小学教材将几何图形的学习内容分为几个阶段:初步认识立体图形——认识平面图形——平面图形的测量与计算——再次认识立体图形——立体图形的测量与计算。教材按照“立体图形——平面图形——立体图形”的顺序进行编排,让学生体会从整体到部分再到整体的学习思路,也明确了平面图形和立体图形的关系。对此,我认为教师在教学中要注重让学生想象、动手操作、观察、探究、总结,让学生由浅入深地学习几何知识,找到形体之间的联系,从而发展空间思维。一、注重生活中的形体,让数学生活化数学来源于生活,又服务于生活。教师要结合教材,把生活中随处可见的几何图形与所教知识联系在一起开展教学。这样学生就能在不知不觉中获得数学知识。1.重视直观操作。学生是学习的主人,让学生主动参与数学活动,并通过想象、动手、观察、初步认识几何图形。例如,在教学“认识角”时,我是这样导入新课的:红领巾是少先队员的标志,让学生说说红领巾是什么形状的;然后用多媒体课件出示红领巾、五角星、剪刀等,让学生在图中找出角;接着让学生在教室里找角。我用这样的导入方式吸引学生的注意力,激发学生的学习兴趣,让学生对角有一个直观认识。2.重视动手操作。课程标准指出:动手操作是学生学习数学的重要方式之一。动手操作不仅可以让学生强化数学与生活的联系,还可以使学生在未达到抽象思维水平之前,通过自主探索的形式学习数学知识。例如,在教学“圆的周长”时,我让学生在课堂上测量圆的周长与直径,经过测量,学生发现:圆的大小与半径或直径的长短有关,但具体是什么关系呢?由于学生学过“圆由正方形切割而来”的知识,他们便猜测圆的周长比直径的四倍少一点。我再让学生动手测量圆的周长与直径。通过小组合作观察、交流,学生发现:在测量过的圆中,不管是大圆还是小圆,每一个圆的周长都是它直径的3倍多一些。我顺势引出圆周率的知识,引导学生通过自己的努力一步一步理解圆的周长。二、注重迁移的学习方法,构建知识体系数学知识具有紧密的联系性。教师在教学时要注重知识的前后联系,合理应用转化思想,引导学生用旧知识来探索新知。例如,在探究圆的面积时,教师可以问学生:“以前学的是直线图形的面积,而今天学的是曲线图形的面积,能否将圆转化成学过的图形,怎样转化?”教师要帮助学生开拓思路,给予学生充分的时间与空间,让学生利用手中的学具画一画、折一折、剪一剪、拼一拼,然后通过观察、探究、讨论,使他们经历“猜想——操作——推导”的过程。经过教师的指点,有学生发现:可以将圆剪成若干个小块再拼成平行四边形或长方形。通过思考,学生认为拼成长方形更容易理解,因为圆的周长的一半相当于长方形的长,圆的半径相当于长方形的宽,长方形的面积=长×宽,因此圆的面积=圆周长的一半(C/2)×半径(r)=2πr/2×r=πr2。三、注重多媒体动态演示,优化教学效果1.从平面到立体,激起学生的学习兴趣。小学生的好奇心强,求知欲旺盛,喜欢动手操作,但是他们的空间思维处于萌芽阶段,直观思维仍占主导地位。在教学时,教师应该重视动手操作活动,将操作、观察、讨论活动贯穿教学始终,让学生通过找一找、摸一摸、比一比等实践活动加深体验、掌握知识、培养技能。但是要高质量地完成以上一系列的活动,单是靠动手操作是难以实现的,必须要借助多媒体把静态的教材内容变成动态的教学内容,化抽象为具体,化平面为立体,让教学变得生动起来,从而调动学生的学习兴趣。例如,在教学“圆柱的认识”时,我先用多媒体课件出示一个长方形和一个正方形,然后以长方形其中的一边为轴旋转一周后形成一个圆柱;以正方形其中的一边为轴,旋转一周后会形成一个圆柱。学生对圆柱有了初步认识后,我让他们举例说说生活中有哪些物体是圆柱,并说说圆柱的特点。用多媒体课件演示的过程中沟通了平面图形与立体图形的联系,同时充分调动了学生的学习兴趣和积极性,发展了学生的空间思维。2.激发学生的求知欲,培养学生的探索精神。例如,在推导圆的面积公式时,有的学生把圆纸片对折4次、8次、16次……分成8份、16份、32份……为了让学生体会极限的数学思想,我问:“能让折成的图形更像平行四边形吗?”学生无法再继续折纸时,我用多媒体课件展示(从4份开始,分的份数逐渐增多),分的份数越多,拼成的图形越来越接近平行四边形了,而把圆平均分成128份后,拼成的图形看起来就很像长方形了。通过多媒体课件展示教学内容可以弥补动手操作与想象的不足,帮助学生进一步感知“平均分的份数越多,拼成的图形越来越像平行四边形或长方形”。最终在多媒体课件的帮助下,学生顺利推导出圆的面积公式。四、注重课后练习,培养学生的应用意识当学生掌握学习的方法后,教师要让学生进行基础练习,以提高解决实际问题的能力。1.基础知识的应用。简单的练习就是直接利用公式解题,这种练习是针对全体学生的,可以使大部分学生巩固基础知识,让少部分学困生学有所成。例如,在教学“认识三角形”后,我出示练习题:(1)一个三角形有( )条边,有( )个角,有( )个顶点,有( )条高;(2)一个三角形的每条边的长度都相等,它的周长是45厘米,边长是多少厘米?2.解决实际问题。课程标准强调要培养学生的应用意识,当面对实际问题时,学生能主动尝试从数学角度解决问题。因此,学生在学完一个几何图形的知识后,要具备解决实际问题的能力。例如,在学完“圆的面积计算”后,我出示练习题:(1)一块圆形空地的直径是20米,每平方米草皮是8元,把这块圆形空地铺满草皮需要多少钱?(2)某小区有一个圆形花坛,直径为6米,在它周围用健身石铺了一条宽2米的小路,这条小路的面积是多少平方米?总之,几何图形的教学策略有很多,但不管是哪种策略,只要是能激发学生的学习兴趣、提高学生的学习积极性、有助于培养学生的思维能力的策略,都是好的教学策略。教师只有运用恰当的教学策略进行教学,学生的学习兴趣才会高涨,教学效果才会理想。
中国科学技术大学教授陈秀雄、王兵在微分几何学领域取得重大突破,成功证明了“哈密尔顿-田”和“偏零阶估计”这两个国际数学界20多年悬而未决的核心猜想。日前,国际顶级数学期刊《微分几何学杂志》发表了这一成果,论文篇幅超过120页,从写作到发表历时11年。
微分几何学起源于17世纪,主要用微积分方法研究空间的几何性质,对物理学、天文学、工程学等产生巨大推动作用。“里奇流”诞生于20世纪80年代,是一种描述空间演化的微分几何学研究工具。
“大到宇宙膨胀,小到热胀冷缩,诸多自然现象都可以归结到空间演化。”王兵教授比喻说,比如说我们吹一个气球,气球不断膨胀,可以用“里奇流”来研究它空间的变化,最后得到一个“尽善尽美”的理想结果。
陈秀雄与王兵团队长期研究微分几何中“里奇流”的收敛性,运用新思想和新方法,他们在国际上率先证明了“哈密尔顿-田”和“偏零阶估计”这两个困扰数学界20多年的核心猜想。
据了解,他们的研究耗时5年,论文篇幅长达120多页。王兵说,就像在写一篇小说,“不同之处在于,靠的是逻辑推导而不是故事情节推动。”
值得一提的是,由于篇幅浩繁、审稿周期漫长,这篇论文从投稿到正式发表又花了6年。不过,这么长的发表周期在数学界并不鲜见,因为审稿人需要足够多的时间去了解新的概念和方法。
《微分几何学杂志》审稿人评论认为,这篇论文是几何分析领域的重大进展,将激发诸多相关研究。菲尔兹奖获得者西蒙·唐纳森称赞说,这是“几何领域近年来的重大突破”。
