首页

> 学术期刊知识库

首页 学术期刊知识库 问题

生物化学与生活的关系论文

发布时间:

生物化学与生活的关系论文

萨芬的第三方的手个的梵蒂冈速度奋斗

人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件。

化学(英语:Chemistry)是一门以实验为载体的科学以研究物质的结构、变化。化学研究的对象涉及物质之间的相互关系,或物质和能量之间的关联。传统的化学常常都是关于两种物质接触、变化,即化学反应,又或者是一种物质变成另一种物质的过程。这些变化有时会需要使用电磁波,当中电磁波负责激发化学作用。不过有时化学都不一定要关于物质之间的反应。光谱学研究物质与光之间的关系,而这些关系并不涉及化学反应。化学(chemistry)[1]是一门研究物质的组成、结构、性质以及其变化规律的一门科学。它对我们认识和利用物质具有重要的作用,世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它与人类进步和社会发展的关系非常密切,它的成就是社会文明的重要标志。“化学”一词,若单从字面解释就是“变化的科学”之意。化学主要研究的是化学物质互相作用的科学. 化学如同物理皆为自然科学之基础科学。很多人称化学为“中心科学”(Central science),因为化学为部分科学学门的核心,如材料科学、纳米科技、生物化学等。化学(chemistry)是研究物质的组成、结构、性质、以及变化规律的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。

