
课题名称:三价盐氯化铝对活性污泥降解性能的影响
专业年级:××××级应用化工技术
成 员:×××
指导老师:×××
3.课题内容
①活性污泥的培养
实验室活性污泥培养是利用间歇培养的方法,利用曝气装置向活性污泥曝气,即闷曝,只是通入氧气,隔一段时间进行静置沉淀一小时,然后换水,要加入适量养料培养,如此反复,维持实验所需的活性污泥的浓度。
②三价盐氯化铝对活性污泥降解性能研究方法
水体质量的判断主要是依靠某些指标来表示,包括DO,COD,BOD等。其中COD是“化学需氧量(chemical oxygen demand)”的英文缩写,是反映水体中还原性污染物(包括有机的和无机的还原性物质)的指标。这里就采用COD指标来表示。COD的测定方法有很多种。参照大量文献最总总结出一种测定方法,即往试样中加入已知量的重铬酸钾溶液,在强酸介质中,以硫酸银作为催化剂,经高温消解后,用分光光度法测定COD值。当试样中COD值为100mg/L至1000mg/L,在60020纳米波长处测定重铬酸钾被还原产生的三价铬离子的吸光度,试样中COD值与三价铬离子的吸光度的增加值成正比例关系,将三价铬离子的吸光度换算成COD的值。当试样中COD值为15mg/L至250mg/L,在440±20纳米的波长处测定重铬酸钾未被还原的六价铬离子和被还原产生的三价铬离子两种铬离子的总吸光度;试样中COD值与六价铬离子的吸光度的减少值成正比,和三价铬离子的吸光度的增加值成正比,将总吸光度换算成COD值[3-8]。
配置不同浓度的三价盐氯化铝水样,在回流装置中加热,沸腾一小时后,放入锥形瓶中冷却,而后加入指示剂用而配置好的已知浓度的硫酸亚铁铵标准溶液进行滴定,记录数据。再重复上述操作,从而研究三价盐氯化铝对活性污泥降解性能的影响。
③验证
通过实验数据,作出不同浓度氯化铝水样的COD值随时间的变化曲线,从而分析三价盐氯化铝对活性污泥降解性能是否有影响。
4.本课题的目的、意义
随着社会的发展,造纸、化工行业都排放大量的工业废水。含重金属的废水污染环境,破坏生态平衡,影响动植物生长,严重危害人类健康。因此,国内外学者都在积极探索和研究一种高效的降解活性污泥的方法。
本文主要研究了废水中不同浓度的氯化铝对活性污泥降解性能的影响,通过测定污泥处理前后工业污水的COD值,研究不同浓度驯化下的活性污泥的生长及对有机物的降解情况,为进一步推广活性污泥在工业中的应用提供有力的数据支持[9]。
5.拟使用的主要试剂和仪器
①试剂:
无水氯化铝(分析纯)、六水合硫酸亚铁铵(分析纯)、重铬酸钾(优级纯)、浓硫酸(分析纯)、硫酸汞(分析纯)、硫酸银(分析纯)、葡萄糖(优级纯)(50g/L)、1,10-邻菲罗琳、蒸馏水等。
②仪器:
智能恒温电热套、鼓泡机、托盘天平、电子天平、圆底烧瓶(250mL)、空气冷凝管、小烧杯(50mL)、量筒(100mL)、量筒(10mL)、量筒(5mL)、锥形瓶(250mL)、离心机等。
6.预期目标
影响活性污泥活性的因素有很多,而本实验只研究不同浓度的氯化铝对活性污泥降解能力是否有影响,因此我们选氯化铝为研究对象,测定污泥处理前后污水的COD值,研究不同浓度氯化铝驯化下的活性污泥的生长及对有机物的降解情况,可以给对于活性污泥降解能力的研究提供一个客观的数据支持,另外在课题实验中还要最大可能的排除氯离子的影响,以达到一个客观准确的测量结果。
7.阶段性工作
第4~5周 文献查阅。
第6周 完成开题报告及文献综述,制定实验方案。
第7周 准备实验室,领取仪器和药品,配制所需试剂。
第8~14周 按实验方案完成实验,同时总结试验过程中的不足,以及实验过程中的现象和结论,记录并处理数据。
第15~16周 整理数据,制表画图,撰写毕业论文。
第17周 论文答辩
参考文献
[1] 崔衍立.城市污水处理常用方法比较研究[J].内江科技,2010.
[2] 殷实.浅谈活性污泥在废水处理中的应用[J].环境研究与监测,2010,(2) :23-24.
[3] 孙惠修.排水工程.第四版.北京:中国建筑工业出版社,1999:105-107.
[4] 苏振中.CODcr与BOD5的相关性研究[J].黑龙江环境通报,2010,34 (2):75-78.
[5] 顾凤妹.李秀霞.重铬酸钾法测定COD影响因素分析[J].小氮肥,2009,37 (3):18-20.