在发布这篇论文之前,王兵还只是个“平平无奇”的几何学研究者。2003年与恩师陈秀雄的相遇,为他打开了里奇流的大门。
里奇流是什么呢?按照定义,里奇流即是用微积分的方式描述空间演化。王兵用肥皂泡解释了这种“描述”:“吹一个肥皂泡,一开始吹出来可能是哑铃状的,但在空中飘一会儿之后,形状会慢慢变化,直到变成了一个球之后不再演化了,这个‘球’就是泡泡的一种稳定状态。”里奇流的作用,就是研究“肥皂泡”的空间变化,最后得到一个“稳定”的理想结果。
2003年,俄国人佩雷尔曼宣称自己解决了庞加莱猜想,依据的就是里奇流方法。这让他成了当时里奇流研究中毋庸置疑的。然而这项解决了微分几何学“百年悬案”的划时代成果,却被刚刚赴美读研的王兵抓到了“把柄”。
在研究佩雷尔曼论文的过程中,王兵觉得其中有一个步骤他怎么都想不通。反复思考之后,王兵有了个大胆的猜测:佩雷尔曼错了。
年轻的研究生为了给学术大牛“挑错”,特地写了一封邮件。令王兵惊喜的是,这封“纠错贴”三天内就得到了佩雷尔曼的回复,学术大牛坦率地承认了行文中的错误,并很惊讶这个错误一直无人向他指出,虽然文章广为流传已经两年多了。
这次“书信往来”和佩雷尔曼的肯定,让王兵对里奇流的兴趣更浓了,他也期待和佩雷尔曼能有更多学术上的互动。
佩雷尔曼却没有给王兵这个机会。解决庞加莱猜想后,佩雷尔曼“看破红尘”,直接退出数学界。这让相关研究都陷入了停滞状态。而导师陈秀雄告诉王兵:“好的数学必然是有强大生命力的,佩雷尔曼的数学是一定要追随的,应该找到一个合适的切入点,继续深挖”。
佩雷尔曼曾在他的文章中提到,他的方法可以用来研究凯勒里奇流。佩雷尔曼下一步打算用自己的方法破解哈密尔顿-田猜测。
虽然佩雷尔曼的隐退让这个“打算”变得遥遥无期,但哈密尔顿-田猜测的发展前途还是被陈秀雄看到了。把里奇流和凯勒几何结合起来,解决复二维哈密尔顿-田猜测,成了陈秀雄王兵师徒俩随后五年的工作重心。
2013年年底,陈秀雄、王兵终于理清了证明思路,之后用了半年时间整理内容,2014年夏天,这篇凝结5年研究成果、师徒共同署名的证明被张贴到了预印本网站arXiv上。在这篇长达120页的文章中,师徒俩利用自行设计的辅助工具,搞定了哈密尔顿-田猜测中的空间紧性问题,还“顺手”解决了1990年提出的偏零阶估计猜测。
我觉得平行宇宙不可能真正的存在,以前科学家竟然没有发现平行宇宙的存在,而且也没有给出合适的科学解释。
93年,楼主应该迈入大学的校门了吧?那应该充分的利用好学校提供的资源。向楼主这个问题,完全可以到文献库中搜索。无论学校的质量如何,必定会购买几个文献库的使用权,国内的数据库中,CNKI和万方使用的人数最多。在文献库中搜索“平行宇宙”,相信能得到数以千级的论文。说实话,国内文献虽然不乏精品,但是总体水平比起国外的文献还是低了一个档次的。可以到一些国外的数据库搜索,比如Web of Science,相信楼主读过几篇之后能比较出国内与国外的差距。海阔凭鱼跃,天高任鸟飞。知道这个平台可能没有满足楼主的需求,不妨到更宽阔的空间中放飞自己的梦想。
平行宇宙理论是最近科学家提出一个理论竟然不止一个宇宙,而且,似乎他们还完全一样。在宇宙之外可能有一个星系与银河系具有非常显著的相似之处,还有一颗也与我们的太阳非常相似的恒星,在这颗恒星周围存在着八大行星,其中第三颗行星与我们的地球非常相似,这颗行星上同样也存在着高等直立智慧生物,其中有一个生物和您非常相似,过着同样的生活,更重要的是,此时此刻,他与您一样,也正在阅读这篇文章正文第一段的最后一行。 平行宇宙理论编辑本段平行宇宙的分类在2003年的《科学美国人》杂志里,有一篇由美国宇宙学家马克斯·铁马克(Max Tegmark)为写的关於平行宇宙的专文,文中他将平行宇宙分成四类[2][3]:第一类:这类的宇宙和我们宇宙的物理常数相同,但是粒子的排列法不同,同时这类的宇宙也可视为存在於已知的宇宙(可观测宇宙)之外的地方;第二类:这类的宇宙的物理定律大致和我们宇宙相同,但是基本物理常数不同;第三类(艾弗雷特(Hugh Everett III)的多世界诠释):根据量子理论,一件事件发生之後可以产生不同的後果,而所有可能的後果都会形成一个宇宙,而此类宇宙可归属於第一类或第二类的平行宇宙,因为这类宇宙所遵守的基本物理定律依然和我们所认知的宇宙相同(以上「一颗球落入时光隧道,回到了过去撞上了自己因而使得自己无法进入时光隧道」诡论的平行宇宙解决办法属於此种);第四类: M理论宇宙-模型图这类的宇宙最基础的物理定律不同於我们宇宙,而基本上到第四类为止,就可以解释所有可能存在(也就是可想像得到的)的宇宙,一般而言这些宇宙的物理定律可以用M理论构造出来。编辑本段理论依据事实上,根据平行宇宙理论,在某个宇宙中,就存在着无数个星系,几乎和我们的宇宙完全一模一样,看上去就像是我们自己一样,在那个宇宙中,也存在着你和你的亲人,还有同样的生活方式,但是有一点必须说明:虽然在两个宇宙中你们是非常非常的相似,几乎相似到划上等号,这种相似度有且只能用来描述过去发生的事件,也就是说,直到这一刻,你们可以说是绝对相同的。 这些平行世界的存在,那不是无聊的炒作。比如泡沫宇宙理论、量子力学的多世界解释以及埃弗雷特多世界理论(Everett MWI),量子力学的多世界解释则认为宇宙是不断分叉的。所有的这些理论推演都需要基于一些基本的解释。当我们的宇宙诞生于137亿年前的时候,开始不断地加速膨胀,在宇宙中第一缕光线发出之后,就在宇宙空间中传播开来,而宇宙最深处的光线还未到达到地球上,目前我们探测到最深的宇宙空间仅仅是在130亿光年左右,也就是在宇宙诞生后的7亿年左右,而在这7亿年内发生的事件,还没有直接的观测数据。由于这些来自宇宙遥远空间的光线还未到达地球上,使之超出了我们的对宇宙观测的视野。 然而,我们对宇宙的了解的程度而言,来自宇宙大爆炸遗留下来的辐射证实,宇宙曾经历过一个转瞬即逝的超高速扩张阶段,科学家将这个阶段称为“暴涨宇宙”模型。简单的说就是宇宙在极其短的时刻,将其体积瞬间扩大,就像吹气球一样。而如果膨胀的速率稍微改变一点儿,那我们的宇宙就不会是现在这样了。因此,我们的现在观测到的宇宙空间,更贴切的说法是类似一个泡沫,在宇宙之外还存在的无数个泡沫,也就是说,存在无数个宇宙。所有的宇宙有着同样的或者说类似的机制进行各种限制,每个宇宙都经历了一次大爆炸,他们都是在大爆炸中诞生,并且存在着相同的物理定律。但是,并不是说所有的宇宙都能“存活”下来,只要将大爆炸的“参数”进行细微的调整,各种宇宙就会出现不同的情况了。比如,将我们这个宇宙的膨胀速率调低,这个初始条件下的宇宙就不可能演化至今,通俗地说,如果没有一个精确的膨胀速率,这个宇宙不是无限制的膨胀下去,就是早就坍缩没有了,所以,重点是“恰到好处”,只要稍微有一点儿的偏差,轻则不会演化出星系和恒星,重则无法存在下去。编辑本段存在概率尽管如此,要找到与我们非常相似的宇宙应该说是几乎不可能的,只能说在概率学上,它是存在的,我们对这个“似曾相识”的宇宙的观测,仅仅体现于概率数字上。