生物化学与医学的关系论文

生物化学是一门边缘学科,研究的是生命的化学,所以与其它有关的生物学科必然有或多或少的关系.生物学科总是互相为用,互相渗透的.生物体不只一种,因此生物化学有研究动物(包括昆虫)方面的,也有研究植物方面的,还有研究微生物方面的.它们之间有差异、也有共同之处.生物化学在医药、卫生、农业及工业等方面都有应用,是一门基础医学学科,也是一门基础农学学科,而在工业上,如食品加工、酿造、制药、生物制剂制备、以及制革等上,都有应用. (一)生物化学是从有机化学及生理学发展起来的 一直到现在,它与有机化学及生理学之间,仍然关系密切.了解生物分子的结构及性质,并将其合成,乃是有机化学和生物化学的共同课题;在分子水平上弄清生理功能,显然是生理学和生物化学的一个共同目的.从现在的趋向来看,生理学是在更多地采用生物化学的方法,使用生物化学的指标,以解释许多生理现象. (二)微生物学及免疫学 在研究病原微生物的代谢、病毒的化学本质,以及防治措施等,无不应用生物化学的知识和技术.就免疫学而言,不论是体液免疫,还是细胞免疫,都必须在分子水平上,才能阐明机理问题,近来一些生物化学家常以微生物,尤其是细菌为研究材料;这样,一方面可验证在动物体内得到的结果,另一方面由于细菌繁殖生长极其迅速,为在分子水平上研究遗传,提供有利条件;于是应运而生出生化遗传学,又称分子遗传学,进而又派生出遗传工程学.由此不难看出,生物化学与微生物学、免疫学及遗传学之间的关系是何等密切. (三)生物物理学是从生物化学发展起来的 主要应用物理学的理论和方法来研究生物体内各种生物分子的性质和结构,能量的转变,以及生物体内发生的一些过程,如生物发电及发光.生物物理学与生物化学总是相辅相成的.随着量子化学的发展,生物体内化学反应的机理,特别是酶促反应的机理,将来必定要应用生物分子内及作用物分子内电子结构的改变来加以说明. (四)近代药理学往往以酶的活性、激素的作用及代谢的途径等为其发展的依据,于是出现了生化药理学及分子药理学等.病理生理学也注重运用生物化学的原理及方法来研究生理功能的失调及代谢途径的紊乱.甚至,组织学、病理解剖学及寄生虫学等学科,也开始应用生物化学的知识和方法,以探讨和解决它们的问题.这些学科的名称之前,现在多冠以“分子”字样,就是这方面的一个证明. (五)生物化学称为医学学科的基础,在医药卫生的各学科中广泛应用,是理所当然的.事实也是如此.临床医学及卫生保健,在分子水平上,探讨病因,作出论断,寻求防治,增进健康,莫不运用生物化学的知识和技术.镰状细胞性贫血已被证明是血红蛋白β链N未端第六位上的谷氨酸为缬氨酸所取代的结果.关于许多疾病的防治方面,免疫化学无疑是医务工作者所熟知的一种重要的预防、治疗及诊断手段.肿瘤的治疗,不论是放射疗法,抑或是化学疗法,都是使肿瘤细胞中重要的生物分子,如DNA、RNA、蛋白质等分子,改变或破坏其结构,或抑制其生物合成.放射疗法主要是对DNA起作用.而抗肿瘤药物,如抗代谢物、烷化剂、有丝分裂抑制剂及抗生素等,有的在DNA生物合成中起作用,有的在RNA生物合成中起作用,还有的在蛋白质生物合成中起作用,当然不能除外有的药物能抑制不只一种生物合成过程.只要这三种生物分子中任何一种的生物合成有阻碍,都会使肿瘤细胞遭到不同程度的打击,其最致命的要算是破坏DNA的生物合成了,至于用生物化学的方法及指标作为诊断的手段,最为人们所熟知的莫若肝炎诊断中的血液谷丙转氨酶了.总之,生物化学在临床医学及卫生保建上的应用的例子是很多的. (一)物质组成及生物分子 生物体是由一定的物质成分按严格的规律和方式组织而成的.人体约含水55-67%,蛋白质 15~18%,脂类 10~15%,无机盐3~4% 及糖类1~2%等.从这个分析来看,人体的组成除水及无机盐之外,主要就是蛋白质、脂类及糖类三类有机物质.其实,除此三大类之外,还有核酸及多种有生物学活性的小分子化合物,如维生素、激素、氨基酸及其衍生物、肽、核苷酸等.若从分子种类来看,那就更复杂了.以蛋白质为例,人体内的蛋白质分子,据估计不下100000种.这些蛋白质分子中,极少与其它生物体内的相同.每一类生物都各有其一套特有的蛋白质;它们都是些大而复杂的分子.其它大而复杂的分子,还有核酸、糖类、脂类等;它们的分子种类虽然不如蛋白质多,但也是相当可观的.这些大而复杂的分子称为“生物分子”.生物体不仅由各种生物分子组成,也由各种各样有生物学活性的小分子所组成,足见生物体在组成上的多样性和复杂性. 大而复杂的生物分子在体内也可降解到非常简单的程度.当生物分子被水解时,即可发现构成它们的基本单位,如蛋白质中的氨基酸,核酸中的核苷酸,脂类中脂肪酸及糖类中的单糖等.这些小而简单的分子可以看作生物分子的构件,或称作“构件分子”.它们的种类为数不多,在每一种生物体内基本上都是一样的.实际上,生物体内的生物分子仅仅是由不多几种构件分子借共价键连接而成的.由于组成一个生物分子的构件分子的数目多,它的分子就大;因为构件分子不只一种,而且其排列顺序又可以是各种各样,由此而形成的生物分子的结构,当然就复杂.不仅如此,某些生物分子在不同情况下,还会具有不同的立体结构.生物分子的种类是非常多的.自然界约一百三十余万种生物体中,据估计总大约有1010~ 1012种蛋白质及1010种核酸;它们都是由一些构件分子所组成.构件分子在生物体内的新陈代谢中,按一定的组织规律,互相连接,依次逐步形成生物分子、亚细胞结构、细胞组织或器官,最后在神经及体液的沟通和联系下,形成一个有生命的整体. (二)物质代谢 生物体内有许多化学反应,按一定规律,继续不断地进行着.如果其中一个反应进行过多或过少,都将表现为异常,甚至疾病.一旦这些反应停止,生命即告终结. 生物体内参加各种化学反应的分子和离子,不仅有生物分子,而更多和更主要的还是小的分子及离子.有人认为,没有小分子及离子的参加,不能移动或移动不便的生物分子便不能产生各种生命攸关的生物化学反应.没有二磷酸腺苷(ADP)及三磷酸腺苷(ATP)这样的小分子作为能量接受、储备、转运及供应的媒介,则体内分解代谢放出的能,将会散发为热而被浪费掉,以致一切生理活动及合成代谢无法进行.再者,如果没有Mg2+、Mn2+、Ca2+、K+等离子的存在,体内许多化学反应也不会发生,凭借各种化反应,生物体才能将环境中的物质(营养素)及能量加以转变、吸收和利用.营养素进人体内后,总是与体内原有的混合起来,参加化学反应.在合成反应中,作为原料,使体内的各种结构能够生长、发育、修补、替换及繁殖.在分解反应中,主要作为能源物质,经生物氧化作用,放出能量,供生命活动的需要,同时产生废物,经由各排泄途径排出体外,交回环境,这就是生物体与其外环境的物质交换过程,一般称为物质代谢或新陈代谢.据估计一个人在其一生中(按60岁计算),通过物质代谢与其体外环境交换的物质约相当于60000kg水,10000kg糖类,1600kg蛋白及1000kg脂类. (三)物质代谢的调节控制 物质代谢的调节控制是生物体维持生命的一个重要方面.物质代谢中绝大部分化学反应是在细胞内由酶促成,而且具有高度自动调节控制能力.这是生物的重要特点之一.一个小小的活细胞内,几近两千种酶,在同一时间内,催化各种不同代谢中各自特有的化学反应.这些化学反应互不妨碍,互不干扰,各自有条不紊地以惊人的速度进行着,而且还互相配合.结果,不论是合成代谢还是分解代谢,总是同时进行到恰到好处.以蛋白质为例,用人工合成,即使有众多高深造诣的化学家,在设备完善的实验室里,也需要数月以至数年,或能合成一种蛋白质.然而在一个活细胞里,在37℃及近于中性的环境中,一个蛋白质分子只需几秒钟,即能合成,而且有成百上千个不相同的蛋白质分子,几乎象在同一个反应瓶中那样,同时在进行合成,而且合成的速度和量,都正好合乎生物体的需要.这表明,生物体内的物质代谢必定有尽善尽美的安排和一个调节控制系统.根据现有的知识,酶的严格特异性、多酶体系及酶分布的区域化等的存在,可能是各种不同代谢能同时在一个细胞内有秩序地进行的一个解释.在调节控制方面,动物体内,除神经体液发挥着重要作用之外,作用物的供应及输送、产物的需要及反馈抑制,基因对酶的合成的调控,酶活性受酶结构的改变及辅助因子的丰富与缺乏的影响等因素,亦不可忽视. (四)结构与功能 组成生物体的每一部分都具有其特殊的生理功能.从生物化学的角度,则必须深入探讨细胞、亚细胞结构及生物分子的功能.功能来自结构.欲知细胞的功能,必先了解其亚细胞结构;同理,要知道一种亚细胞结构的功能,也必先弄清构成它的生物分子.关于生物分子的结构与其功能有密切关系的知识,已略有所知.例如,细胞内许多有生物催化剂作用的蛋白质——酶;它们的催化活性与其分子的活性中心的结构有着密切关系,同时,其特异性与其作用物的结构密切相关;而一种变构酶的活性,在某种情况下,还与其所催化的代谢途径的终末产物的结构有关.又如,胞核中脱氧核糖核酸的结构与其在遗传中的作用息息相关;简而言之,DNA中核苷酸排列顺序的不同,表现为遗传中的不同信息,实际是不同的基因.生物化学近年来在这方面的发展极为迅速,有人将这部分内容叫作分子生物学. 在生物化学中,有关结构与功能关系的研究,才仅仅开始;尚待大力研究的问题很多,其中重大的,有亚细胞结构中生物分子间的结合,同类细胞的相互识别、细胞的接触抑制、细胞间的粘合、抗原性、抗原与抗体的作用、激素、神经介质及药物等的受体等. (五)繁殖与遗传 生物体有别干无生物的另一突出特点是具有繁殖能力及遗传特性.一切生物体都能自身复制;复制品与原样几无差别,且能代代相传,这就是生物体的遗传特性.遗传的特点是忠实性和稳定性,三十多年前,对遗传的了解,还不够深入.基因还只是一个神秘莫测的术语.近年来,随着生物化学的发展,已经证实,基因只不过是DNA分子中核苷酸残基的种种排列顺序而已.