[6] 李国刚,王德龙.生化需氧量BOD测定方法综述[J].中国环境监测,2004,20 (2):54-57.
[7] 肖肖,陈英姿.BOD5测定的影响因素分析[J].化学工程与装备,2009,9:176-177.
[8] 王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学环测学院,2009:9-11.
[9] 徐航.COD重铬酸钾分析法相关问题的探讨[J].化学工程与装备,2010,6: 171-172.
你好,希望我们可以帮你。相关资料在知网,万维网能查到资料。论文不会写,最关键的是要把心态放正,一步步来,多看点范文,看看别人怎么写的,食品安全与检测方面论文是我们特长,我们的服务特色:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。
全文地址 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。关键词:生物传感器;发酵工业;环境监测。一、 引言从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应用PCR的DNA生物传感器也越来越多。二、 研究现状及主要应用领域1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:pH=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligenes eutrophus (AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium Spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。
1,烷烃的硝化,直接与硝酸反应.CH3CH2CH3 +HNO3—加热—CH3CH2CH2NO2 +CH3CH(NO2)CH3 2,芳烃的硝化,硝基取代氢生成硝基苯 3,亚硝酸盐的烃化,R-CH2-X +NaNO2——R-CH2-NO2 +NaX 利弊的话:1,副产物较多还可能生成CH3CH2NO2 不利于分离,但原料易获得,较廉价. 2,反应条件不如其他反应控制的好,浓硫酸,50~60度,常用来制备苯的硝基衍生物. 3,反应底物较为昂贵,亚硝酸盐及氯代烃都不便宜.但产物较纯. 个人观点,供参考……
你好,希望我们可以帮你。相关资料在知网,万维网能查到资料。论文不会写,最关键的是要把心态放正,一步步来,多看点范文,看看别人怎么写的,食品安全与检测方面论文是我们特长,我们的服务特色:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。
饮食中的有机化学——正确对待食品添加剂 如果你喜欢五颜六色的好看的食物,你就会在食品中找到色素;如果你喜欢味美香甜的好吃食物,你就会在食品中找到香精;如果你喜欢新鲜的食物,你就会在食品中找到防腐剂……可能我们不能确切地叫出各种添加剂的名字,但它却每天都会随着食物进入我们的胃里。 关于食品添加剂的定义,《中华人民共和国食品卫生法》规定:“为改善食品品质和色、香、味,以及为防腐和加工工艺的需要而加入的食品中的化学合成或天然物质。”同时明确,“为增强营养成分而假如食品中的天然的或者人工合成的属于天然营养素范围的添加物”也属于食品添加剂的范畴。生活中常见的食品添加剂的类型有:(一) 防腐剂 防腐剂就是能够杀灭微生物或抑制其繁殖作用,减轻食品在生产、运输、销售等过程中因微生物而引起腐败的食品添加剂。作为食品添加剂应用的防腐剂是指为防止食品腐败、变质,延长食品保存期,抑制食品中的微生物繁殖的物质。常见的防腐剂:苯甲酸及其钠盐。(二) 抗氧化剂 能防止或延缓食品成分氧化变质的食品添加剂称为抗氧化剂。 (三) 酸味剂 酸味剂是以赋予食品酸味为主要目的的食品添加剂,它还有调节食品pH的作用。食品中天然存在的主要有机酸包括柠檬酸、酒石酸、苹果酸和乳酸等。目前,实际应用的酸味剂主要是这些有机酸。酸均有一定抗菌作用,尽管单独使用酸来抑制防腐所需浓度太大,并且会影响食品感官特性,因而难以实际应用。但是,以足够浓度的酸味剂与其他保藏方法并用,可以有效的延长食品的保存期。(四) 着色剂 着色剂是使食品着色和改善食品色泽的食品添加剂,通常包括合成色素和食用天然色素两大类。食用合成色素主要是指化学方法所制得的有机色素。合成着色剂的着色能力强、色泽鲜艳、不易褪色、稳定性好、易溶解、易调色、成本低,但安全性较差。(五) 漂白剂和护色剂 漂白剂是破坏、抑制食品的发色因素,使其褪色或使食品免于变色的添加剂,分为氧化漂白剂及还原漂白剂两类。