而通过量子力学,我们会发现宇宙其实很神奇,这个理论会告诉我们一个完全不同且超越想象的故事。首先,将宇宙空间放大,我们会发现宇宙看上去像是由颗粒组成的,整个宇宙空间类似西洋象棋盘。在瞬间发生的大爆炸后,产生了无数个宇宙,就像同时出现了无数个泡沫,但是只有在少数地方,初始条件是精确的,这个精确性体现在这些宇宙能演化出星系等物质。 在这些无数个泡沫宇宙中,每个泡沫初始条件都是不同的,都存在着细微的差别,以此类推,最终我们会发现有一个泡沫和我们非常相似,这种概率性的事件就有点儿像:给一只猴子26个英文字母还有无限的时间,它总有一天能拼出一本莎士比亚全集。同理,既然存在着无数个宇宙,那我们的历史同样也有无数种不同的版本,也就是说、:在某个泡沫宇宙中,某个我们这个世界熟知的历史事件并不存在,他们那个世界绝大部分却与我们相似,但就是唯独缺少了那个在我们世界中人人皆知的历史事件。从这一点出发,不仅存在着无数版本的过去,也存在着无数版本的将来。 而如何才能遇到这个存在于概率数字上的泡沫宇宙呢?麻省理工的宇宙学家马克斯计算出了一种非常直观方法:可以从地球出发,往宇宙的任一方向走足够远,最终会遇到一个这么样宇宙,这个宇宙中的任何细节都是你所熟知的,而且还会遇到一个和你一模一样的“你”。但是,这个距离非常遥远,计算结果得出:这个距离是10的1028次方米。虽然我们得到了一个距离,可以通过这个途径去寻找“似曾相识”的宇宙。但是,有一个不好的消息,即使你有足够的勇气和耐心,也将无法看到另一个宇宙中的“你”。因为当你踏上这个旅程的时刻,还会有更多的宇宙出现,你踏出每一个步,都将伴随着下一刻泡沫宇宙的出现,而这些宇宙早已扩展到离你最近的宇宙,也就是说,这个时间长度足以等于一个宇宙中的所有恒星。编辑本段科学家观点值得注意的是,只有这样才能规避这个古怪的结论,而如果我们目前的量子理论以及标准宇宙模型是错误的,那你将遇到另一个宇宙中的“你”。据位于美国马萨诸塞州梅德福塔夫茨大学的宇宙学家亚历山大介绍:“对于这个“无数”的问题,我一直研究了超过25年,虽然对于无数版本的历史、无数版本的将来、还有无数个你和我存在于无数个泡沫宇宙中这个命题,未曾感到高兴,根据目前的研究进展,我认为很可能是真实存在的。” 需要重申的是,关于对多宇宙、平行世界理论探讨是非常具有争议性的,也是宇宙学中最基本的矛盾之一。同时,还有其他的关于“多宇宙”的理论,比如,弦理论。弦理论认为宇宙中的基本粒子都是由线形线条的弦构成,当弦处于不同的振动态时,就是表征出不同的粒子,具有不同的振动能量时,就对应着不同粒子的能量,这样我们的宇宙中,由于弦的具有不同的振动和能量,就有了电子、夸克等粒子形态。 事实上,宇宙各种常数的精确性可能告诉我们在其他宇宙中存在着不同的物理定律,而按照量子力学对多世界理论的解释,所有的历史事件都是可能存在无数不同的版本,包括你在内,都将在某个宇宙中以一种不同的方式存在,就像在某个宇宙中,你可能是温网冠军。对于多世界理论的不同解释,也是一部分宇宙学家的观点。编辑本段另一方面现在对于平行世界存在,尚未得到有效的证明。关于其是否存在,在科学家中也是目前在争论中。 休·艾弗雷特三世提出的多世界诠释认为,所有量子理论所做出的可能性的预言,全部同时实现,这些现实成为互相之间一般无关的平行宇宙。而人们是无法对这些平行世界进行观察和干涉。 关于量子力学,科学家普遍接受哥本哈根诠释。 而所谓“平行宇宙”、“分支世界”都是现在剧评中的流行用词而已,实际上并不代表物理学中的大平行宇宙假设。 有些人认为平行宇宙理论缺乏对经验主义的关联性以及可测性,同时缺乏物理学上的证据和可否定性,因为这个理论以目前的科学方法无法证实或否定,而且这些理论目前而言太过形而上学且只是在数学结构上有可能而已;不过马克斯·铁马克注意到了对宇宙微波背景辐射和宇宙物质大规模分布的测量的改进可能会否定或实证其中两种的平行宇宙存在的可能性,并进而能证实或否定开放宇宙理论和混乱暴涨理论,意即平行宇宙理论最少在某种程度上是可测的。 一些人认为科学家的职责就是要在不涉及观察者的状况下对已观测的现象提出基本的解释。回归到人择原理在解释会建构出所谓的「懒惰出口」,而这些解释的种类包括了「很明显地为生命的存在微调过的宇宙参数」等等;不过李奥纳特·蘇士侃宣称:某些形式的平行宇宙是无可避免的,在给出对现有宇宙状态的解释时,观测者效应是无法避免的而且得在其他的科学中获得解决。 一些人认为,平行宇宙理论会被奥卡姆剃刀给排除,因为假设一些我们无法观测且无法看见的宇宙来解决我们所看见的,就像是带著额外的行李走到尽头一般;不过对此马克斯·铁马克反驳:「这四种平行宇宙的一个共同特徵就是:预设平行宇宙的存在模型是最简单且最优雅的模型。如果一个人要否决这些多重宇宙的存在,他需要在实验上地对多重宇宙论的不支持,并且要加入以下的假定:有限空间、波函数崩溃和本体上的不对称是正确的,而这些过程会复杂化整个理论。因此我们的对於谁比较不优雅且较为浪费的裁决就变成了以下两者:多重宇宙或者是大量的文辞」。 有时有些人认为我们的宇宙是唯一可能存在的宇宙,因此讨论这些「其他的宇宙」是很明显地无意义的。爱因斯坦在思考其他种类的宇宙存在的可能性时,就提出了这个问题,关於宇宙结构是否只有一种可能的问题的解答的希望被认为在於理论上可统一全部物理理论的万物理论当中。 对於平行宇宙的观测证据的支援被认为来自於人择原理:「我们所观测到的宇宙对生命是友善的,要不然就不会被观测到。虽然这似乎是老调重弹,但是当生物体对物理法则和宇宙状况的敏感性、被考虑时,整个宇宙就是一个明显的证据;在另一方面,许多关键的物理常数似乎不会对於生物体造成严重的不适」;其他对於微调论证的批评是:就我们所知,在我们所知的物理常数之下可能还有更多的基本物理法则,而这些法则背後可能会有更多的参数存在,因此,给出这些定律,这些已知的物理常数未必落在生命许可的生存范围之内。 多重宇宙支持者经常对於常数如何从已定义的整体中选取感到茫然。假设存在个「定律中的定律」或者基本定律描述说常数如果被从一个宇宙到下一个宇宙中指定,那麼我们不过只是将宇宙学的问题给往上移了一个等级而已,因为我们必须解释这个基本定律从何而来。另外,这个基本法则是无穷大的,因此我不过是把问题从「为什麼是这个宇宙」给置换成了「为什麼是这个基本法则」。在援引平行宇宙论时这似乎是一个要点,尤其当假定只存在一个宇宙和一个原理会更简易时更是如此;但在马克斯·铁马克的平行宇宙理论里,这个问题是被避开的,因为在那种状况当中,所有可能的基本理论被实行的,而且被用以描述真实存在的平行宇宙。 对於虚拟宇宙和平行宇宙之间的关系依旧是个问题。多数的科学家已经准备好要接受自觉机器的可能性,而有些人工智慧学者甚至於已经说我们快要能制造自觉电脑了,在距离达让自觉生物住在虚拟世界方面仅剩一步之遥。对於那些生物而言,他们的「假」宇宙和我们的真宇宙可说是无分别的。因此我们应该将这些虚拟宇宙算在平行宇宙中吗?如果不是的话将我们自身存在的宇宙和这些虚拟宇宙划上等号有意义吗? 对於现有的平行宇宙论的最後一个问题是对於宇宙的定义。对多数的平行宇宙论者而言,宇宙是由物理法则和常数,以及初始条件定义的。这项论点可能会因为它的狭隘和沙文主义的性质而招致反对;对於将人类理解之外的事物予以分类也可能会招致批评。