现在DNA分子的结构已不难测得,遗传信息也可以知晓,传递遗传信息过程中的各种核糖核酸也已基本弄清,不但能在分子水平上研究遗传,而且还有可能改变遗传,从而派生出遗传工程学.如果能将所需要的基因提出或合成,再将其转移到适当的生物体内去,以改变遗传、控制遗传,这不但能解除人们一些疾患,而且还可以改良动、植物的品种,甚至还可能使一些生物,尤其是微生物,更好为人类服务,可以预见在不远的将来,这一发展将为人类的幸福作出巨大的贡献. 生物化学是一门较年轻的学科,在欧洲约在160年前开始,逐渐发展,一直到1903年才引进“生物化学”这个名词而成为一门独立的学科,但在我国,其发展可追溯到远古.我国古代劳动人民在饮食、营养、医、药等方面都有不少创造和发明,生物化学的发展可分为:叙述生物化学、动态生物化学及机能生物化学三个阶段. (一)叙述生物化学阶段 1.饮食方面:公元前21世纪,我国人民已能造酒,相传夏人仪狄作酒,禹饮而甘之,作酒必用曲,故称曲为酒母,又叫做酶,与媒通,是促进谷物中主要成分的淀粉转化为酒的媒介物.现在我国生物化学工作者将促进生物体内化学反应的媒介物(即生物催化剂)统称为酶,从《周礼》的记载来推测,公元前12世纪以前,已能制饴,饴即今之麦芽糖,是大麦芽中的淀粉酶水解谷物中淀粉的产物.《周礼》称饴为五味之一.不但如此,在这同时,还能将酒发酵成醋.醋亦为五味之一.《周礼》上已有五味的描述.可见我国在上古时期,已使用生物体内一类很重要的有生物学活性的物质——酶,为饮食制作及加工的一种工具.这显然是酶学的萌芽时期. 2.营养方面:《黄帝内经·素问》的“藏气法时论”篇记载有“五谷为养,五畜为益,五果为助,五菜为充”,将食物分为四大类,并以“养”、“益”、“助”、“充”表明在营养上的价值.这在近代营养学中,也是配制完全膳食的一个好原则.谷类含淀粉较多,蛋白质亦不少,宜为人类主食,是生长、发育以及养生所需食物中之最主要者;动物食品含蛋白质,质优且丰富,但含脂肪较多,不宜过多食用,可用以增进谷类主食的营养价值而有益于健康,果品及蔬菜中无机盐类及维生素较为丰富,且属于粗纤维,有利食物消化及废物的排出;如果膳食能得到果品的辅助,蔬菜的充实,营养上显然是一个无可争辩的完全膳食.膳食疗法早在周秦时代即已开始应用,到唐代已有专书出现.盂诜(公元7世纪)著《食疗本草》及昝殷(约公元8世纪)著《食医必鉴》等二书,是我国最早的膳食疗法书籍.宋朝的《圣济总录》(公元前12世纪)是阐明食治的.元朝忽思慧(公元14世纪)针对不同疾患,提出应用的食物及其烹调方法,并编写成《饮膳正要》.由此可看出我国古代医务工作者应用营养方面的原理,试图治疗疾患的一些端倪. 3.医药方面:我国古代医学对某些营养缺乏病的治疗,也有所认识,如地方性甲状腺肿古称“瘿病”,主要是饮食中缺碘所致,有用含碘丰富的海带、海藻、紫菜等海产品防治.公元 4世纪,葛洪著《肘后百一方》中载有用海藻酒治疗瘿病的方法.唐·王焘(公元8世纪)的《外台秘要》中载有疗瘿方36种,其中27种为含碘植物.而在欧洲直到公元1170年才有用海藻及海绵的灰分治疗此病者.脚气病是缺乏维生素B1的病.孙思邈(公元581~682年)早有详细研究,认为是一种食米区的疾病,分为“肿”、“不肿”及“脚气入心”三种,可用含有维生素B1的车前子、防风、杏仁、大豆、槟榔等治疗.酿酒用的曲及中药中的神曲(可生用)均含维生素B1较丰富,且具有水解糖类的酶,可用以补充维生素B1的不足,亦常用以治疗胃肠疾患.夜盲症古称“雀目”,是一种缺乏维主素A的病症.孙思邈首先用含维生素A较丰富的猪肝治疗.我国最早的眼科专著《龙木论》记载用苍术、地肤子、细辛、决明子等治疗雀目.这些药物都是含有维生素A原的植物. 我国研究药物最早者据传为神农.神衣后世又称炎帝,是始作方书,以疗民疾者.《越绝书》上有神农尝百草的记载.自此以后,我国人民开始用天然产品治疗疾病,如用羊靥(包括甲状腺的头部肌肉)治甲状腺肿,紫河车(胎盘)作强壮剂,蟾酥(蟾蜍皮肤疣的分泌物)治创伤,羚羊角治中风,鸡内金止遗尿及消食健胃等.而最值得一提的是秋石.秋石是从男性尿中沉淀出的物质,用以治病者.其制取确实是最早从尿中分离类固醇激素的方法,其原理颇与近代有所相同.近代的方法为Windaus等在本世纪30年代所创,而我国的方法则出自11世纪沈括(号存中)著的《沈存中良方》中,现仍可在《苏沈良方》中寻着.其详细制法,在《本草纲目》上亦有记载,可概括为用皂角汁将类固醇激素,主要为睾酮,从男性尿中沉淀出来,反复熬煎制成结晶,名为秋石.皂角汁中含有皂角苷,是常用以提炼固醇类物质的试剂.这样看来,人类利用动物产品,调节生理功能,治疗疾病是从10世纪开始,实为内分泌学的萌芽. 明代李时珍(公元1522~1596年)撰著《本草纲目》,凡52卷,共载药物1800余种,其中除植物药物外,尚载鱼类63种,兽类123种,昆虫百余种,鸟类77种及介类45种.书中还详述人体的代谢物、分泌物及排泄物等,如人中黄(即粪)、淋石(即尿)、乳汁、月水、血液及精液等.这一巨著不但集药物之大成,对生物化学的发展也不无贡献. 这样看来,中国古代在生物化学的发展上,是有一定贡献的.但是由于历代封建王朝的尊经崇儒,斥科学为异端,所以近代生物化学的发展,欧洲就处于领先地位.18世纪中叶, Scheele研究生物体(植物及动物)各种组织的化学组成,一般认为这是奠定现代生物化学基础的工作.随后,voisier于1785年证明,在呼吸过程中,吸进的氧气被消耗,呼出二氧化碳,同时放出热能,这意味着呼吸过程包含有氧化作用,这是生物氧化及能代谢研究的开端.接着,Beaumont(1833年)及Bernard(1877年)在消化基础上,Pasteur(1822~1895年)在发酵上,以及Liebig(1803~1873年)在生物物质的定量分析上,都作出显著的贡献.1828年Wohler在实验室里将氰酸铵转变成尿素,氰酸铵是一种普通的无机化合物,而尿素是哺乳动物尿中含氮物质代谢的一种主要产物,人工合成尿素的成功,不但为有机化学扫清了障碍,也为生物化学发展开辟了广阔的道路.自此直到20世纪初叶,对生物体内的物质,如脂类、糖类及氨基酸的研究,核质及核酸的发现,多肽的合成等,而更有意义的则是在1897年Buchner制备的无细胞酵母提取液,在催化糖类发酵上获得成功,开辟了发酵过程在化学上的研究道路,奠定了酶学的基础.9年之后,Harden与Young又发现发酵辅酶的存在,使酶学的发展更向前推进一步. 以上包括我国古代及欧洲的发明创造、研究发现,均可算是生物化学的萌芽时期,虽然也有生物体内的一些化学过程的发现和研究,但总的说来,还是以分析和研究组成生物体的成分及生物体的分泌物和排泄物为主,所以这一时期可以看作叙述生物化学阶段. (二)动态生物化学阶段 从20世纪开始,生物化学进入了一个蓬蓬勃勃的发展时期.在营养方面,研究了人体对蛋白质的需要及需要量,并发现了必需氨基酸、必需脂肪酸、多种维生素及一些不可或缺的微量元素等.在内分泌方面,发现了各种激素.许多维生素及激素不但被提纯,而且还被合成.在酶学方面Sumner于1926年分离出尿酶,并成功地将其做成结晶.接着,胃蛋白酶及胰蛋白酶也相继做成结晶.这样,酶的蛋白质性质就得到了肯定,对其性质及功能才能有详尽的了解,使体内新陈代谢的研究易于推进.在这一时期,我国生物化学家吴宪等在血液分析方面创立了血滤液的制备及血糖的测定等方法,至今还为人们所采用;在蛋白质的研究中,提出了蛋白质变性学说;在免疫化学上,首先使用定量分析方法,研究抗原抗体反应的机制;在营养方面,比较荤膳与素膳的营养价值,并发现动物的消化道可因膳食中营养素价值的不同及丰富与否而发生一定的改变;食素膳者与食荤膳者相比,胃稍大而肠较长.自此以后,生物化学工作者逐渐具备了一些先进手段,如放射性核素示踪法,能够深入探讨各种物质在生物体内的化学变化,故对各种物质代谢途径及其中心环节的三羧酸循环,已有了一定的了解.第二次世界大战后,特别从50年代开始,生物化学的进展突飞猛进;对体内各种主要物质的代谢途径均已基本搞清楚,所以,这个时期可以看作动态生物化学阶段. (三)机能生物化学阶段 近20多年来,除早已在研究代谢途径时所使用的放射性核素示踪法之外,还建立了许多先进技术及方法.例如,在分离和鉴定各种化合物时,有各种各样敏感而特异的电泳法及层析法,还有特别适用于分离生物大分子的超速离心法;在测定物质的化学组成时,可使用自动分析仪,如氨基酸自动分析仪等;甚至在测定氨基酸在蛋白质分子中的排列顺序时,也有可供使用的自动顺序分析仪.还有不少近代的物理方法和仪器(如红外、紫外、X线等各种仪器),用以测定生物分子的性质和结构.在知道生物分子的结构之后,就有可能了解其功能,还有可能用人工方法合成.1965年我国的生物化学工作者和有机化学工作者首先人工合成了有生物学活性的胰岛素,开阔了人工合成生物分子的途径.除此之外,生物化学家也常常采用人工培养的细胞及繁殖迅速的细菌,作为研究材料,并用现代的先进手段,不但把糖类、脂类及蛋白质的分解代谢途径弄得更清楚,而且还将糖类、脂类、蛋白质、核酸、胆固醇、某些固醇类激素、血红素等的生物合成基本上己搞明白;不但测出了某些有生物学活性的重要蛋白质的结构(包括一、二、三及四级结构),尤其是一些酶的活性部位,而且还测出了一些脱氧核糖核酸(DNA)及核糖核酸(RNA〕的结构,从而确定了它们在蛋白质生物合成及遗传中的作用.体内构成各种器官及组织的组成成分都有其特殊的功能,而功能则来源于各种组成的分子结构;有特殊机能的器官和组织,无疑是由具有特殊结构的生物分子所构成.探索结构与功能之间的关系正是现时期的任务.所以,可以认为生物化学已进入机能生物化学阶段.