漂白剂除可改善食品色泽外,还有抑制及抗氧化等作用,在食品加工中应用甚广,可广泛应用于食品的保藏,如果蔬干制和糖制都要熏硫处理使其获得很好的保藏性。 护色剂又称发色剂,是能与肉及肉制品中成色物质作用,使之在食品加工,保藏等过程中不致分解,破坏,呈现良好色泽的物质。这主要是由亚硝酸盐所产生的NO与肉类中的肌红蛋白和血红蛋白结合,生成一种具有鲜艳红色的亚硝酸基肌红蛋白所致。硝酸盐则需在食品加工中被细菌还原生成亚硝酸盐后再起作用。亚硝酸盐是具有一定毒性,尤其可与胺类物质生成强致癌物亚硝胺,因而人们一直试图开发出某种适当的物质取而代之。亚硝酸盐除可护色外,还能抑制梭状芽孢杆菌为代表的腐败菌的繁殖,从而防止其产生毒素,阻止蛋白质的分解,特别是对于食物中的肉毒梭状芽孢杆菌具有抑制作用,抑制或延缓其产毒。此外,亚硝酸盐还具有增强肉制品风味的作用。迄今为止,尚未见到即能护色又能抑菌,又能增强肉制品的风味的替代品。为此,各国都在保证安全和产品质量的前提下,严格控制亚硝酸盐的使用量。 (六) 乳化剂 乳化剂就是指添加于食品后可显著降低油水两相界面张力,使互不相溶的油和水形成稳定的乳浊液的食品添加剂。在食品工业中,常常使用食品乳化剂来达到乳化、分散、起酥、稳定、发泡或消泡等目的。此外,有的乳化剂还有改进食品风味、延长货架期等作用。 (七) 增稠剂 增稠剂是指改善食品的物理性质或组织状态,使食品黏滑适口的食品添加剂,也称增黏剂、胶凝剂、乳化稳定剂等。它们在加工食品中的作用是提供稠性、黏度、黏附力、凝胶形成能力、硬度、紧密度、稳定乳化及悬浊体等。由于增稠剂均属亲水性高分子化合物,可水化形成高黏度的均相液,故也称水溶胶、亲水胶体或食用胶。 使用增稠剂后可显著提高食品的粘稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、适宜的口感,并兼有乳化、稳定或使其悬浮状态的作用。 (八) 稳定剂和凝固剂 稳定剂和凝固剂使食品结构稳定或使食品组织结构不变,增强黏性固形物的一类食品添加剂。常见的有各种钙盐,如氯化钙、乳化钙等。它能使可溶性果胶成为宁胶状果胶酸钙,以保持果蔬加工制品的脆度和硬度,防止果蔬软化。用低酯果胶可制造低糖果冻等。 (九) 水分保持剂 水分保持剂用于保持食品的水分,属于品质改良剂,品种较多。我国允许使用的磷酸盐是一类具有多功能的水分保持剂,广泛应用于各种肉、蛋、水产品、乳制品、谷物制品、饮料、果蔬、油脂以及改性淀粉中中具有明显品质的作用。食品加工中常用的磷酸盐、焦磷酸盐、聚磷酸盐和偏磷酸盐等。食品添加剂同我们的饮食密不可分,不管你愿意不愿意,它都已成为我们“熟悉的陌生人”。作为我们日常生活中无法拒绝的东西,食品添加剂近年来也越来越多地引起人们的关注。新浪网做过的一项调查结果显示,超过90%的人认为食品添加剂不同程度地威胁着食品安全;只有不到10%的人认为只要按规定使用,食品添加剂对人体是无害的。由此看来,人们对于食品添加剂带来的食品安全问题已经相当重视。 但我想说的是,我们并不应该将所有的食品添加剂都视为“毒药”,合理使用对人体无害。 据了解,目前全世界正在使用的食品添加剂有3000多种,我国已批准使用的有22类,共1000多种。超过95%的加工食品都使用了食品添加剂,如果离开了食品添加剂,不仅食物口感会大打折扣,买回家后也几乎难以储存,牛奶即便放在冰箱里也放不了两三天,酱油出厂几天就会变质,甚至无法到达消费者手中。再比如糖尿病人,不能吃糖,要满足他们的口味需求,就要加入不含糖的甜味剂。另外还有我们看不到、感觉不到的食品添加剂,比如稳定剂等,没有它们,产品的产量就上不去。 食品添加剂有三方面的重要的作用:①它能够改善食品的品质,提高食品的质量和保藏性,满足人们对食品风味、色泽、口感的要求;②它能够使食品加工和制造工艺更合理、更卫生、更便捷,有利于食品工业的机械化、自动化和规范化;③它能够使食品工业节约资源,降低成本,在极大地提升食品品质和档次的同时,增加其附加值,产生明显的经济效益和社会效益。 食品添加剂在食品工业中有着不可替代的重要作用,科学地使用食品添加剂对人体是没有害的,到目前为止,国内发生的食品安全事件没有一例是由正当使用食品添加剂引起的。近几年发生的食品安全事件,比如苏丹红事件和婴幼儿奶粉事件,都是把不是食品添加剂的东西加进了食品。本是掺杂使假,却让食品添加剂背上了黑锅。其实,只要合理使用食品添加剂,食品安全不用担心的,我们也不用因此因噎废食。最后值得一提的是,部分商家正是看中了消费者对食品添加剂的误解及对食品安全的担心,因此打出了“不含任何添加剂的口号”以吸引消费者。其实,要想做到不加任何防腐剂几乎是不可能的事,因此我们在购买食品时,要持有科学的态度,不要被商家的花言巧语所蒙,做一个科学、理智的消费者。