平行宇宙(Multiverse、Parallel universes),或者叫多重宇宙论,指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其基本物理常数和我们所认知的宇宙相同,也可能不同。
胰腺癌不像其他癌症,容易被检测出来,同时胰腺癌不具有肿瘤标记物,这就导致胰腺癌一旦被发现就是中后期,同时胰腺癌扩散的非常快,所以说胰腺癌被人们称为了癌症之王。
1、什么是胰腺癌
胰腺癌是一种来源于胰腺外分泌部的原发性胰腺恶性肿瘤,恶性程度极高,预后极差,通常被称为“癌中之王”。在显微镜下,胰腺癌又有不同的类型。最常见的是导管腺癌,我们通常所说的胰腺癌就是指这一类型,占全部胰腺肿瘤的75%。癌可以侵犯神经细胞从而引起背痛。当出现肿瘤转移到肝脏或淋巴结,通常被认为手术无法切除。腺泡细胞癌、腺鳞癌、胶样癌、肝样癌是相对少见的类型,显微镜下的表现各有特征,临床治疗效果也不完全一样。
胰腺癌的诊断通常是定性诊断(判断是不是癌)+定位诊断(判断癌的位置)结合在一起进行的。采用的方法主要是腹部增强 CT 或核磁共振(有条件的地方可以做胰腺增强CT或核磁共振),结合肿瘤标志物CA19-9。但胰腺癌早期由于缺乏典型症状,所以早期诊断非常困难。因此,对于高危的患者、上腹部症状经久不愈的患者,要警惕,必要的时候要进行排查。
2、胰腺癌手术为什么会有癌细胞残留
手术时癌细胞的残留,是治疗方法意义上的“根治切除术”不能取得“根除肿瘤”疗效的根本原因。术后复发转移的病灶,其“种子”均来源于术中残留的癌细胞。如果不是,那就是新发的第二种肿瘤。
为什么会残留癌细胞呢?有三种方式。
第一种是手术区域的肉眼残留和镜下残留。所谓肉眼残留,是指凭眼睛就可以判断有残留癌,但没有办法清除。因为癌肿太厉害,侵犯到周围组织、重要脏器或者大血管,又不能一并切除。打个比方,你费尽千辛万苦把树桩挖掉了,但你会看见还有很多小树根,往各个方向延伸。
镜下残留,是指肉眼判断没有残留癌,但在显微镜下却发现切缘有癌细胞残留。尤其对于胰头癌的手术,周围都有大血管,在立体上不是每个方向都可以有足够的切除空间。这个就像你在几个大水管周边大扫除,总有一些夹缝难以清扫到。更何况,胰腺癌细胞的一个特性是嗜神经,很容易就通过神经转移到手术切除范围之外。
胰腺癌超越了原位癌阶段,癌细胞就可能直接进入血管,或者通过淋巴系统进入血管,然后随着血液在血管里循环,即循环状态肿瘤细胞,此为第二种的癌细胞残留。
第三种是这些循环状态肿瘤细胞,会顺着血液循环跑到肝、肺、骨等器官潜伏下来,伺机开辟根据地。正是由于三种形式的癌细胞残留,胰腺癌患者手术后不能在疗效上取得根治,从而摘掉“胰腺癌”的帽子。
因此,从理论上讲,癌症患者活的时间足够长,一旦机体的免疫系统监督不力,体内残留的癌细胞就有可能继续扩增,从而复发和转移。
3、胰腺癌做了根治切除手术,还会复发吗
这个问题,要先回答什么叫做“根治切除术”。所谓根治切除术,是指技术上癌切除到检测不出的状态,并不是说能够把每一个癌细胞都清除掉。手术以后,主刀医生跟家属交流时说“手术很成功”“切得很干净”,也基本是同样的意思。这和疗效上的“肿瘤已根除”是有区别的。
比如,对于位于胰腺体尾部的胰腺癌,根治切除术,除了要切除包括肿瘤在内的胰腺体尾部,还必须同时切除脾脏、清扫周围淋巴结,并保证所有的切缘都没有显微镜下的癌细胞残留。这样的“根治切除术”,就能保证将位于手术范围的肿瘤全部清除,但并不意味着可以把所有癌细胞都切除干净。
因为除了极早期的原位癌之外,在循环血液里、各个脏器里都有潜伏着早已逃逸出手术范围的癌细胞。这些残存的癌细胞经过一段时间的潜伏,重新突破机体免疫系统的防御,就可导致胰腺癌术后的复发或转移。
因此,胰腺癌的复发、转移,从时间上说,虽然是在术后才获得诊断,但却开始于术中的残留、术前的潜伏。临床上经常会听到同时性转移和异时性转移,这只是临床上的分类,并没有本质的区别。同时性转移,是指胰腺癌获得诊断时就出现了转移,此时,认为转移灶和原发灶是“同时”出现的。而异时性转移,是胰腺癌诊断之后一段时间再出现转移,就是所谓的不同时。术后转移属于异时性转移。
胰腺癌有“癌症之王”的称号。这是因为这种癌症具有早期不易被发现、恶性程度极高、病情恶化极快、死亡率极高的特点。虽然近年来,胰腺癌的诊断和治疗技术取得了很大的进展,但患者的5年生存率还是小于5%。
造成这些情况的原因,主要在于胰腺癌很难在早期被发现。胰腺是我们身体非常重要的消化器官和内分泌器官,它个头很小,只有10-18厘米长;它的位置在胃的后方,还被脾脏、肝脏、胆囊和十二指肠等器官包围着;胰腺即使发生了早期病变,也只是食欲不振、消化不良、腹胀等常见的消化道症状,极易被其他消化道疾病所混淆。
除了恶性程度高和不容易被早期发现之外,很早就开始向其他器官转移和手术切除无法完全彻底,也是造成5年生存率低的重要原因。因此,重视预防、对胰腺癌的高危人群尽早开展早期检查,是提高胰腺癌患者生存率的主要方法。
因此,对于高危人群:糖尿病患者、长期吸烟喝酒的人群、长期以高糖、高饱和脂肪酸和高胆固醇食物为主的人,以及有家族史的人,当发生消化问题时,应该警惕胰腺癌的发生。临床上对胰腺癌的早期筛查,主要手段有腹部B超、肿瘤标志物生化检查等;对于高度怀疑者,还可以参加医院设定的胰腺癌诊断检查程序,做进一步确诊。总之,尽早诊断、尽早手术切除,是提高胰腺癌患者生存率的可靠手段。
同样,要想预防胰腺癌的发生,也需要在几方面做好工作,那就是养成良好的生活习惯,如:戒烟戒酒、低热量饮食、加强体育运动、保持乐观的心态和规律的作息习惯等。
胰腺癌因病程短、发病快、死亡率高等被称为“癌症之王”,一直是世界医学界研究的热点领域。胰腺癌之所以被称为癌症之王,首先是因为他被发现的难度很高。在初期的时候,如果不进行针对性的检查,身体上是不会有任何的不良反应,只要是有了身体上的具体症状,那么一般都是到了中晚期,治疗起来难度会非常大,所以死亡率很高
调查法 调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。 调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。 观察法 观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。 实验法 实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。 文献研究法 文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。 实证研究法 实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。 定量分析法 在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。 