化学与生命科学的关系生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。用于有效地控制生命活动,能动地改造生物界,造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系,是当今在全球范围内最受关注的基础自然科学。 生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理和化学定律同样也适用于生命世界,无须赋于生活物质一种神秘的活力。对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。比如生命科学中一个世纪性的难题是“智力从何而来?”我们对单一神经元的活动了如指掌,但对数以百亿计的神经元组合成大脑后如何产生出智力却一无所知。可以说对人类智力的最大挑战就是如何解释智力本身。对这一问题的逐步深入破解也将会相应地改变人类的知识结构。 生命科学研究不但依赖物理、化学知识,也依靠后者提供的仪器,如光学和电子显微镜、蛋白质电泳仪、超速离心机、X-射线仪、核磁共振分光计、正电子发射断层扫描仪等等,举不胜举。生命科学学家也是由各个学科汇聚而来。学科间的交叉渗透造成了许多前景无限的生长点与新兴学科。 生命科学研究或正在研究着的主要课题是:生物物质的化学本质是什么?这些化学物质在体内是如何相到转化并表现出生命特征的?生物大分子的组成和结构是怎样的?细胞是怎样工作的?形形色色的细胞怎样完成多种多样的功能?基因作为遗传物质是怎样起作用的?什么机制促使细胞复制?一个受精卵细胞怎样在发育成由许多极其不同类型的细胞构成的高度分化的多细胞生物的奇异过程中使用其遗传信息?多种类型细胞是怎样结合起来形成器官和组织?物种是怎样形成的?什么因素引起进化?人类现在仍在进化吗?在一特定的生态小生境中物种之间的关系怎样?何种因素支配着此一生境中每一物种的数量?动物行为的生理学基础是什么?记忆是怎样形成的?记忆存贮在什么地方?哪些因素能够影响学习和记忆?智力由何而来?除了在地球上,宇宙空间还有其它有智慧的生物吗?生命是怎样起源的?等等。 生物技术 本专业培养具备生命科学的基本理论和较系统的生物技术的基本理论、基本知识、基本技能,能在科研机构或高等学校从事科学研究或教学工作,能在工业、医药、食品、农、林、牧、渔、环保、园林等行业的企业、事业和行政管理部门从事与生物技术有关的应用研究、技术开发、生产管理和行政管理等工作的高级专门人才。 生化技术 生物学的分支学科。它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。 生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为生物有机化学。研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。 生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。例如18世纪80年代,.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。又如1828年F.沃勒首次在实验室中合成了一种有机物——尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。 生物化学的发展大体可分为3个阶段。第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。1926年.萨姆纳制得了脲酶结晶,并证明它是蛋白质。此后四、五年间.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。与此同时,人们又认识到另一类数量少而作用重大的物质——激素。它和维生素不同,不依赖外界供给,而由动物自身产生并在自身中发挥作用。肾上腺素、胰岛素及肾上腺皮质所含的甾体激素都在这一阶段发现。此外中国生物化学家吴宪在1931年提出了蛋白质变性的概念。 第二阶段约在20世纪30~50年代,主要特点是研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。其间突出成就是确定了糖酵解、三羧酸循环(也称克雷布斯循环)以及脂肪分解等重要的分解代谢途径。对呼吸、光合作用以及腺苷三磷酸 (ATP)在能量转换中的关键位置有了较深入的认识。当然,这种阶段的划分是相对的。对生物合成途径的认识要晚得多,在50~60年代才阐明了氨基酸、嘌呤、嘧啶及脂肪酸等的生物合成途径。 第三阶段是从20世纪50年代开始,主要特点是研究生物大分子的结构与功能。生物化学在这一阶段的发展,以及物理学、技术科学、微生物学、遗传学、细胞学等其他学科的渗透,产生了分子生物学,并成为生物化学的主体。 蛋白质和核酸是两类主要的生物大分子。它们的化学结构与立体结构的研究在50年代都取得了重大进展。蛋白质方面,如β-螺旋结构的提出,测定了胰岛素的化学结构以及肌红蛋白和血红蛋白的立体结构。核酸方面,DNA 双螺旋模型的提出打开了生物遗传奥秘的大门。根据双螺旋结构,完满地解释了DNA的自我复制,在后来的发展中又阐明了转录与转译的机理,提出了中心法则并破译出遗传密码。 1973年重组DNA获得成功,从此开创了基因工程。自1977年以后,用这一技术先后成功地制造了生长激素释放抑制激素、胰岛素、干扰素、生长激素等。1982年用基因工程生产的人胰岛素获得美、英、联邦德国、瑞士等国政府批准出售而正式工业化。 在生物大分子的合成方面,1965年中国科学家首次合成了结晶牛胰岛素,合成的产物经受了严格的物理及化学性质和生物学活性的检验,证明与天然胰岛素具有相同的结构和生物活性。继美国科学家在1972年人工合成DNA以后,中国科学家又在1981年首先合成了具有天然生物活力的酵母丙氨酸tRNA。英美等国科学家在 DNA序列分析及人工合成方面作出了重大贡献。DNA自动合成仪的问世,大大简化了人工合成基因的工作。