定性分析法 定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。 跨学科研究法 运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。 个案研究法 个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究。 功能分析法 功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。 数量研究法 数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法。 模拟法(模型方法) 模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。 探索性研究法 探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识,产生出新颖而独特的成果或产品。 信息研究方法 信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。 经验总结法 经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。 描述性研究法 描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。 数学方法 数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。 思维方法 思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。 系统科学方法 20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善。而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段。它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系。这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。
最近我也在写论文的开题报告。下面是我复制的,百分之百正确。调查法调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。观察法观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。实验法实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。文献研究法文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。实证研究法实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。定量分析法在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。定性分析法定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。跨学科研究法运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。个案研究法个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究。功能分析法功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。数量研究法数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法。模拟法(模型方法)模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。探索性研究法探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识,产生出新颖而独特的成果或产品。信息研究方法信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。经验总结法经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。描述性研究法描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。数学方法数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。思维方法思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。系统科学方法20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善。而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段。它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系。这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。
研究方法是指在研究中发现新现象、新事物,或提出新理论、新观点,揭示事物内在规律的工具和手段。那么论文的研究方法有哪些呢?操作方法01规范研究法会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。02实证研究法实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。03案例分析法案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:04比较分析法是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。05思维方法思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。06内容分析法内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。07文献分析法文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。08数学方法 数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
(一)运动与变化的思想方法笛卡儿的贡献在于奠定了从“动态”的角度去解决一系列复杂的代数问题和几何问题的理论基础。把曲线看成是点运动的轨迹,用代数的语言来说就是,曲线方程f(x, y)=0是由变量x与y按一定的规律而构成的。于是,一个在代数中看来意义不大的方程f(x, y)=0,由于引进了对一个变量逐次给予确定值去确定另一个变量的变化思想,就形成了表示变量之间关系的函数式。它所产生的数学哲学思想就是:从物体的运动中去看待几何学与代数学,以变量为基础,将几何学与代数学结合起来,因而,解析几何这门课程最重要的思想方法就是运动与变化的思想方法。(二)数形结合的思想方法在平面上建立直角坐标系后,平面上的点与有序实数对之间建立了一一对应关系。在此基础上,平面上的曲线可以用方程来表示。这样,研究曲线性质的几何问题就可通过研究方程的代数问题来进行。由于数与形的结合,可以把图形的位置关系转化为数量关系。例如,可把讨论直线与圆的位置关系转化为讨论圆心到直线的距离与半径的数量关系(这是一种以数助形的做法)。正是数与形的结合,我们又可以把某些代数问题转化为图形的位置关系来研究。(三)化归思想方法从方法论的角度看,化归是使原问题归结为我们所熟悉的或者是容易解决的问题。解析几何的创立过程是化归思想最有特色的应用之一。解析几何把数学的主要研究对象——数量关系与空间图形联系起来,使它们相互转化,用其各自的规律与方法分析研究另一类问题。解析几何中的概念、定理、公式及其方法本身蕴含着丰富的化归思想。
几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1、化圆为方——求作一正方形使其面积等於一已知圆; 2、三等分任意角; 3、倍立方——求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求
随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表. 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意以下几点. 一、借鉴成果,博采众长 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息. 信息的表现形式多种多样,大致可以分为三类:(1)书面形式,比如各种书籍、报纸、刊物等;(2)口头形式,比如各种会议、听课、交流、咨询等;(3)电子形式,比如以网络、光盘、软盘等为载体的信息. 来源于不同形式的信息各有千秋,有的权威性高,有的时效性快,有的针对性强,有的信息量大. 这些信息的保存方式也各不相同,主要有四种:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容,主要用于一般性的信息;(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上. 有条件的,还能使用录音、录像、刻录光盘等等方式. 自1996年以来,我手抄20多万字,复印存盘10多万字,这些宝贵的文献资料,为我的教育科研和论文写作,提供了强大的理论支持和实践指导. 二、完备素材,厚积薄发 论文只是教研结果的表现形式之一,有人提出“论文还自教研始”、“论文在研不在写”等观点,有一定的道理. 如果只看重论文发表这一结果,急功近利,做无病之呻吟,效果肯定不好. “厚积”是基础,没有来源于实践的经验教训、数据统计等等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习的过程;(2)课后反思,对每节课的成败得失都及时的总结下来,以便进一步研究;(3)作业记录,从学生作业中不但能发现具有共性的问题,提示我们教学教研的改革方向,而且学生中也会有许多新颖的解题思想,值得教师学习;(4)考试总结,测验考试是对学生知识的集中检验,即使在素质教育中,也不能把考试视为应试教育的“余孽”,“打入冷宫”,关键是如何改革考试制度和内容,适应素质教育;(5)解题分析,教师平时应坚持解答一定数量的数学题,解题是数学的核心任务之一,这样做可以活跃思维,并从中探索解题规律和命题趋势;(6)调查反馈,调查可以用谈心、问卷等多种形式进行,从中所反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信他人,在阅读他人的论文时,有时也能发现其存在的不足甚至是错误之处,对此只要自己的理由充分就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,但这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起. 几年来,我以“教学手记“形式,积累的素材已达200多份45万字,在此基础上进一步整理成文,已在国家级、省级报刊发表各类数学论文(或文章)100余篇17万字. 其中,有些论文的素材积累投入了很大力度,比如发表于《理科考试研究》(初中版)2001年第10期的《“动”了五年的压轴题》一文,是在对1997年~2001年五年间,河北省中考压轴题的命题规律进行研究的基础上,汇总整理而成的;发表于《校园学习·数学》2002年第1~2期的《方程(组)中考复习精要》一文,素材源于对2001年70余份中考试题的分析精选. 三、立足实践,提炼新意 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的. 正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 近期,我正负责河北省“创新教育”子课题“培养学生创造性思维能力”的研究工作,这一课题也是当前教育界的一个热门话题,我将自己的阶段性研究成果写成论文《培养学生创造性思维能力的常用方法》,参加了2000年8月在京举办的“全国初中数学教育第十届年会”论文评选,荣获二等奖. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手,据此李凤君老师和我合作写成《怎样判断勾股数》一文,发表在《教育实践与研究》2000年第2期上. 论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时. 就拿对中考试题的研究来说:河北省2000年中考于6月22日结束,我随即对当年的中考试题加以分析,从考查学生创造性思维能力的角度深入剖析,于7月份创作完成了《注重考查学生的创造性思维能力——2000年河北省中考数学试题评析》并寄给《中小学数学》(初中教师版),后来发表于该刊2001年第3期;一般每年的全国各地中考试题汇编资料最早在10月份面世,通过研究我发现,1998年的中考试题中不等式应用题异军突起,而且当年考生的得分率偏低,必将引起以后中考师生的注意,针对这一新动向,我于11月份写成《例谈中考不等式(组)应用题》一文,对此进行分类研究,并补充编拟新试题,指出命题趋势,该文发表于《河北教研》1999年第2期. 四、从小到大,循序渐进 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,提醒初写者先尝试以下两个步骤: 第一步,练习写学习辅导类的文章. 