生物化学是生命科学领域一门重要的基础学科,也是医学类专业必修的一门课程。只有在生物化学的基础上,才能为后续学习医学各科学(护理学、药学和临床医学、医学技术等)奠定基础。 生物化学属于研究生物体的化学组成及其变化规律的科学,是从分子水平和化学变化的本质上探讨并阐明生命现象的,生物化学就是生命的化学。人体是生物化学研究的重要对象:阐述正常人体的基本生物化学过程,包括生物大分子的结构与功能、物质代谢及其调节、基因信息的传递、细胞信号转导及与护理临床实际关系密切的有关专题,如肝的生物化学、水和电解质代谢及维生素等内容。 各基础医学的研究已深入到分子水平,并以生化的理论与技术予以解决。许多疾病的发病机理也需要从分子水平加以解释。医学与生化有密切的联系,并应用生化的理论和方法来诊断和防治疾病。生物化学知识,是医学各科学的理论基础。 希望有所帮助,谢谢

化学与生活关系的论文参考文献

作为文史专业学生,选择《化学与社会》,在课程学习的过程中固然比理工科学生的难度要大得多,但是,难并不成为逃避的理由。选择学习《化学与社会》不仅有学习价值,而且对我们的生活,对今后的发展都大有裨益。一、从化学与专业学习的关系来看。虽然由于专业的原因,文史专业学生和理工专业学生对化学知识的需求已经大不相同。相比较而言,理工类学生无论是对化学知识的了解还是未来对该学科知识的需求,都要强于文史类学生,因而,理工科学生掌握、补充化学知识,尤其是与化学相关专业学生学习《化学与社会》是对自己专业知识的一个很好的补充和提高过程。文史类学生虽然对化学课已经比较陌生,但是,适当掌握一些化学知识,仍然不失为一种良好的学习态度和习惯。学习化学知识,不仅是对过去知识的重温,也是对现在专业知识的补充,多掌握一些生活必需的常识,无疑又是对生活质量起着不容忽视的提升作用。二、从化学与生活的关系来看:如果说人文和社会知识是从生活中提炼出的一种抽象的知识,那么,物理和化学知识作为自然科学中的重要组成部分,则是从生活中直接得到的常识,因而,其用之于生活的方面和领域更为广阔。掌握适当的物理和化学知识,不仅能帮助我们解释日常生活中的一些疑问,更能增加我们的生活常识,提高生活质量。例如肯得基的“苏丹红事件”便是化学知识运用于生活的很好明证——一个不懂化学的人,是断然不知道这件事的意义的。三、化学与政治学科的关系。政治学作为新兴学科,其学科前景和实用性固然不甚为人所知,但政治学科所研究的领域和意义却是不容被忽视的。政治学科主要研究人类精神文明发展的历史,以及从历史中结晶出的文化积淀。概而言之,政治学是以人的精神诉求为研究对象,并最终使人在精神领域达到更高的善的一门学科。因而,关注人的需求,指引人的发展,让人们在精神层面得到更好的发展是政治学科追求的目标之一。化学与日常生活息息相关,人类也曾利用自己掌握的化学知识让自己所处的社会历史时期前进了许多年。但同时,化学就如同一把双刃剑,化学对人类积极和消极的方面都毫不隐讳地存在着。而如何扬长避短,让化学发挥更好的作用为人类社会进步服务,是人类需要关注的一个话题。例如美国拥有当今世界上最多的科学家和最先进的科学技术,他们用化学科学制造出了核武器,然而却将化学创造出来的这个“厉害角色”用到了屠杀伊拉克平民的战斗中;日本人运用生物、化学技术制造出了生化武器,同样,这些武器也只是在屠杀中国平民的战斗中露出了其“助桀为虐”的不光彩面目。当然,这样的例子还有很多。我们需要指明的是,化学在发展的过程中固然有人才和技术提高的必要,但同样也需要正确的方向的指引,否则,只可能陷入“越发展越落后”境地。政治学科正有对人们进行劝诫,进行价值观教育的作用。因而,正确地运用化学与政治学的知识在使人类生活水平提高的意义上来说,虽然方式不同,但殊途同归。同时,化学实验的操作不当造成人类灾难的事例也不枚胜举。从广义上来讲,人类社会是一个整体,无论是物质文明,还是精神文明,无不是在一个整体中和谐共存和发展的,人类的任何社会活动都应该以与自然和谐共存,促进人类实质意义上的提高为目标的,因而,如何让化学服务于人类,真正做到以人为本,与自然和谐共存,树立科学发展观,是政治学科的重要任务,因此,从指引化学发展方向,使化学与社会和谐共存的角度来讲,化学与政治学科关系紧密。四、从化学与个人发展的关系来看信息时代,知识最为重要,无论是文盲,还是知识分子,在不断学习,充实、善自己知识结构的道路上,没有高低尊卑之分,作为社会精英的大学生,就更需要学习各方面知识,以充实自己,使自己成为各行业都能独当一面的人,无论是对自己的就业前景,还是对社会的贡献角度都大有裨益。因而,学习化学与社会,了解人类文明发展的历史,知晓文明之间的内部联系,促使人类文明不断向前发展,使科学发展在为人类福祉的不断增进的道路上发挥更大作用意义深远。我们要明白,“知识无止境,学习亦当不休止。

浅谈现代生活与化学的联系 摘 要:21世纪人类的生活与化学有密切的关系,化学在信息与生命科学中有着及其重要的作用,化学学科 与这些学科交叉,会给人类的生活带来深刻的变革。化学与国民经济各个部门、各尖端科学技术领域以及人 民生活各个方面都有着密切联系。21世纪人们越来越多 地享受和依赖化学带给我们生活的方便和高质量。 关键词:化学与生活;生物技术;信息技术 生活中处处有化学,日常生活以及材料、能 源、环境、生命科学等诸多问题,都体现了化学与 人类、社会发展的密切关系以及化学发展的最新 成果 。随着生活水平的提高,人们越来越追求健康、高品位的生 活,化学与生活的联系也日趋密切。只要你留心观察、用心思 考,就会发现生活中的化学知识到处可见。 化学是一门自然科 学,有着丰富的实验内容。化学本应是一门生动的、贴近生活 的、探求自然奥秘的一门学科。生活中充满着化学的踪影,化学 就在我们身边,用化学知识可以解决生活中的实际问题。化学可 以服务于社会,服务于其它学科,服务于人类自身。 21世纪的生活对化学的要求和利用会日益 加大,人们对衣、食、住、行等各个方面新的需求都 与化学紧密相连。基因疗法、转基因食品、干细胞 技术、生态环保型服装、智能材料、生物质洁净能 源、纳米生物技术等,人们要用化学方法不断创造 新的化学产品;创造新药品战胜癌症、艾滋病、 SARS等病毒性疾病;战胜老年性痴呆、心脏病与 中风等影响健康长寿的顽疾。 在21世纪,生物化学领域对于生物结构的研 究已经从静态进入动态,从分子结构进入分子以 上甚至细胞层次的复杂结构研究,对生物功能分 子的结构、性质、功能三者关系的研究从单一分子 进入多分子体系以至细胞体系的研究。现代技术 已经能够分离和鉴定对制造特殊蛋白质有指令作 用的基因,然后把这些基因结合到生物体如酵母 菌中以制造人们所期望的蛋白质。例如对人类有 重要作用的胰岛素或人体生长素,科学家可以通 过化学的方法来改变基因以修饰其序列,生成更 好性质的蛋白质。二十一世纪有一个特别受到关 注的领域,即人体基因组的序列化问题,人体中所 有重要蛋白质都是在基因的指导下制造出来的, 基因组指在细胞核中的遗传性DNA 的全部物 质,它携带着成千上万单独的基因,每一个都包含 有数百个或更多的DNA单元,起着密码信的作 用;人体中有数以亿计的这种单元,要找出人体这 种基因序列并对每种基因中的化学序列进行测 定。进一步了解生命的化学本质和重要性以及对 健康的重要性是十分重要的。在二十一世纪医疗 卫生领域内可能最令人感兴趣的新领域之一是基 因疗法。人体有些疾病并不是由于某种微生物的 侵害而引起的,而是和我们自身的基因缺陷有关。 药物化学家正在尝试着发展一种用向细胞释放 DNA片段的方法,使其替代有缺损的部分;这是 在二十一世纪充满竞争的领域,未来的基因疗法 将有助于目前尚不能解决的与健康有关的问题。 美国前总统克林顿曾向公众展示了未来个性化医 疗的蓝图:如果你到了医院,经过医生和系列化验 诊断为某种疾病,医生只给你提供一组治疗信息 供选择,你只要将带有自己遗传档案的软盘插入 电脑,同时输入疾病和治疗相关信息,电脑就会提 示应该选择什么药、最佳剂量和剂型、服用的效 果。这样,人们将会获得最佳的治疗效果,药物的 毒副作用避免到最小。 进入21世纪,我们正在经历着一场新的技术 革命,其核心和主流是信息科学技术革命,它必将 对我们的生活产生巨大的影响。在信息科学和信 息技术中比较典型的是传感技术、通信技术和计 算机技术。它们大体相当于人的感觉器官、神经 系统和思维器官。将传感、通信和计算机技术连 接成网,融为一体,标志着信息化社会的到来。 传感技术的任务是要精确、高效、可靠地采集 各种形式的信息。因此,需要努力发展遥感、遥测 及各种高性能的传感器、换能器和显示器,如卫星 遥感技术,红外遥感技术,次声和超声检测技术, 各种热敏、声敏、味敏、嗅敏及智能传感系统。 信息技术的发展正日益改变着人们的生活水 平。信息技术与化学的紧密联系集中表现在通过 各种化学合成手段,制造出功能各异的信息材料, 主要包括电子材料和光电子材料。各种电学、磁 学和光学性能不断改进的新材料推动着电子学的 发展。计算机的功能和速度将来会变成什么样 子,是否真的有一天能够达到和人脑相比拟,甚至 于超过人脑的水平?这恐怕要取决于是否能够把 计算机电路的微型化继续做下去,同时不断提高 芯片的集成度。以半导体硅为基础的微电子技 术,遵循着一个非常著名的定律:摩尔定律,即每 经过18至24个月,电路的运算速度大约翻一番, 历经40年的变化后,固态微电子学已经发展到在 面积小到几个平方厘米的硅片上,可以做出几百 万个尺寸为0.18(微米)的晶体管的水平。但是 如果和分子器件相比,它仍然是太大了。假设现 在的晶体管相当于布满文字的一页纸,分子器件 大约只相当于其中的一个句点,即使像现在技术 界提出的,12年内硅晶体管的尺度可能缩小到 12Ohm(纳米)的水平,但是硅芯片和分子器件相 比,仍然要大60o00倍!再者,没有人认为传统的 硅基微电子学会继续按照摩尔定律发展下去,这 和芯片制造专家认为继续做下去经济上不再合算 有关。当把更多的晶体管做在一张芯片上时,杂 散信号、因为器件过于密集而带来的芯片散热问 题以及制造器件本身的困难等等,都将影响到这 项技术的进展。事实上,制造有效的超小型硅晶 体管以及它们之间的连接等技术的革新,已经是 越来越困难了。不少专家认为,当晶体管达到0.1 微米的水平时,挑战将变得更加激烈,因为集成电 路加工技术所遇到的困难是随着晶体管密度的增 加呈指数增长的,但是它的经济效益却不一定能 够达到同样的增长速度。不少专家认为在2015 年左右,芯片的产值将达到2000亿美元,此时它 的不断小型化的势头也将停滞,因为这时用来提 高芯片能力的成本实在太高了。近年来在分子计 算机研究方面的巨大进步,为解决这个问题提供 了另一个可能的方向。虽然目前预言它的成功还 为时过早,但是近年来在这个领域内取得的许多 成果所展示的前景却是极其鼓舞人心的。 总之,在21世纪,化学与国民经济各个部门、 尖端科学技术各个领域以及人民生活各个方面都 有着密切联系。它是一门重要的基础科学,它在 整个自然科学中的关系和地位,正如[美]Pi— mentel GC在《化学中的机会——今天和明天》一 书中指出的“化学是一门中心科学,它与社会发展 各方面的需要都有密切关系。”化学与其他学科的 交叉将是21世纪科学发展的必然趋势,生命科 学、材料科学、环境化学、绿色化学、能源化学、药 物化学、计算化学、纳米化学等众多新兴的交叉领 域将大大地改变传统的化学科学的范畴与意义, 并已经改变且将更大程度上改变社会和个人的生 存、发展及生活方式。

人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件!

炸药提升了战争等级,药物提升了人类的健康水平,等等等等。总的来说,化学促进了人类的生活水准。

化学检测与生活之间的关系论文

在我们的生活中,几乎处处都有化学的影子。首先,我们人活着,就离不开化学。举最简单的例子,人们吃饭、喝水,从食物进入试管、胃部,到被胃酸消化,被毛细血管吸收,到最后的残渣被排出体外,每一个过程都少不了要发生化学反应。再说饮食。人们吃粮食是因为粮食有营养,而营养从何而来?植物接受阳光照射,然后经过光合作用,水分和无机盐便成了淀粉储藏于粮食中。而在今天,粮食从地里种出就少不了营养液和肥料。各种氮肥、磷肥、钾肥和复合肥料的使用,使粮食的产量和质量都提高了。在虫害季节,农药也必不可少。加上人们医病的药品,这些都是化学为人类带来的利处。生活中的一些小常识也和化学紧密相连。例如吃水果可以解酒。这是因为,水果里含有机酸,而酒里的主要成分是乙醇,有机酸能与乙醇相互作用而形成酯类物质从而达到解酒的目的。还有,打开碳酸饮料的瓶子会有气泡冒出。原因是,人们在制汽水时常用小苏打(碳酸氢钠)和柠檬酸配制,当把小苏打与柠檬酸混溶于水中后它们之间发生反应,生成二氧化碳气体,而瓶子已塞紧,二氧化碳被迫呆在水中,当瓶塞打开后,外面压力小了,二氧化碳气体便从水中逸出,形成气泡翻腾的景象。

化学(英语:Chemistry)是一门以实验为载体的科学以研究物质的结构、变化。化学研究的对象涉及物质之间的相互关系,或物质和能量之间的关联。传统的化学常常都是关于两种物质接触、变化,即化学反应,又或者是一种物质变成另一种物质的过程。这些变化有时会需要使用电磁波,当中电磁波负责激发化学作用。不过有时化学都不一定要关于物质之间的反应。光谱学研究物质与光之间的关系,而这些关系并不涉及化学反应。化学(chemistry)[1]是一门研究物质的组成、结构、性质以及其变化规律的一门科学。它对我们认识和利用物质具有重要的作用,世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它与人类进步和社会发展的关系非常密切,它的成就是社会文明的重要标志。“化学”一词,若单从字面解释就是“变化的科学”之意。化学主要研究的是化学物质互相作用的科学. 化学如同物理皆为自然科学之基础科学。很多人称化学为“中心科学”(Central science),因为化学为部分科学学门的核心,如材料科学、纳米科技、生物化学等。化学(chemistry)是研究物质的组成、结构、性质、以及变化规律的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。

浅谈现代生活与化学的联系 摘 要:21世纪人类的生活与化学有密切的关系,化学在信息与生命科学中有着及其重要的作用,化学学科 与这些学科交叉,会给人类的生活带来深刻的变革。化学与国民经济各个部门、各尖端科学技术领域以及人 民生活各个方面都有着密切联系。21世纪人们越来越多 地享受和依赖化学带给我们生活的方便和高质量。 关键词:化学与生活;生物技术;信息技术 生活中处处有化学,日常生活以及材料、能 源、环境、生命科学等诸多问题,都体现了化学与 人类、社会发展的密切关系以及化学发展的最新 成果 。随着生活水平的提高,人们越来越追求健康、高品位的生 活,化学与生活的联系也日趋密切。只要你留心观察、用心思 考,就会发现生活中的化学知识到处可见。 化学是一门自然科 学,有着丰富的实验内容。化学本应是一门生动的、贴近生活 的、探求自然奥秘的一门学科。生活中充满着化学的踪影,化学 就在我们身边,用化学知识可以解决生活中的实际问题。化学可 以服务于社会,服务于其它学科,服务于人类自身。 21世纪的生活对化学的要求和利用会日益 加大,人们对衣、食、住、行等各个方面新的需求都 与化学紧密相连。基因疗法、转基因食品、干细胞 技术、生态环保型服装、智能材料、生物质洁净能 源、纳米生物技术等,人们要用化学方法不断创造 新的化学产品;创造新药品战胜癌症、艾滋病、 SARS等病毒性疾病;战胜老年性痴呆、心脏病与 中风等影响健康长寿的顽疾。 在21世纪,生物化学领域对于生物结构的研 究已经从静态进入动态,从分子结构进入分子以 上甚至细胞层次的复杂结构研究,对生物功能分 子的结构、性质、功能三者关系的研究从单一分子 进入多分子体系以至细胞体系的研究。现代技术 已经能够分离和鉴定对制造特殊蛋白质有指令作 用的基因,然后把这些基因结合到生物体如酵母 菌中以制造人们所期望的蛋白质。例如对人类有 重要作用的胰岛素或人体生长素,科学家可以通 过化学的方法来改变基因以修饰其序列,生成更 好性质的蛋白质。二十一世纪有一个特别受到关 注的领域,即人体基因组的序列化问题,人体中所 有重要蛋白质都是在基因的指导下制造出来的, 基因组指在细胞核中的遗传性DNA 的全部物 质,它携带着成千上万单独的基因,每一个都包含 有数百个或更多的DNA单元,起着密码信的作 用;人体中有数以亿计的这种单元,要找出人体这 种基因序列并对每种基因中的化学序列进行测 定。进一步了解生命的化学本质和重要性以及对 健康的重要性是十分重要的。在二十一世纪医疗 卫生领域内可能最令人感兴趣的新领域之一是基 因疗法。人体有些疾病并不是由于某种微生物的 侵害而引起的,而是和我们自身的基因缺陷有关。 药物化学家正在尝试着发展一种用向细胞释放 DNA片段的方法,使其替代有缺损的部分;这是 在二十一世纪充满竞争的领域,未来的基因疗法 将有助于目前尚不能解决的与健康有关的问题。 美国前总统克林顿曾向公众展示了未来个性化医 疗的蓝图:如果你到了医院,经过医生和系列化验 诊断为某种疾病,医生只给你提供一组治疗信息 供选择,你只要将带有自己遗传档案的软盘插入 电脑,同时输入疾病和治疗相关信息,电脑就会提 示应该选择什么药、最佳剂量和剂型、服用的效 果。这样,人们将会获得最佳的治疗效果,药物的 毒副作用避免到最小。 进入21世纪,我们正在经历着一场新的技术 革命,其核心和主流是信息科学技术革命,它必将 对我们的生活产生巨大的影响。在信息科学和信 息技术中比较典型的是传感技术、通信技术和计 算机技术。它们大体相当于人的感觉器官、神经 系统和思维器官。将传感、通信和计算机技术连 接成网,融为一体,标志着信息化社会的到来。 传感技术的任务是要精确、高效、可靠地采集 各种形式的信息。因此,需要努力发展遥感、遥测 及各种高性能的传感器、换能器和显示器,如卫星 遥感技术,红外遥感技术,次声和超声检测技术, 各种热敏、声敏、味敏、嗅敏及智能传感系统。 信息技术的发展正日益改变着人们的生活水 平。信息技术与化学的紧密联系集中表现在通过 各种化学合成手段,制造出功能各异的信息材料, 主要包括电子材料和光电子材料。各种电学、磁 学和光学性能不断改进的新材料推动着电子学的 发展。计算机的功能和速度将来会变成什么样 子,是否真的有一天能够达到和人脑相比拟,甚至 于超过人脑的水平?这恐怕要取决于是否能够把 计算机电路的微型化继续做下去,同时不断提高 芯片的集成度。以半导体硅为基础的微电子技 术,遵循着一个非常著名的定律:摩尔定律,即每 经过18至24个月,电路的运算速度大约翻一番, 历经40年的变化后,固态微电子学已经发展到在 面积小到几个平方厘米的硅片上,可以做出几百 万个尺寸为0.18(微米)的晶体管的水平。但是 如果和分子器件相比,它仍然是太大了。假设现 在的晶体管相当于布满文字的一页纸,分子器件 大约只相当于其中的一个句点,即使像现在技术 界提出的,12年内硅晶体管的尺度可能缩小到 12Ohm(纳米)的水平,但是硅芯片和分子器件相 比,仍然要大60o00倍!再者,没有人认为传统的 硅基微电子学会继续按照摩尔定律发展下去,这 和芯片制造专家认为继续做下去经济上不再合算 有关。当把更多的晶体管做在一张芯片上时,杂 散信号、因为器件过于密集而带来的芯片散热问 题以及制造器件本身的困难等等,都将影响到这 项技术的进展。事实上,制造有效的超小型硅晶 体管以及它们之间的连接等技术的革新,已经是 越来越困难了。不少专家认为,当晶体管达到0.1 微米的水平时,挑战将变得更加激烈,因为集成电 路加工技术所遇到的困难是随着晶体管密度的增 加呈指数增长的,但是它的经济效益却不一定能 够达到同样的增长速度。不少专家认为在2015 年左右,芯片的产值将达到2000亿美元,此时它 的不断小型化的势头也将停滞,因为这时用来提 高芯片能力的成本实在太高了。近年来在分子计 算机研究方面的巨大进步,为解决这个问题提供 了另一个可能的方向。虽然目前预言它的成功还 为时过早,但是近年来在这个领域内取得的许多 成果所展示的前景却是极其鼓舞人心的。 总之,在21世纪,化学与国民经济各个部门、 尖端科学技术各个领域以及人民生活各个方面都 有着密切联系。它是一门重要的基础科学,它在 整个自然科学中的关系和地位,正如[美]Pi— mentel GC在《化学中的机会——今天和明天》一 书中指出的“化学是一门中心科学,它与社会发展 各方面的需要都有密切关系。”化学与其他学科的 交叉将是21世纪科学发展的必然趋势,生命科 学、材料科学、环境化学、绿色化学、能源化学、药 物化学、计算化学、纳米化学等众多新兴的交叉领 域将大大地改变传统的化学科学的范畴与意义, 并已经改变且将更大程度上改变社会和个人的生 存、发展及生活方式。

化学与生物科学的关系论文题目

嗯。。。。。。。。。嗯

有没有大学学生物,明确分析,结果,这才好,我知道

生物方向太多了,题目都是不一样的,我们做毒理的论文简单点的就是做几种药物急毒性,或者慢性毒性。

化学与生命科学的关系生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。用于有效地控制生命活动,能动地改造生物界,造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系,是当今在全球范围内最受关注的基础自然科学。 生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理和化学定律同样也适用于生命世界,无须赋于生活物质一种神秘的活力。对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。比如生命科学中一个世纪性的难题是“智力从何而来?”我们对单一神经元的活动了如指掌,但对数以百亿计的神经元组合成大脑后如何产生出智力却一无所知。可以说对人类智力的最大挑战就是如何解释智力本身。对这一问题的逐步深入破解也将会相应地改变人类的知识结构。 生命科学研究不但依赖物理、化学知识,也依靠后者提供的仪器,如光学和电子显微镜、蛋白质电泳仪、超速离心机、X-射线仪、核磁共振分光计、正电子发射断层扫描仪等等,举不胜举。生命科学学家也是由各个学科汇聚而来。学科间的交叉渗透造成了许多前景无限的生长点与新兴学科。 生命科学研究或正在研究着的主要课题是:生物物质的化学本质是什么?这些化学物质在体内是如何相到转化并表现出生命特征的?生物大分子的组成和结构是怎样的?细胞是怎样工作的?形形色色的细胞怎样完成多种多样的功能?基因作为遗传物质是怎样起作用的?什么机制促使细胞复制?一个受精卵细胞怎样在发育成由许多极其不同类型的细胞构成的高度分化的多细胞生物的奇异过程中使用其遗传信息?多种类型细胞是怎样结合起来形成器官和组织?物种是怎样形成的?什么因素引起进化?人类现在仍在进化吗?在一特定的生态小生境中物种之间的关系怎样?何种因素支配着此一生境中每一物种的数量?动物行为的生理学基础是什么?记忆是怎样形成的?记忆存贮在什么地方?哪些因素能够影响学习和记忆?智力由何而来?除了在地球上,宇宙空间还有其它有智慧的生物吗?生命是怎样起源的?等等。 生物技术 本专业培养具备生命科学的基本理论和较系统的生物技术的基本理论、基本知识、基本技能,能在科研机构或高等学校从事科学研究或教学工作,能在工业、医药、食品、农、林、牧、渔、环保、园林等行业的企业、事业和行政管理部门从事与生物技术有关的应用研究、技术开发、生产管理和行政管理等工作的高级专门人才。 生化技术 生物学的分支学科。它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。 生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为生物有机化学。研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。 生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。例如18世纪80年代,.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。又如1828年F.沃勒首次在实验室中合成了一种有机物——尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。 生物化学的发展大体可分为3个阶段。第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。1926年.萨姆纳制得了脲酶结晶,并证明它是蛋白质。此后四、五年间.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。与此同时,人们又认识到另一类数量少而作用重大的物质——激素。它和维生素不同,不依赖外界供给,而由动物自身产生并在自身中发挥作用。肾上腺素、胰岛素及肾上腺皮质所含的甾体激素都在这一阶段发现。此外中国生物化学家吴宪在1931年提出了蛋白质变性的概念。 第二阶段约在20世纪30~50年代,主要特点是研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。其间突出成就是确定了糖酵解、三羧酸循环(也称克雷布斯循环)以及脂肪分解等重要的分解代谢途径。对呼吸、光合作用以及腺苷三磷酸 (ATP)在能量转换中的关键位置有了较深入的认识。当然,这种阶段的划分是相对的。对生物合成途径的认识要晚得多,在50~60年代才阐明了氨基酸、嘌呤、嘧啶及脂肪酸等的生物合成途径。 第三阶段是从20世纪50年代开始,主要特点是研究生物大分子的结构与功能。生物化学在这一阶段的发展,以及物理学、技术科学、微生物学、遗传学、细胞学等其他学科的渗透,产生了分子生物学,并成为生物化学的主体。 蛋白质和核酸是两类主要的生物大分子。它们的化学结构与立体结构的研究在50年代都取得了重大进展。蛋白质方面,如β-螺旋结构的提出,测定了胰岛素的化学结构以及肌红蛋白和血红蛋白的立体结构。核酸方面,DNA 双螺旋模型的提出打开了生物遗传奥秘的大门。根据双螺旋结构,完满地解释了DNA的自我复制,在后来的发展中又阐明了转录与转译的机理,提出了中心法则并破译出遗传密码。 1973年重组DNA获得成功,从此开创了基因工程。自1977年以后,用这一技术先后成功地制造了生长激素释放抑制激素、胰岛素、干扰素、生长激素等。1982年用基因工程生产的人胰岛素获得美、英、联邦德国、瑞士等国政府批准出售而正式工业化。 在生物大分子的合成方面,1965年中国科学家首次合成了结晶牛胰岛素,合成的产物经受了严格的物理及化学性质和生物学活性的检验,证明与天然胰岛素具有相同的结构和生物活性。继美国科学家在1972年人工合成DNA以后,中国科学家又在1981年首先合成了具有天然生物活力的酵母丙氨酸tRNA。英美等国科学家在 DNA序列分析及人工合成方面作出了重大贡献。DNA自动合成仪的问世,大大简化了人工合成基因的工作。

相关百科

热门百科

首页
发表服务