几年来,我在《学习报》、《少年智力开发报》、《初中生周报》等报纸上,发表学习辅导类文章数十篇. 这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究. 学习辅导类的报刊面向广大学生,通常用稿量大,发表得快;其内容突出针对性,深入浅出,形式灵活;所需稿件短小精悍,通常有1000字左右;要求与教学同步,应该比教学进度提前3个月寄稿;写稿还应分析用稿动向,目前学习辅导类报刊多数存在高年级稿多、低年级稿少,综合知识稿多、单个知识稿少等等现象,初写者可以倾向于写“少”的方面的稿;稿件写完后要反复修改,确保无误,再抄写或打印寄出. 第二步,进行教学研究类论文的写作,侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等. 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,比如发表于《中小学数学》(初中教师版)2001年第9期的《谈计算器的教学》一文,就是在此方面的尝试. 需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华;论文篇幅不求长,大家都知道的少说或不说,适可而止,相信读者的阅读水平,主要适于教师阅读的论文,长短不一,就我发表的论文而言,短的仅千余字,长的近7000字,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,但对与教学同步性的要求则比较宽松;为提高发稿率,应认真研读报刊风格,留心新增栏目、征稿启事,对发现的问题勇于质疑争鸣. 五、文外功夫,提高修养 文外功夫,主要指一个人的思想境界、个人修养、意志品格等方面的表现. 它具体体现在两个方面: 一方面是,讲究文德,不要过分看重名利、沽名钓誉. 必须信守承诺,尤其是应约写稿,一定要迅速及时,保质保量;如所约稿件较多,也可以多写几篇给编辑以选择的余地;为避免信件丢失,可用挂号信寄稿,有时还需用特快专递、传真、发E-mail等方式. 当前很多单位(甚至有的是个人)利用教师希望发表论文的迫切心理,征集各种名目的“自助论文”,对此应慎重对待,不能为了名利,就写一些没有价值的文字,花钱发表. 一稿多发一般是由一稿多投所致,如果在约定时间内未收到用稿通知、样报样刊或稿费,而再投他刊造成重复发表的尚有情可原;但有的把一篇稿同时寄往多家报刊,甚至明知已经发表录用又另投他刊,即使侥幸被重复发表,无论间隔时间长短,也很容易被读者识破,这样做既不尊重编辑,影响报刊质量,又坑害读者,降低个人声誉,结果适得其反. 更为严重的是剽窃抄袭他人论文,不但可耻,而且是一种违法行为. 另一方面是,坚持不懈,持之以恒. 我从1996年初开始着手于素材的积累,不断自觉的夯实基本功,历时一年多,直至1997年开始投稿,结果投寄的第3篇论文《代数式求值十法》就被发表于《理科考试研究》1997年第6期,喜悦之情溢于言表,细细回味,一年多的“寂寞”也是初次收获的重要因素,如果坚持不下来,也只能是半途而废了. 相对于更多的论文作者来说,我还算是幸运的,他们在谈到自己的写作经验时,提到投稿数十次、甚至近百次以后才有作品问世,其间的酸甜苦辣、经验体会是难以言传的,“失败是成功之母”、“功夫不负有心人”在他们身上得到了充分的体现. 以上所谈是我对初中数学论文写作的几点看法,希望能给刚刚开始写作的朋友带来一些帮助. 所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一.
高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科,如何才能提高数学教学的有效性呢?本文是我为大家整理的高中数学有效性教学研究论文,欢迎阅读! 高中数学有效性教学研究论文篇一:高中数学作业的有效性 一切实把握好“度”。 教师要认真钻研教材,正确掌握教学目标和学生实际,认真挑选与教学目标密切关联的作业内容,合理安排作业的量,正确把握作业的难易度,哪些是必做题,哪些是选做题。让学生根据自己的知识水平量力而行。 二做好作业前期准备。 作业前期准备有学生和教师的准备。学生首先认真阅读课本,本节知识点有哪些,需要掌握到什么程度,知识点之间有什么联络,研究例题,反思老师怎么分析、怎么讲解、怎么板书。其次反思本节知识难点的分解,反思所涉及的数学思想。最后再做作业。教师根据所任教班级的学生学情来把握是否有必要题意解释,适当地点拨,甚至详讲。 三精选作业内容。 1.选择涉及本节知识的部分较易的作为作业。如:学习全集补集概念课后布置作业:1若C∪A={5},则5与U,A的关系如何2已知全集U={1,2,3,4,5,6},C∪A={5,6},则A=____2.选择以涉及本节知识为主,但相对稍难的作为选作作业。例如,学习全集补集概念课后布置作业:已知 *** A={1,3,x},B={1,x2},设全集为U,若B∪〔UB=A,求〔.选择以章节知识为主,但具有一定的综合性、拓展性的作为章节复习作业。例如, *** 复习课后布置作业:设全集U={x∈N+|x≤8},若A∩C∪B={2,8},C∪A∪C∪B={1,2,3,4,5,6,7,8},求 *** A 四精选题型 要注重变式题、同类题、多解题、易错题、探究题题型的精选。1.变式题变式题指对原命题交换条件和结论或变换部分条件得出新题。这类题型有助于学生开阔思路,思维灵活多变,培养解题的灵活性,思维的发散性以及创新能力。例如,学习空间图形的基本关系与公理后布置作业:在平面几何中,对于三条直线a,b,c存在下面三个重要命题:若a‖b,b‖c,则有a‖c;若a⊥c,a‖b则有b⊥c:若a⊥c,b⊥c则有a‖b,它们都是真命题,若把a,b,c换成i不在同一个平面内的三条直钱,ii三个平面α,β,γ,iii其中两条直线换成两个平面,另一条还是直线,iv其中一条直线换成平面,另两条还是直线。一共可得到16个不同的命题,其中将正确的命题写在空白处。2.同类题同类题指具有多题一解的一类题。这类题型让学生领悟一类题解题的一般规律,加深对知识的理解,培养类聚思维,化归思想。例如,学习了简单的幂函式后布置作业:1已知fx+2f1x=2x,求fx的解析式。2若函式fxgx分别是R上的奇函式,偶函式,且满足fx-gx=x3+2x2+1求fx的解析式。3.多解题多解题是指是有多种解法的一类题。这类题型可以开拓学生解题思路,激发学生发散性思维和创新能力。但要注意多解不是目的,主要是能从多解中寻求最佳解法。例如,学习完直线与圆的位置关系后布置作业:已知x,y满足x+y=3,求证:x+52+y-22≥184.易错题易错题是一类具有隐含条件,解题稍一疏忽,就会因考虑不周到而失误的题目。这类题型能够考察出学生考虑问题是否全面,思维是否缜密。例如,在学习了 *** 间的基本关系后布置作业:已知 *** A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B哿A,求实数m的取值范围没有考虑B=Φ时的特殊情况而失误在学习了导数后布置作业求过点P1,2且与曲线fx=x3-2x+3相切的直线方程。没有考虑P不是切点的情况而失误5.探究题探究题是指提供情境,从中发现问题进行探究的一类问题。这类题型可以培养学生观察能力与思维能力,分析问题和解决问题能力。例如,学习完指数函式后布置作业:fx是定义在R上的函式,且满足fx•gx=fx+y,当x>0时,fx>1,f0≠0,求证:1f0=1;2fxf-x=1;3当x<0时,0 五做好作业的指导 对学生作业的指导是提高有效性的重要保证。成绩好的学生往往喜欢独立思考,独立完成作业;而成绩不理想的学生往往不善于独立思考,喜欢依赖别人。教师要根据学生在课堂上掌握情况预知作业进展情况,预料学生做作业时可能存在的问题,布置作业前在课堂上进行提示或讲解,之后学生再做作业,效果会更好一些,真正达到做作业的实效。 六改进作业的评价 批改作业,教师要做到及时,认真,把批改作业中发现的问题,错误以及所犯错误的数量,性质进行记录分析,并在下一次课中有针对性的指出,纠正。教师往往对作业评价只打“√”或“×,这样不利于调动学生学习的积极性。教师应改变对作业简单地打“√”或“×”的评价方式。可以改“×”为在出错的地方打“?”或提示语的方式,使学生明确错在何处或何因出错。根据学生作业情况反馈资讯及时作出正确评价。对于优秀作业或解题有创意的作业用赞美的语言或采用优秀作业展览的形式来激励学生。总之,让学生感受到老师的关爱,以及自己勤奋严谨获得的成功,增加学好数学自信心。 作者:姜长虹 单位:内蒙古扎兰屯第一中学 高中数学有效性教学研究论文篇二:高中数学教学模式 一、在高中数学实现有效的教学模式的意义 高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科。纵观高中数学的内容,我们发现高中数学的难度比较大,单单依靠学生自学是无法完全掌握这门学科的,还需要教师对于知识的归纳和总结,提供给学生一种解题的思维和技巧。因此在提高高中数学课堂的有效性显得尤为重要。实现高中课堂学习的有效性,可以提高学生学习的效率。高中课程的学习不同于初中课程,高中每门课程的难度都比较大,要全面兼顾好每门课程的学习,因此学习效率对于高中生而言尤为重要,只有提高了学生的学习效率,学生才有更多的时间用于身体锻炼和学习更多的内容,这样才能培养全面的人才,贯彻新课改的要求。 二、如何实现高中数学有效的教学模式 一高中数学教师要创新教学模式,改变沉闷的教学氛围。在传统的高中数学教学模式之中,教师往往忽视教学氛围对于学生学习的重要作用,在枯燥的教学环境中,学生往往对课程的学习也不感兴趣。因此为了使高中数学课堂更加高效率,教师在教学模式上也要创新和改革,改变以往不符合学生学习规律的教学方法,建立起新的教学模式,活跃课堂气氛,提高学生学习的积极性。例如教师在教学生抛物线这个知识点的时候,老师可以在上课时,用一根粉笔,直接用手将粉笔往上抛,以这种生动的形式来作为课堂导课。这样不仅仅在一瞬间抓住了学生的注意力,还能够让学生将今天所学的知识与自己的生活实际联络在一起,不仅仅体现了新课改的要求,还极大的激发了学生学习的兴趣。 二高中数学教师要以学生作为教学的主体,给予学生更多的关注和鼓励。总所周知,学生对于这个老师的好感与学好这门课程是密切相关的,因此,教师要和学生建立良好的师生关系。高中数学的知识点比较难,考验学生较强的思维能力,但是很多学生在面对高中数学时常常有挫败感和恐惧感,这些挫败感和恐惧感极大的阻碍了学生学习高中数学。因此高中数学老师在教学中应该这样做,例如,在为学生讲述数列这一个知识点的时候,要求学生做相应的基础知识的练习,刚开始对学生要求做的练习的难度不应该太大,慢慢培养学生的成就感和对于高中数学的喜爱。除此之外,教师在教授课程的速度也不应该太快,要考虑到学生的接受能力,对于那些数学基础比较差的学生,教师要有足够的耐心去教,不要随意放弃任何一位学生,对于基础差的,跟不上全班学习进度的学生,高中数学教师可以为这些学生在课前找一些基础的练习题,让这些学生提前练习,学会笨鸟先飞,逐步跟上全班的数学水平。 三高中数学教师要创新自我的课堂教学设计,善于使用肢体语言让学生得到肯定。在新课改的背景下,高中数学教师不仅仅作为一名传授课堂知识的工作者,还要学会如何有效地将课堂知识传授到学生的身上,让学生真正的掌握知识。课堂知识的传授不在于教师讲授了多少,而在于学生吸收了多少。在创新课堂教学设计中,例如高中教师在讲授函式的单调性的时候,可以采用设问的方法,让学生主动思考,例如,教师可以让学生回答一次函式的单调性,然后再想想我们所学的函式方程,他们的单调性又存在什么特点,通过问题教学法,层层的问题的设定,让学生在思考问题中自己发现函式单调性的内在规律,除此之外,教师在教学的过程中,要常常对学生微笑,运用肢体语言给予学生更多的鼓励和肯定,让学生在学习中逐渐找到自我的学习方法和成就感。 作者:黄兵 单位:贵州省遵义县第一中学 高中数学有效性教学研究论文篇三:高中数学的有效教学 一、采取恰当的教学方法 高中数学这门学科虽然是一门对逻辑性思维具有较高要求的一门学科,但是在整个的教学过程中,笔者认为教师还应该积极地根据教学的不同内容和知识特点采取不一样的教学方法,从而更好地促进学生的能力发展和实现有效教学这一目标.所谓采取恰当的教学方法具体而言就是要根据函式和三角函式这一类的知识点采取数形结合、讲练结合的方式来开展教学;要根据立体几何的立体空间特点引导学生通过观察立体图形的方式开展教学;要根据 *** 、命题、概率等内容采取透析概念、侧重语言文字转化为数学语言的方式来开展教学;等等. 通过这样一系列的各种各样的方式,将有效地提升学生的认识,引导学生分别从不同的方面找出不同的思考方式,从而更好地开展高中数学教学,有效地提升学生对知识的理解.例如,在讲“ *** ”时,教师要注意加强对 *** 、元素、子集、 *** 的特征等概念的学习,加强学生对 *** 的基本运算交集、补集、并集的概念区分.特别是要引导学生对 *** 内元素的互异性这一具体运用以及具体的教学例子的讲解,帮助学生获得提升和发展.通过这样一种细化不同知识点的方式,将有效地提升学生对 *** 内各个概念的理解,也将更好地提升整个教学的效率,从而实现高中数学有效教学. 二、注重教学的启发性 高中数学这门学科因为具有很强的逻辑性所以对学生的思维发展是一个挑战,也是一个重要的契机.所以,在整个的教学实施过程中,笔者认为教师还应该积极地引导学生在教学实施的过程中注重教学的启发性,从而更好地发散学生的思维,促进学生的创新行思维和经纬网式的综合性思维的发展.在教学过程中,教师要注意通过一些具有启发性的题目和内容来锻炼学生的思维,鼓励学生去探究有关的知识点和激励学生去思考,激发学生的潜力。这样一改,学生能够在第一眼就发现这个题目解答的最便捷方法就是属性结合,可以将已知内容看做一个圆,而需要求解的内容则是一条直线.然后就是求解该直线与圆之间相交的范围.随后,教师再引导学生切入到之前的题目中,从而更好地激发学生的思维,有效地启发了学生思考. 作者:陈督武 单位:浙江乐清市白象中学 看过" 高中数学有效性教学研究论文"的还: