首页

> 学术期刊知识库

首页 学术期刊知识库 问题

缺陷研究三重晶格光子论文

发布时间:

缺陷研究三重晶格光子论文

从人造自旋冰(ASI)上散射的x射线光子获得了轨道角动量。x射线束可以随温度和磁场的变化而开关。插图:实验x射线衍射图。 人工自旋冰(ASIs)是一种具有奇异性质的磁性超材料,其性质取决于其几何形状。在过去的几年中,许多物理学家研究了这些材料,因为它们独特的特性可能有利于一些应用。 美国肯塔基大学、阿贡国家实验室、劳伦斯伯克利国家实验室和其他研究机构的研究人员最近介绍了一种在ASI磁系统中实现可切换x射线轨道角动量(OAM)的方法。他们的方法发表在《物理评论快报》上,可以为研究磁性系统、铁电性、手性系统和纳米结构的新研究铺平道路。 “我对携带轨道角动量(OAM)的光子这个主题非常感兴趣,”开展这项研究的研究人员之一苏乔伊·罗伊(Sujoy Roy)告诉。“在可见光领域,人们已经在这一领域做了很多工作,但在x射线方面的报道有限。所以,我们开始研究它,我们是第一个成功产生携带软x射线束的OAM。” 罗伊和他的同事在之前发表在《自然·光子学》上的一篇论文中指出,通过制造一种带有叉位错的特殊光栅,他们可以成功地产生携带oam的软x射线光束。随后,当他们在研究二维正方形的ASIs时,他们开始研究在材料的正方形晶格有分叉缺陷的情况下OAM光束的产生。 “这特别有趣,因为我们的晶格具有磁性;因此它以低于定序温度的反铁磁性排列。”罗伊说。“现在的问题是,如果我们引入一个叉,反铁磁会发生什么?样本还会进入反铁磁状态吗?经过一系列的讨论和头脑风暴后,我们得出的结论是,通过插入双位错,样品仍然能够进入反铁磁状态。” ASIs是由纳米磁铁组成的图形阵列,它们与水冰有一些共同的特性。ASIs经常会“受挫”,这本质上意味着包含在它们内部的磁铁不能以将相互作用中涉及的能量最小化的方式与它们的邻居对齐。正如莱纳斯·鲍林(Linus Pauling)在1935年观察到的,水冰中的氢原子通常以类似的方式排列。 大约十年前,物理学家们发现,最初由宾夕法尼亚州立大学的一个研究小组研究的方形ASIs实际上并没有“受挫”,而是进入了一个有序的反铁磁基态。2006年Möller和Moessner首次预测到这一点,2011年利兹大学的Christopher Marrows和他的同事通过实验证明了这一点。当它们处于反铁磁基态时,晶格中的磁铁以这样一种方式相互抵消,因此ASI没有净磁化。 “我们与肯塔基大学的兰斯·德隆教授合作,在人造自旋冰(ASIs)领域工作了一段时间,”另一位参与了这项最新研究的研究员托德·黑斯廷斯(Todd Hastings)告诉。马里兰大学的John Cumings领导的另一个研究小组显示,在正方形ASI中引入叉位错(拓扑电荷1)会重新引入挫败感,并阻止单一反铁磁基态的形成。我们的团队认识到,引入双叉位错(拓扑电荷2)可能会允许反铁磁基态发生重组。” 在Roy, Hastings和他们的同事研究的ASI中,结构中的拓扑电荷(即分叉缺陷的数量)为2,而反铁磁的拓扑电荷为1,导致一个系统中有两个不同的拓扑电荷。除了 探索 挫折的引入和消除如何改变正方形ASI系统中单个缺陷的电荷外,研究人员还观察了x射线如何从这些结构散射。 黑斯廷斯解释说:“有一段时间,我们一直在思考如何用OAM来制造可以开关的x射线束。”“携带光的OAM可以使小物体绕光束中心旋转,并使各种应用成为可能,如量子密码学、光镊和电信。虽然x射线OAM并不常见,但它可以由带有叉形缺陷的结构衍射产生。因此我们假设,从带有叉形缺陷的方型ASIs散射的x射线也会携带OAM。” 苏黎世联邦理工学院的劳拉·海德曼和保罗·谢勒研究所领导的一个研究小组表明,通过对平方的ASIs施加外部磁场,它们可以被置于铁磁状态,在这种状态下所有纳米磁铁都朝向相同的方向。受之前工作的启发,Roy和Hastings假设一个外加磁场也可以关闭磁性散射的OAM束,当系统回到基态时,这些束会重新打开。 黑斯廷斯说:“有了这个系统,整个系统就可以产生具有不同轨道角动量的x射线束,在这个系统中,磁性散射束可以开启和关闭。” x射线对物质的密度很敏感,但对磁矩不太敏感。为了获得对磁信号敏感的x射线,研究人员采用了一种称为共振x射线磁散射(RXMS)的技术,该技术使用了一种相干光束(即具有明确振幅和相位的光束)。通过将入射光束的能量调整到元件的吸收边缘,这种技术使他们能够获得更高的磁灵敏度。 图2:(a)双位错波莫合金方形人造自旋冰的扫描电子显微图(电荷2的拓扑缺陷)。(b) XMCD-PEEM显微图揭示了反铁磁基态顺序。明亮的区域沿x射线束被磁化,暗的区域在射线束的对面被磁化。蓝色的盒子描绘了一个伯格斯电路。 “在我们的案例中,我们调谐到铁的L3边缘,这是707 eV(作为参考,Cu K alpha辐射是8 keV),然后我们使用相干x射线束衍射,”罗伊解释说。“由于光束的相干性,衍射光束的相位具有相干性,因此整个出射光束获得螺旋相位锋,从而产生OAM。” 当研究人员使用RXMS技术进行衍射实验时,他们可以在满足布拉格条件的特定角度观察到强峰,在布拉格条件下,散射的x射线相互干扰。由于反铁磁体的晶格间距是结构晶格的两倍,反铁磁峰一般出现在不同的位置。这种位置上的差异有助于研究人员区分电荷峰和磁衍射峰。 罗伊说:“当我们在分叉的二维阵列上衍射时,我们得到了结构布拉格峰和磁性布拉格峰的OAM光束。”“然而,由于两种不同的拓扑电荷,我们在结构和磁布拉格峰中看到了不同的OAM含量。此外,由于我们可以通过应用场控制人造自旋冰,这意味着我们将能够控制束流中OAM的含量。” 罗伊、黑斯廷斯和他们的同事使用的ASIs中的纳米磁铁是由波莫合金制成的,波莫合金是一种镍和铁的合金。为了创建他们所检测的系统,研究人员使用一种叫做电子束光刻的技术,在硅片上的聚合物上写了一个图案。 黑斯廷斯说:“我们的样品在真空中通过蒸发材料(电子束蒸发)使其沉积在图案上,然后涂上一层坡莫合金。”“随后,我们移除了聚合物和位于非图形区域上的坡马合金(所谓的剥离过程)。每个纳米磁铁有470纳米长,170纳米宽,只有3纳米厚。一根人类头发的直径约为10万纳米,所以如果你把这些磁体竖立起来,大约1500万个磁体可以安装在一根头发上。” 当x射线束以适当的角度衍射,当射线束被调谐到铁的L3磁性边缘时,研究人员发现他们检测的ASI系统进入了反铁磁基态。随后,他们利用x射线磁性圆二色性光电发射电子显微镜(XMCD-PEEM)技术,直接成像系统中纳米磁体的磁化情况,证实了这种状态的存在。利用这种技术,他们用x射线照亮ASI,并在电子显微镜中捕获纳米磁铁发出的电子。 哈斯廷斯说:“在x射线散射实验中,我们将样品加热到大约100 C,以表明当ASI从反铁磁顺序切换到顺磁状态时,磁散射光束可以随着温度的变化而关闭。”“有趣的是,坡马合金本身直到大约600 C才变成顺磁性,所以ASI是在模仿顺磁性,而坡马合金仍然是铁磁性的。” 研究人员还在他们所检测的ASI上施加了一个磁场,以使其所有的磁铁指向同一个方向。纳米磁铁在内部改变其磁化方向,而不是在外磁场中旋转。研究人员发现,一旦ASI不再处于反铁磁基态,磁散射x射线OAM束就消失了。 罗伊说:“到目前为止,在x射线系统中产生OAM束是一项艰巨的任务。”“现在我们可以产生这些光束,也有办法控制它们,这开辟了新的可能性。例如,这些光束可以用于研究磁系统中的拓扑自旋结构、铁电系统中的极涡、手性系统和纳米结构。” 罗伊、黑斯廷斯和他们的同事设计的从ASIs生成可切换x射线OAM的方法可能有许多有趣的应用。除了为检验各种材料的新研究提供信息外,它还可能为x射线在量子信息科学中的应用开辟新的可能性。此外,利用这个研究小组所采用的方法,物理学家可以确定其他可以用来产生定制x射线束的材料。 “产生可控x射线OAM的能力为研究其他材料提供了一个令人兴奋的新工具,”Hastings说。“我们的研究还提供了一些关于人工自旋冰在所谓拓扑缺陷存在下表现的见解。也就是说,现在我们知道了缺陷自由平方ASIs是不挫败和有序反铁磁,缺陷拓扑电荷为1引入挫败,缺陷拓扑电荷为2消除挫败。 罗伊、黑斯廷斯和他们的合作者现在正试图确定在他们的实验中产生的光束是否对其他材料的特定特性敏感。如果是这样的话,他们的发现可以为 探索 不同材料系统的研究创造新的途径和视野。 黑斯廷斯说:“除了应用x射线OAM束来研究其他材料,我们还在研究更复杂的能够产生不同OAM束的ASIs, 探索 切换OAM的新方法,并试图更详细地了解拓扑缺陷如何影响ASIs的行为。”

稀土掺杂氟化物多波长红外显示材料的研究摘 要本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+AbstractThis paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+目 录摘要Abstract第一章 绪论 稀土元素的光谱理论简介 稀土元素简介 稀土离子能级 晶体场理论 基质晶格的影响 上转换发光材料的发展概况 上转换发光的基本理论 激发态吸收 光子雪崩上转换 能量传递上转换 敏化机制与掺杂方式 敏化机制 掺杂方式 上转换发光材料的应用 本论文研究目的及内容 8第二章 红外激光显示材料的合成与表征 红外激光显示材料的合成 实验药品 实验仪器 样品的制备 红外激光显示材料的表征 XRD 荧光光谱 12第三章 结果与讨论 基质材料的确定 助熔剂的选择 烧结时间的确定 烧结温度的确定 掺杂浓度的确定 17结 论 21参考文献 22致 谢 23第一章 绪论 稀土元素的光谱理论简介 稀土元素简介稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。稀土发光材料具有许多优点:(1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;(2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;(3)荧光寿命跨越从纳秒到毫秒6个数量级;(4)吸收激发能量的能力强,转换效率高;(5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。稀土离子能级稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。 晶体场理论晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。 基质晶格的影响基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:(1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。 上转换发光材料的发展概况发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。 上转换发光的基本理论通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。激发态吸收激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。图1-1 上转换的激发态吸收过程 光子雪崩上转换光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。图1-2 光子雪崩上转换能量传递上转换能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。(a)普通能量传递 (b)多步连续能量传递(c)交叉弛豫能量传递 (d)合作发光能量传递(e)合作敏化上转换能量传递图1-3 几种能量传递过程的示意图稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:Itamin ∝ Iexcitationn其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。 敏化机制与掺杂方式 敏化机制通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:Dexc+A→D+AexcD表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。(1)直接上转换敏化对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。图1-4 直接上转换敏化(2)间接上转换敏化由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。图1-5 间接上转换敏化 掺杂方式表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。表1-1 常见的掺杂体系稀土离子组合 激发波长 基质材料 敏化机制单掺杂 Er3+ 980nm ZrO2纳米晶体 —Nd3+ 576nm ZnO–SiO2–B2O3 —Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化Yb3+:Ho3+ 980nm YVO4 直接敏化Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化 上转换发光材料的应用稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。 本论文研究目的及内容Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。第二章 红外激光显示材料的合成与表征经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。 红外激光显示材料的合成 实验药品(1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。(2)ErF3、YbF3的配制制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:Er2O3+6HNO3→2Er(NO3)3+3H2OYb2O3+6HNO3→2Yb(NO3)3+3H2O再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:Er(NO3)3+3HF→ErF3↓+3HNO3Yb(NO3)3+3HF→YbF3↓+3HNO3生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。 实验仪器SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)WGY-10型荧光分光光度计(天津市港东科技发展有限公司)DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)1064nm半导体激光器(长春新产业光电技术有限公司)4-13型箱式电阻炉(沈阳市节能电炉厂) 样品的制备(1)实验方法本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。(2)实验步骤根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:图2-1 实验流程图 红外激光显示材料的表征 XRDX射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo 鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、.、SS1 mm,扫描速度10度/min(普通扫描)、度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使信息处理技术的全光子化和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。光子晶体近期在国际上的应用进一步深化,具体表现在:1. 与纳米技术相结合,用于制造微米级的激光,硅基激光;2. 与量子点结合,使得原子和光子的相互作用影响材料的性质,从而达到减小光速、减小吸收等作用3. 光子晶体光纤应用随着社会的发展,显赫一时的半导体器件已经不能满足信息技术发展的需要,必须寻找信息传输速率更高,效率更高的新材料。普遍认为,光子技术将续写电子技术的辉煌,光子晶体将成为未来所依赖的新材料。4. 狄拉克锥在光子晶体中的实现 光子晶体的理论研究始于上世纪80年代末期。虽然1987年Yablonovitch和John就提出了光子晶体的概念,但直到1989 年,Yablonovitch和Gmitter首次在实验上证实三维光子能带结构的存在,物理界才开始大举投入这方面的理论研究。由于光子晶体有类似电子晶体的结构,人们通常采用分析电子晶体的方法结构电磁理论来分析光子晶体的特性,并取得了和试验一致的结果。主要的方法有:平面波展开法(planewaveexpansionmethod简称:PWM)、传输矩阵法(transfermatrixmethod简称:TMN)、有限差分时域法(finitedifferencetimedomain简称:FDTD)和散射矩阵法(scatteringmatrixmethod简称:SMM)等。平面波展开法是比较常用的一种方法,它的基本思想是:将电磁场以平面波的形式展开,可以将麦克斯韦方程组化成一个本征方程,求解该方程的本征值便得到传播光子的本征频率。这种方法的不足之处是当光子晶体结构复杂或处理有缺陷的体系时,可能因为计算能力的限制而不能计算或者难以准确计算。而且如果介电常数不是常数而是随频率变化,就没有一个确定的本征方程形式,这种情况下根本无法求解。传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,同样变成本征值求解问题。传输矩阵表示一层(面)格点的场强与紧邻的另一层(面)格点场强的关系,它假设在构成的空间中在同一个格点层(面)上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间。这种方法对介电常数随频率变化我金属系统特别有效,而且由于传输矩阵小,矩阵元少,运算量小,同时在计算传输光谱时也是十分方便的。但是用该方法求解电磁场的分布较为麻烦,效率不是很高,因此对于光子晶体物理特性的理解没有太大的帮助。有限差分时域法是电磁场数值计算的经典方法之一。在这里将一个单位原跑划分成许多网状小格,列出网上每个结点的有限差分议程,利用布里渊区边界的周斯条件,同样将麦克斯韦方程组化成矩阵形式的特征方程,这个矩阵是准对角化的,其中只有少量的一些非零矩阵元,计算最小。但是由于有限差分时域法没有考虑晶格的具体形状,在遇到特殊形状晶格的光子晶体时,很难精确求解。散射矩阵法假定光子晶体由各向同性的介质组成,其中充满了各种开头和尺寸的没有重叠的光学散射中心。通过对所有的散射中心的散射场应用傅立叶-贝塞尔展开来求解亥姆霍兹方程,从而计算出在光子晶体中传输的场分布。应用这种方法对于求解场分布和传输光谱都是可行的,但是由于这种方法需要较长的运算时间,在有些情形下实际上是不可行的。实际理论分析中,还有很多其他的方法,如:有限元法、N阶法等。这些方法各有优缺点,在应用时要根据实际场合合理地选用。在光子晶体的研究中这些分析方法是十分重要的,由于光子晶体的制备非常困难,通常是先应用这些方法分析得出光子晶体的一些特性,再由试验来验证这些结论。 预言总是很难实现。但是,光子晶体电路和装置的未来看起来却是确信无疑的。五年之内,许多光子晶体的基本应用将会在市场上出现。在这些应用中,将会有高效光子晶体激光发射器和高亮度的发光二极管。而当每个家庭都连接到一个光纤网络的时候,与如今视顶盒类似的解码信号设备将使用光子晶体电路和装置而不是笨重的光纤和硅回路。在五到十年的范围内,我们应该制造出第一个光子晶体二极管和晶体管;在十到十五年里,我们能制造出第一个光子晶体逻辑电路并使之占有主要地位;在接下来的二十五年内,由光子晶体驱动的光子计算机应该可以制造出来。令人惊奇的是,合成蛋白石甚至可以在珠宝和艺术品市场上找到生存环境;并且光子晶体薄膜能贴在信用卡上作为防伪标志。如果我们的预言只是完全不可能实现的对未来的歪曲,我们希望大部分人会忘记我们曾经这样说过。然而,光子晶体的未来看起来还是充满光明的。

光子晶体研究论文

如果是写论文的话,外文参考文献翻译没有必要,我想老师也不会要求的。要不然读者查找你列出的的外文文献的时候还要把你翻译的中文译成英文,这不是多此一举么?而且你看一般出版的书籍,如果有外文参考资料的话也是英文的,没有翻译。

文献好像不要翻译吧

迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使信息处理技术的全光子化和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。光子晶体近期在国际上的应用进一步深化,具体表现在:1. 与纳米技术相结合,用于制造微米级的激光,硅基激光;2. 与量子点结合,使得原子和光子的相互作用影响材料的性质,从而达到减小光速、减小吸收等作用3. 光子晶体光纤应用随着社会的发展,显赫一时的半导体器件已经不能满足信息技术发展的需要,必须寻找信息传输速率更高,效率更高的新材料。普遍认为,光子技术将续写电子技术的辉煌,光子晶体将成为未来所依赖的新材料。4. 狄拉克锥在光子晶体中的实现 光子晶体的理论研究始于上世纪80年代末期。虽然1987年Yablonovitch和John就提出了光子晶体的概念,但直到1989 年,Yablonovitch和Gmitter首次在实验上证实三维光子能带结构的存在,物理界才开始大举投入这方面的理论研究。由于光子晶体有类似电子晶体的结构,人们通常采用分析电子晶体的方法结构电磁理论来分析光子晶体的特性,并取得了和试验一致的结果。主要的方法有:平面波展开法(planewaveexpansionmethod简称:PWM)、传输矩阵法(transfermatrixmethod简称:TMN)、有限差分时域法(finitedifferencetimedomain简称:FDTD)和散射矩阵法(scatteringmatrixmethod简称:SMM)等。平面波展开法是比较常用的一种方法,它的基本思想是:将电磁场以平面波的形式展开,可以将麦克斯韦方程组化成一个本征方程,求解该方程的本征值便得到传播光子的本征频率。这种方法的不足之处是当光子晶体结构复杂或处理有缺陷的体系时,可能因为计算能力的限制而不能计算或者难以准确计算。而且如果介电常数不是常数而是随频率变化,就没有一个确定的本征方程形式,这种情况下根本无法求解。传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,同样变成本征值求解问题。传输矩阵表示一层(面)格点的场强与紧邻的另一层(面)格点场强的关系,它假设在构成的空间中在同一个格点层(面)上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间。这种方法对介电常数随频率变化我金属系统特别有效,而且由于传输矩阵小,矩阵元少,运算量小,同时在计算传输光谱时也是十分方便的。但是用该方法求解电磁场的分布较为麻烦,效率不是很高,因此对于光子晶体物理特性的理解没有太大的帮助。有限差分时域法是电磁场数值计算的经典方法之一。在这里将一个单位原跑划分成许多网状小格,列出网上每个结点的有限差分议程,利用布里渊区边界的周斯条件,同样将麦克斯韦方程组化成矩阵形式的特征方程,这个矩阵是准对角化的,其中只有少量的一些非零矩阵元,计算最小。但是由于有限差分时域法没有考虑晶格的具体形状,在遇到特殊形状晶格的光子晶体时,很难精确求解。散射矩阵法假定光子晶体由各向同性的介质组成,其中充满了各种开头和尺寸的没有重叠的光学散射中心。通过对所有的散射中心的散射场应用傅立叶-贝塞尔展开来求解亥姆霍兹方程,从而计算出在光子晶体中传输的场分布。应用这种方法对于求解场分布和传输光谱都是可行的,但是由于这种方法需要较长的运算时间,在有些情形下实际上是不可行的。实际理论分析中,还有很多其他的方法,如:有限元法、N阶法等。这些方法各有优缺点,在应用时要根据实际场合合理地选用。在光子晶体的研究中这些分析方法是十分重要的,由于光子晶体的制备非常困难,通常是先应用这些方法分析得出光子晶体的一些特性,再由试验来验证这些结论。 预言总是很难实现。但是,光子晶体电路和装置的未来看起来却是确信无疑的。五年之内,许多光子晶体的基本应用将会在市场上出现。在这些应用中,将会有高效光子晶体激光发射器和高亮度的发光二极管。而当每个家庭都连接到一个光纤网络的时候,与如今视顶盒类似的解码信号设备将使用光子晶体电路和装置而不是笨重的光纤和硅回路。在五到十年的范围内,我们应该制造出第一个光子晶体二极管和晶体管;在十到十五年里,我们能制造出第一个光子晶体逻辑电路并使之占有主要地位;在接下来的二十五年内,由光子晶体驱动的光子计算机应该可以制造出来。令人惊奇的是,合成蛋白石甚至可以在珠宝和艺术品市场上找到生存环境;并且光子晶体薄膜能贴在信用卡上作为防伪标志。如果我们的预言只是完全不可能实现的对未来的歪曲,我们希望大部分人会忘记我们曾经这样说过。然而,光子晶体的未来看起来还是充满光明的。

导读

背景

与使用电力的传统电路相比,光子集成电路使用光线取代电力进行计算和信号处理,具有更快的速度、更大的带宽、更高的效率。

但是它们的尺寸还不够小,无法与在电气电路继续占主导地位的计算以及其他应用进行竞争。

创新

罗切斯特大学的电气工程师认为,他们在解决这个问题上迈出了重要一步。该校团队采用光子学研究人员普遍采用的材料,创造出迄今为止最小的电光调制器。该调制器是基于光子学的芯片的关键组件之一,控制光线如何通过电路。

下面的示意图展示了电气与计算机工程系教授林强(音译:Qiang Lin)教授实验室开发的电光调制器。

在《自然·通讯》( NatureCommunications )中,林教授实验室描述了采用粘合在二氧化硅层上的铌酸锂(LN)薄膜,不仅可以制造出最小的LN调制器,而且它还可以高速运行并且节能。

这篇论文的领导作者、林教授实验室的研究生李明晓(音译:Mingxiao Li)写道:“这为实现大规模的LN光子集成电路奠定了至关重要的基础,而LN光子集成电路对于数据通信、微波光子学以及量子光子学中的广泛应用具有极其重要的意义。”

技术

林教授表示,由于铌酸锂具有出色的电光和非线性光学特性,它已经“成为光子学研究和开发的主打材料系统”。“然而,目前在块状晶体或薄膜平台上制造的LN光子器件都需要较大的尺寸,并且难以按比例缩小尺寸,这样就限制了调制效率、能耗以及电路集成度。主要挑战在于打造高精度、高质量的纳米光子结构。”

该调制器项目建立在实验室之前使用铌酸锂创造光子纳米腔(光子芯片中的另一个关键组件)的基础上。林教授表示,纳米腔只有大约一微米的大小,只能在室温下使用两到三个光子来调谐波长,“我们第一次知道甚至有两到三个光子已经在室温下以这种方式被操纵过”。《光学设计》(Optica)杂志上的一篇论文对该设备进行了描述。

这款调制器可以配合纳米腔使用,创造出纳米级的光子芯片。

关键词

参考资料

【1】Mingxiao Li, Jingwei Ling, Yang He, Usman A. Javid, Shixin Xue, Qiang Lin. Lithium niobate photonic-crystal electro-optic modulator . Nature Communications , 2020; 11 (1) DOI:

【2】

关于晶体缺陷检测的论文

晶体缺陷是指晶体中原子排列的不规则性和局部区域的缺陷所造成的物理化学性质的改变,因此防止晶体缺陷对于晶体材料的稳定性和性能的保证具有至关重要的作用。以下是几种常见的防止晶体缺陷的方法:1. 控制晶体生长条件:晶体缺陷的产生与晶体的生长条件密切相关,例如温度、压力、溶液浓度等。因此,通过合理的调节晶体的生长条件可以有效地降低晶体缺陷的发生率。2. 优化晶体结构设计:在设计晶体的结构时,可以通过优化晶体的化学成分、晶体的晶胞参数、晶体的缺陷浓度等方面来控制晶体缺陷的生成。3. 精细制备和处理:精细制备和处理过程中采用高纯度原料、严格控制制备和处理条件,避免非晶质杂质存在和晶体的机械损伤等,可有效减少晶体缺陷的产生。4. 晶体缺陷修复技术:在晶体材料制备和使用过程中,如果出现晶体缺陷,可以采用一些修复技术如加热、离子注入等来恢复材料的性能。总之,针对不同类型的晶体缺陷,我们需要采取不同的方法来防止缺陷的产生,并保证晶体材料的稳定性和性能。

晶体缺陷(crystal defects)是指晶体内部结构完整性受到破坏的所在位置。按其延展程度可分成点缺陷、线缺陷和面缺陷。

在理想完整的晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。

晶体缺陷是晶体中的不规则位置,如杂质、空位和间隙。这些缺陷可能会严重影响晶体的性能,因此防止晶体缺陷是非常关键的。以下是一些防止晶体缺陷的方法:1. 清洁原料:杂质是晶体缺陷形成的主要原因之一。因此,在晶体生长过程中使用高纯度的原料以减少杂质的含量是非常重要的。2. 控制生长条件:晶体生长的条件包括温度、压力、物质浓度、pH值等。通过控制这些条件,可以减少晶体缺陷的发生。此外,选择合适的晶体生长方法也可以提高晶体的质量。3. 加入掺杂物:有些元素或化合物可以加入到晶体中,改变其结构和性质,从而减少晶体缺陷的形成。例如,硼可以用来减少晶体的空位。4. 合理的处理:在晶体生长和加工过程中,需要注意合理的处理方式,如控制温度和压力,并使用适当的工艺流程,避免由于处理不当而导致的晶体缺陷。5. 特定技术:在一些特殊情况下,可以采用一些特定的技术来防止晶体缺陷,如控制晶体生长的速度和方向、使用有序的层状结构等。总之,防止晶体缺陷需要综合考虑多种因素。通过合理的选材、严格的生长条件控制和加工工艺保证,以及特定的技术手段应用,可以大幅度减少晶体缺陷的发生,提高晶体的质量和性能。

晶体缺陷:类型有点、线、面。通常工业上应用的多晶体材料通过增加缺陷数目都可以提高材料的机械性能。比如加入合金元素形成固溶体可以产生固溶强化,提高强度,这主要是增加了点缺陷造成的;金属经过冷加工变形也可以提高强度,这是通过增加线缺陷--位错数目来实现的;金属通过细化晶粒提高强度的原因:增加了面缺陷:晶界的数目。

论文研究缺陷与

一、文献研究法的优点:

1、文献法超越了时间和空间的限制。通过对国内外古今文献的调查,我们可以研究各种各样的社会情况。

2、文献法主要是书面调查。如果收集到的文献是真实的,就可以获得比口头调查更准确可靠的信息,避免了口头调查中可能出现的各种记录错误。

3、文献法是一种间接的非介入性调查。它只调查和研究各种文献,但不与被访者联系,也不干预被访者的任何回应。这就避免了调查者和被调查者在互动过程中可能出现的各种反应性错误,这些错误通常发生在直接调查中。

4。文献法是一种非常方便、免费、安全、自由的调查方法。文献调查不受外界的限制,只要找到必要的文献,就可以随时随地进行研究,即使有错误,也可以通过再研究加以弥补,因此其安全系数较高。

5。文献法节省时间、金钱,而且效率高。文献调查是在前人和他人工作成果的基础上进行的,是获取知识的捷径。它不需要大量的研究人员和专用设备,可以比其他调查方法以更少的人力、资金和时间获得更多的信息。

二、文献研究法的缺点:

缺点主要来自文献本身的一些缺陷,如:许多文献的作者带有一定的思想倾向;保留下来的文献已经过某种精选或是观点不够完整等。

论文的研究方法主要有以下几种:

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

以上内容参考:百度百科-文献研究法

评价论文的优缺点范文如下:

1、该论文选题较为新颖,视角较为独特,体现了一定论的扎实功底,特别是文章能够结合相关的案例进行论证分析,具有一定的实用价值。

经过对论文的审核可以看出,作者在资料和案例收集上花了不少功夫,也能够提出一些较为深刻的观点,但在理论的深度和部分论据的引证上还存在一定的欠缺之处。总体而言,这是一篇合格的论文。

2、研究内容具有现实性和可操作性。选题社会热点问题,逻辑结构严谨。观点表达清楚,论述全面。语言平实简洁,通俗易懂。在论证过程中也能较好地将专业知识原理与现实问题结合起来。但论据还不够。总体上符合毕业论文要求。

3、选题较具时代性和现实性。全文结构安排合理。观点表达基本准确。全文内容紧扣行政管理专业要求来写,充分体现出行政管理专业特色。查阅的相关资料较多。但不足之处主要是属于自己创新的东西还不多。总体上符合毕业论文要求。

4、在整个毕业论文设计中,该学员能在老师的严格要求下顺利完成论文的撰写。论文结构完整,各部分基本符合论文的写作规范。为了写好这篇论文作者显然查阅了大量的资料,论述比较充分,条理也很清晰。

当然,在这其间也存在一些不足和需要提高的地方。例如,知识面不够广,不能积极主动的和老师交流工作的进程。希望该同学在以后的工作或学习中注意这些问题,争取更大的提高和进步。

5、论文题与论文的内容基本相符,结构基本完整,语言也比较通顺,没有大的语法错误。问题是,全文引用的部分太多,自己的分析太少,有些“分析”有抄袭的痕迹。应当说,完成这篇论文所需的材料已经具备,作者可以在此基础上对材料进行分析归纳以得出自己的结论。

论文的缺陷和不足

论文的缺陷和不足,关于论文的不足之处可以从论文的基本结构,取材,研究内容的现实性和可操作性,选题符合专业要求等方面进行评论,接下来跟我一起来看看什么是论文的缺陷和不足。

关于说论文的不足之处可以从论文的基本结构,取材,研究内容的现实性和可操作性,选题符合专业要求等方面进行评论,具体方法如下:

1、论文的基本结构:可以看论文是否符合基本的结构要求,框架是否完整,字体是否统一,是否有错别字,格式是否规范,层次是否清晰这些方面进行点评。

2、取材:论文的作者的取材是否具有时代性和现实性,观点表达是否准确,全文是否取材准确,参考资料是否和主题相结合。

3、研究内容的现实性和可操作性:是否精选社会热点问题,逻辑是否严谨,观点表达是否全面,在论证的过程中是否将专业知识原理和现实问题结合起来,论据是否充足。

4、选题符合专业要求:选题是是否紧贴自己的专业,案例论证是否充足,对于提出的.问题是否给出很好的解决方案, 查阅参考的资料是否和本专业相关。

扩展资料:

论文的不足之处还可以从下面几个方面评论:

1、研究主题:是否充分体现时代特色,能否为社会相关研究作参考和借鉴作用。能否在全文结构中,调整基本概念提出问题,是否是问题进行深入分析;

2、论文立意是否新颖:是否结合各地的规范全面的分析主题和原因,论证的内容是否科学合理,创新点是否充足;

3、参考文献:参考文献是否符合论文的论题需要,能否运用专业知识,参考文献是否真实存在,并且权威合理。

写作思路:要从寻找前人研究的不足处和错误处选题,在前人已提出来的研究课题中,许多虽已有初步的研究成果,但随着社会的不断发展,还有待于丰富、完整和发展,这种补充性或纠正性的研究课题,也是有科学价值和现实指导意义的。

经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于才疏学浅,能力不足,加之时间和精力有限,我感觉还是有一些不足之处:在许多内容表述、论证上存在着不当之处,与老师的期望还相差甚远。

我的论文指导老师是一位治学严谨 ,要求严格的良师益友,在我的论文形成过程中,从内容、结构、文字表达甚至标点符号上都严格,只不过在某些方面我还做的不够。许多问题还有待进行一步思考和探究,借此答辩机会,万分肯切的希望各位老师能够提出宝贵的意见。

多指出我的错误和不足之处,本人将虚心接受,从而不断进一步深入学习研究,使该论文得到完善和提高。以上是我对自己的论文简单陈述,请各位老师提问,谢谢!

光子晶体光纤学位论文

你在哪?在北京的话,可以去国图的电子阅览室下。外地大城市也应该有类似的场所。先上中国期刊网查查你要的论文吧。

光纤通信是目前最主要的信息传输技术。迄今为止,尚未发现可以替代它的技术。即使在世界通信低谷时期,各公司在资金极其短缺、研发投入相对紧张的情况下,对光纤通信新技术的研究仍然没有停止和放松。创造出实验室4×40Gb/s无电再生传输10000km的最高记录;在现有商用网络上实现了基于40Gb/s的DWDM1200km的超长距离传输的现场技术试验。适于城域网的MSTP、CWDM技术,EOT(传送网承载以太网)、MOT(传送网承载MPLS)、ASON、EPON/GPON等技术都是这个时期的重要成果。此外1310/1550nmVCSEL器件、1310nm量子点半导体激光器、光纤、光子晶体光纤等新的器件和光纤,也从另一个角度说明了光纤通信技术在不断向前发展。 我国的光纤通信技术在政府的大力支持下也有较大的发展。国家“十五”重大科技攻关项目“40Gb/sSDH(STM-256)光纤通信设备和系统研制”已取得重大进展,实现了40Gb/s光信号在光纤上480km的传输;“八六三”项目“80×40Gb/sDWDM系统研制”也有重大进展、“具有Tb/s交换能力的ASON系统”已经实现了基本功能,并在中国移动进行了测试、“EPON光纤接入系统”已经通过“八六三”专家组验收,将进入现场试验、“光纤研制成绩喜人; “九七三”项目中的光子晶体光纤及其器件也正在进展之中……。 在实际运营的通信网络中,许多新技术的应用同样反映了光纤通信技术的发展。例如,目前以10Gb/s为基础的DWDM已逐渐成为核心网的主流,160×10Gb/sDWDM系统已经在我国多个运营商的网络中得到应用,CWDM、MSTP在城域网中广泛使用,光纤到户的试验网已经在武汉、成都等城市开展。 总的来说,光纤通信技术的进步是信息社会的需要,是经济发展的必然,是永无止境的。 以太网是以计算机局域网的面目问世的,在没有和光传输技术结合之前,只限于在局域网范围内应用。在和光传输技术结合以后,以太网技术得到迅速发展,不再限于局域网,同时扩展到城域网,甚至到广域网的应用。现在的以太网技术和原来的以太网技术相比,得到很大的发展。就拿在光接入网中的EPON来说,原来以太网的MAC技术是点到点的连接,而在EPON中却变化成了点到多点的连接。 只所以要发展光纤接入,就是人们的业务需求已经不仅仅限于传统的话音,而对高速数据、高保真音乐、互动视像等业务的需求越来越迫切。这些业务都需要较大的带宽,传统的金属线接入甚至VDSL都无法满足需求,所以转向带宽能力强的光纤接入。同时除了话音之外的这些业务用分组通信的方式来支持更有优越性,即使是话音,用分组方式也有优势。以太网技术是分组通信中应用最普遍、最简单的技术,再有光纤这种最具优势的传输媒介支持,使以太网技术可以在接入网中发挥巨大的作用。 EPON是前面提到的以太网技术和无源光网络结合的产物。作为光纤接入中极有优势的PON技术很早就出现了,它可以和多种技术相结合,如ATM、SDH等,分别产生APON、GPON等光接入方式。 APON的基本标准早在1998年就发布了,在一些国家也进行了推广。它对宽带业务的支持有QoS的保证,是有技术优势的,但其技术复杂、成本较高,加之近年ATM技术受到IP技术的挑战,其发展受到严重阻碍,以致影响到APON也在走下坡。 GPON出现较晚,它是继承了APON的技术。结合SDH发展起来的,其最初的标准于2003年发布,至今已制定了一系列的标准。GPON对电路交换型的业务的支持最有优势,又可以充分利用现有网上的SDH资源,所以它一出现就受到极大的关注。但它仍有比较复杂的劣势,使得其成本依然偏高,使其推广受到一定的影响。 EPON的发展最晚,它的标准是今年6月底才通过的。它的最大优势就是继承了以太网简单的优点,所以成本相对较低,被业界看好。但它对TDM类业务支持相对难度大些,所以EPON和GPON有得一争,孰优孰劣还将拭目以前面我已经谈到,在光纤接入网中,EPON和GPON哪个能受到青睐现在还难分难解。但总得来说,光纤到户要推广普及、大规模商用,必然经历一个渐进的过程。这是因为人们对一种事物的认识和接受是有渐进过程的,此外更重要的两个因素是网络所提供的业务和价格,这两点缺一不可,当然运营商和设备提供商正在共同努力来解决这两个问题。此外在我国,还有一个体制的问题,即电信业务与广播电视业务的经营问题,由于这个问题比较复杂和敏感,所以这里就不展开了。此外,从国际上推广的经验来看,政府的支持也是非常重要的因素。最终,FTFH的大趋势总是不可阻挡的。 光纤接入网的发展首先对接入网本身就是一种革命。传统的接入网无例外的都用金属线接入,在无线技术和光纤通信技术发展之后,无线接入和光纤接入逐步进入了接入网,但所占比例很少。光纤到户的更寥寥无几,一般在馈线段用光纤还较多,即大多城市实现了FTTC/FTTB,在分配线即户线段用的极少。光纤接入网即FTTH的发展对于现有用户有一个庞大的户线工程改造的问题,对新建建筑涉及引入光纤到楼内、室内的问题,甚至可能修改建筑规范要求。更大影响是接入网中承载的业务会变得丰富多彩,而且由于目前家庭多是几室几庭结构,用户终端设备遍及各个房间,光纤入户后,如何将信息送到所有得终端设备,是继续用光纤,还是该用金属线,或者该用无线,这是涉及家庭(或者说用户驻地网络)的问题,目前正在探讨之中。如家庭电话线网络、家庭电力线网络、家庭无线网络等都在进行研究。 此外光纤接入网发展后对城域网甚至核心网都有很大影响。实现光纤到户后,平均每户的带宽以150Mb/s计算,如果全国仅以l000万户FTTH用户来看,新增带宽为l500Tb/s.。只以平均同时使用概率10%计算,将有150Tb/s带宽的信号涌入各地的城域网,因此城域网将面临巨大的扩容压力。而且新增带宽的绝大部分属于分组数据业务,所以城域网中将主要扩建分组数据网,届时城域网中分组交换的容量将大大超过电路交换的容量。而且新增带宽中相当一部分将流入核心网,所以核心网同样面临新建和扩容的压力,同样核心网所承载信号的类型也有很大改变,将会从以电路型信号为主变为以分组信号为主。 光纤接入还要有一个逐步为人们接受的过程,同时除了业务、成本两大要素之外,技术的本身也有逐渐成熟的过程,还有工程设计、施工、测试、维护、经营、管理等一系列配套问题需要解决,还需要逐步试验,取得经验后再逐步推广。所以光纤接入网的建设不是一朝一夕的事。 光纤到户是光纤通信发展的一个新亮点。通过普及光纤到户,将全面带动光纤通信各方面技术的发展,包括光电子器件、光纤、光缆、系统设备,还有前面提到的工程设计、施工、测试、维护、经营、管理等方方面面的发展。从目前国际上光纤到户的推广对光纤通信市场的带动作用已经是非常明显的事实,已经证实了这一点。 光纤到户的基本技术问题已经得到解决,所以在国际上发展很快。当然技术是会不断进步的,现有的技术还会不断改进。例如,如何在GPON中更好地支持分组业务;在EPON中如何更好地支持电路型业务;各种技术如何进一步降低成本,提高性能,如何适应新业务的提供和升级换代等。 从一般意义来说,光纤通信是传输技术,从传输领域,目前还没有发现有哪种传输技术比光纤通信更有竞争力。按我所知道的概念,接入网也属于传输网的范畴,从这一点来看,无线接入由于其可移动性,使其具有一定的优势,但其带宽有限、移动终端的体积不可能太大,显示屏幕不会太大等局限性,使得在非移动场合,人们依然愿意使用固定终端,光纤接入自然是最终的选择。所以在核心网,光纤通信有绝对优势,在接入网,无线接入与光纤接入互补发展。 光纤通信的发展前景是非常宽广的。当前商用光纤通信系统的最大容量才达到(实际上这是系统最终容量实际使用的还不到一半),而光纤的带宽能力以目前的技术来计算至少有200~300Tb/s。可见现在才用了光纤能力的1%还弱,光纤的潜能还远远没有发挥,这还没有考虑技术进一步发展带来的更大能力。可见光纤通信尚有极大的发展余地。现在人们所谈及的全光通信实际上还是未来真正全光通信的“初级阶段”,真正实现全光信号处理的全光网将给人们带来的通信的变革是现在无法详尽描述的。

论文提纲:硅基超连续谱的研究进展 1. 引言 超连续谱(Supercontinuum,SC)是指当一束高强度的短脉冲通过非线性材料时,经过一系列非线性效应与线性色散的共同作用,使得出射光中产生许多新的频率成分,从而使频谱得到极大展宽的一种现象。超连续谱光源在光子学集成回路中有着重要作用,特别是在波分复用系统中扮演着重要角色。使用展宽的激光光源,筛选出所需的波长信道,比使用独立的光源更节省能源,也更利于集成。另外,超连续谱光源在光源检测、生物医学、高精密光学频率测量等方面有着重要应用。产生超连续谱的介质需具有非常高的非线性系数以及可调的色散系数,可用于超连续谱产生的介质很多,例如,单模光纤,光子晶体光纤(Photonic CrystalFiber,PCF),硅波导,泥酸锂等。目前以光纤为介质产生超连续谱的技术已经较为成熟,实现了大范围的光谱展宽。通过大量的实验研究证实,在非线性效应强、色散可调的介质中,可在低功率、短距离上实现超连续谱的产生。例如Kumar 等人用75 cm 的SF6 保偏光纤已得到了展宽从350 nm 到2200 nm 的超连续[1];B. A. Cumberland 使用50 W 的掺Yb 光纤激光器泵浦一段20 m 长的高非线性光子晶体光纤,最终得到输出功率为29 W 的超连续谱[2]。 然而光纤中非线性效应较弱,即使使用经过特殊设计的光子晶体光纤也要有几十厘米的长度才能得到有效展宽,不利于集成化设计。 近几年,具有低损耗、低功率、小体积等特性的硅波导受到人们的广泛重视。对硅波导中各种现象机理的研究也日趋成熟。拉曼放大、四波混频、自相位调制等非线性效应已成功运用于硅波导器件中。硅的三阶非线性效应比普通光纤高许多,例如,硅的Kerr 系数比普通单模光纤大100 倍,拉曼增益系数比普通单模光纤高三个数量级。并且,硅具有高折射率,能够将光很好地限制在一个很小的范围。通过对硅波导尺寸、几何结构的合理设计,可以实现对其色散系数的可控性。硅波导所具有特殊的色散和非线性特性,使其比普通光纤更易产生超连续谱。随着CMOS 技术的发展成熟,在硅波导中产生超连续谱将有利于超连续谱的应用向集成化、小型化发展。与光纤相比,硅波导具有无可替代的优势,可望在通信领域获得全新的应用,硅材料中实现超连续谱将为全光通讯翻开崭新的一页。 2.超连续谱的产生机制 超连续谱的产生是多种非线性效应与色散共同作用的结果。脉冲光在硅波导中传播,各种非线性效应,诸如,自相位调制(Self-Phase Modulation,SPM),交叉相位调制(Cross-PhaseModulation,XPM),参量过程,拉曼散射都会起作用。当高强度的短脉冲通过非线性介质时,入射光的瞬时高光强会引起自身的相位调制,即自相位调制。自相位调制会产生新的波长,这是出射光谱展宽的重要来源。随着光谱成分的增加,交叉相位调制,参量过程以及内拉曼散射作用逐渐增强,使得频谱进一步展宽。 然而,硅是一种半导体材料,具有一些特殊的非线性性质,如双光子吸收(Two-photoabsorption ,TPA)以及由双光子吸收产生的自由载流子(Free-carrier absorption,FCA)对入射光的影响,而这种影响可以分为相位调制和吸收两部分,因此硅中超连续谱的产生机制比普通光纤更为复杂。双光子吸收是指在强激光作用下,介质分子同时吸收两个光子通过一个虚中间态跃迁到高能态的过程。双光子吸收带来大量能量损失,降低光脉冲的峰值功率,从而限制了脉冲展宽。同时,双光子吸收过程中会产生大量的自由载流子,高浓度的自由载流子对光脉冲产生相位调制作用而使其蓝移,且调制作用与自由载流子浓度成正比。而脉冲后沿会积累大量的载流子,因此脉冲后沿的出射频谱展宽蓝移。于此同时,自由载流子对脉冲后沿产生吸收,使脉冲在时域上整体前移。另外,硅中拉曼散射与光纤中也有很大不同,硅基波导中的拉曼散射增益谱很窄只有105 GHz,并且响应时间约为10 ps,若使用飞秒脉冲入射,拉曼效应可以忽略。 激光脉冲在硅波导中传播,可以用广义非线性薛定谔方程描述如下式。 其中,右边第一项描述了硅波导中的色散效应,βm 表示m 阶色散系数,第二项描述了自由载流子产生的相移以及自由载流子吸收项,σn 表示自由载流子产生的相移大小,σα 表示自由载流子吸收大小,第三项描述了非线性Kerr 效应以及双光子吸收项,n2 为Kerr 效应系数,βT 为双光子吸收系数,ā 为波导有效截面积。 在超连续谱的产生过程中,哪种效应起决定作用主要取决于初始入射脉冲的参数和介质的线性色散特性。若用皮秒脉冲入射,色散效应较弱,光脉冲主要在非线性效应,特别是自相位调制作用下发生展宽,一般范围有限。若用飞秒脉冲入射,在波导的反常色散区,波导的色散效应和自相位调制效应会相互平衡,出现孤子传播态。光谱展宽初期以自相位调制为主,之后发生高阶孤子分裂,并伴随孤子辐射,随着光谱成分的增加四波混频效应逐渐增强。 在反常色散区,相位匹配条件很易满足,故能得到较宽的超连续谱。 3.自相位调制(SPM)诱导的频谱展宽 随着硅器件在通信系统的广泛应用,人们对硅波导中产生超连续谱作了大量工作,同时也取得了许多重大的成果。理论研究表明,对于一般的短脉冲,脉冲传播的色散长度远大于所用的波导长度,此时色散效应可以忽略,自相位调制效应起主要地位,从而导致出射频谱的展宽。 2004 年,Jalali 研究小组首次通过实验在硅波导中获得超连续谱,得到了2 倍展宽的出射光谱[3]。他们使用被动锁模光纤激光器产生脉宽为1 ps 的短脉冲,通过3 dB 带通滤波器对光谱整形后经由掺铒光纤放大器放大得到脉宽为4 ps,峰值功率为110 W(相当于光功率密度为 GW/cm2)的入射脉冲光。脊型硅波导的有效面积为5 μm2,总长度2 cm。实验结果所示。从图中可清楚地看到出射光谱的宽度大约是入射光谱宽度的2 倍。光谱展宽主要是由自相位调制效应造成的。在考虑双光子吸收效应的情况下,通过理论模拟,将入射峰值功率增加10 倍可以得到5 倍展宽的出射光谱。此实验证实了利用硅波导可以产生超连续谱,同时揭开了在较低泵光功率下产生超连续谱的新篇章。 之后,Jalali 研究小组又讨论了硅波导中自由载流子对超连续谱产生的影响[4]。众所周知,Kerr 效应、自由载流子效应均对频谱的相移有贡献。Kerr 效应使得脉冲前沿红移、后沿蓝移。而自由载流子效应使得脉冲整体蓝移。由此可知脉冲后沿得到很大的蓝移展宽。但是,脉冲后沿积累了更多的自由载流子,光脉冲衰减更为严重。他们通过理论模拟分析了自由载流子对出射光谱展宽的作用,如图2 所示,只考虑Kerr 效应带来的相移时,展宽因子大约为8,考虑自由载流子对相移的影响后,展宽因子迅速增大大约为28,最后考虑自由载流子吸收后,展宽因子下降到12。由此可知,自由载流子对频谱展宽(尤其使得频谱蓝移)有着重要作用,但其浓度的增加导致的吸收也会削弱光谱展宽。 2006 年, 等人研究了入射光波长以及峰值功率对光谱展宽的影响[5]。硅波导截面为470×226 nm、长4 mm。入射脉冲脉宽 ps、周期1 kHz、中心波长1550 nm。改变入射光功率可以看到,在功率较低时,波导工作在线性区域,出射光谱的形状和位置几乎没有变化,随着功率的增加,出射光谱的展宽随之增大。实验结果如图3 所示。实验中使用皮秒脉冲作为入射光,色散作用在脉冲传播过程中并不显著,脉冲展宽主要来自自相位调制的作用。从图中可以清楚地看到,脉冲展宽并不对称,这主要是因为在脉冲后沿比前沿积累更多的自由载流子,因此后沿的相移更大,导致脉冲展宽的不对称性。 4.孤子分裂与超连续谱的产生 从上面的实验结论可以看到,由于存在双光子吸收对脉冲功率的损耗,利用SPM 并不能得到较大的展宽。为了克服这一缺点,必须在TPA 带来大的损失前实现频谱展宽。此时,可以借鉴光纤中孤子分裂以及超连续谱产生的方法,利用高阶孤子在波导入射端的孤子分裂现象来得到频谱的展宽。 2007 年,Richard M. Osgood. Jr 等人观察到展宽350 nm 的超连续谱[6]。硅波导横截面积520×220 nm2,长 mm,入射脉冲脉宽100 fs,周期250 kHz。中心波长在1300 nm 到1600nm 之间变化,此波长范围正处于波导的反常色散区,能够得到更有效的超连续谱。实验结果如图4 所示,随着入射峰值功率的增加展宽也逐渐增加。在λ<1700 nm 时,双光子吸收对最大功率有限制作用,但仍能得到较大展宽。 此外他们还观察了超连续谱对波长的依赖性。从图5 中可以看到,中心波长越靠近零色散区(ZGVD),出射光谱展宽越大。这是由于在零色散区线性色散小,非线性作用在脉冲传播过程中占据主要地位。在短波方向有突起的平滑的峰,由于短波方向的光学损耗大,随着中心波长向短波方向移动,峰值越来越小,因此短波方向频谱展宽受到限制。三阶色散微扰导致的孤子分裂以及孤子辐射的影响,在长波方向突起的峰,随着中心波长向长波方向移动,峰值越来越大,这对超连续谱的产生有着决定性作用。 同年,Lianghong Yin 等人通过数值模拟利用入射飞秒脉冲作为高阶孤子得到展宽达400nm 的超连续谱[7]。模拟用直波导截面宽 μm,高 μm,长 cm,入射脉冲带宽50 fs、峰值功率25 W。此时,入射光脉宽远小于自由载流子寿命,而脉冲周期大于自由载流子寿命,故自由载流子吸收在超连续谱的产生过程中不起重要作用。同时从理论上得出双光子吸收只对输入的最大功率有衔制作用,而不影响超连续谱的产生。并且由于Si 的晶格结构,使得受激拉曼散射依赖于硅波导的结构以及入射光的偏振特性,故合理选择硅波导的结构以及入射光的偏振特性,可以忽略受激拉曼散射的.影响。模拟中使用N=3 的三阶孤子脉冲,在三阶色散的微扰下分裂成为低阶孤子并伴有色散波,此时出射脉冲得到较大展宽,结果如图6 所示。这是自硅波导超连续谱研究以来在硅波导中能产生的最宽的光谱。 5.硅基超连续谱的应用 随着波分复用技术的广泛应用,为了寻找更好的光源,掀起对超连续谱光源的研究热潮。 硅波导中产生超连续谱将使全光网络向小型化发展,前景诱人,将硅基波导中产生的超连续谱应用到实际,将为全光网络翻开崭新的一页。 波分复用技术是光通信系统的一大优势,要实现能够高速传递信号的片上光通讯系统,波分复用技术是必不可少的,而超连续谱这是一种有效的解决方案。2007 年,Jalali 研究小组成功实现超连续谱的硅基集成化并将展示了其在波分复用系统中的应用潜力[8]。实验中,他们将微盘共振器与硅波导共同集成在一个三维芯片上,使用未集成在芯片上的脉宽为3 ps的激光脉冲作为入射光,脉冲沿着硅波导传播,利用自相位调制效应得到展宽的光谱,然后以微盘共振器作为光滤波器将超连续谱中不同的光谱成分有硅波导中分别导出,从而实现多个波长信道。实验中硅波导与微盘共振器的集成和工作原理如图7 所示。该装置得到的最远信道离入射脉冲中心波长 nm,使硅基超连续谱应用于片上集成的波分复用技术成为可能。 另外,硅基超连续谱还可以在拉曼泵浦方面产生应用。硅波导中的高拉曼增益系数使拉曼散射成为在硅波导中实现激光振荡和放大的有效途径,然而,硅的拉曼增益带宽非常窄,限制了拉曼放大的带宽,从而制约了其在实际应用中的范围。随着硅波导中超连续谱的研究逐渐深入,利用超连续谱的产生机制,在硅波导中产生超连续谱的同时实现拉曼散射效应,由此来增大拉曼增益带宽成为一种可能的解决方法。2008 年,Jalali 研究小组成功实现这一构想,获得展宽的拉曼增益谱[9]。实验中使用中心波长1550 nm 的皮秒脉冲作为泵浦光源,激光脉冲在硅波导中受到Kerr 效应和自由载流子效应的共同作用而发生展宽,从而使拉曼增益谱获得扩展。实验在中心波长为1638 nm 处获得了宽度超过10 nm 的拉曼增益谱。为了观察入射脉宽对拉曼增益展宽的影响,实验中使用两个脉宽不同的入射脉冲,分别为3 ps、42 ps,得到的拉曼增益谱如图8 所示,对于3 ps 的入射脉冲,拉曼展宽频谱起伏不定,并且由于自由载流子的作用频谱明显蓝移。对于42 ps 的入射脉冲,拉曼展宽频谱同样蓝移,但频谱变化相对平滑。另外,在入射功率较大时,能过得到较大的拉曼展宽。实验证明,通过改变脉冲的性质,例如,脉冲功率、脉宽、脉冲 啁 啾,可以实现对增益范围和形状的调节,从而应用于实现集成化的光信号传输以及可调硅基激光器的研制。 6.结论 硅在电子器件的发展过程中起着举足轻重的作用,目前大部分的器件使用硅作为芯片材料,在硅波导中产生超连续谱将有利于硅基光子器件的实现,并向集成化、小型化发展。目前,实验中能得到的硅基超连续谱宽度仅为400 nm,在实际应用的波分复用系统中,还存在各种各样的损耗,使得展宽大大减小,因此还需进一步的研究,合理设计硅波导的色散特性,减小有效面积增大非线性强度,从而进一步增大展宽,使得硅基超连续谱更加实用化。 ;

一、FTTH 随着Internet宽带应用的日益发展和普及,宽带接入技术不断推陈出新,人们对接入带宽需求也不断提高,宽带接入技术发展也日新月异,市场竞争也日趋白热化。市场的迅速变化,催生光纤到家(FTTH)接入技术的发展和应用,我们认为FTTH正向我们走来。1.FTTH能提供超高带宽 众所周知,当前宽带接入技术如ADSL、基于5类线的LAN接入和cable modem 等都只能提供低于10M的接入带宽,而利用光纤为传输媒介的FTTH接入网从理论上可以为用户提供无限的带宽,就目前成熟的FTTH技术可以轻而易举为用户提供0至1G范围内的任意带宽。2.有低成本、技术成熟的FTTH解决方案 由于市场需要的驱动,FTTH技术近年取得了长足进步,基于以太网的点对点网络拓扑结构的光接入网技术以其技术成熟、成本低等优势,已在FTTH中得到了广泛的应用,特别是在北美、日本和韩国。基于以太网的FTTH解决方案沿用了成熟的以太网技术,在技术层面上,它具有能轻易提供100M或1G的带宽、与现有计算机网络无缝链接等优势;在运营维护层面上,具有网络结构简单、建设和运营维护成本低的优势;而在应用和业务层面上,具有支持目前Internet所有宽带应用的能力,支持数据、话音和视频广播的多种业务能力。 除了成熟的基于以太网的点对点的FTTH技术外,近年还发展基于以太网的一点对多点网络拓扑结构的无源光网络(Passive Optical Network—PON)的宽带接入技术。但由于其标准尚未统一,尚未有大规模应用,其设备成本也仍然偏高。但业内人士一致认为,基于以太网的PON宽带接入技术也是一种较理想FTTH技术,随着其技术标准的颁布和器件价格的大幅下降,它将与基于以太网的点对点网络拓扑结构的FTTH接入技术互为补充,在FTTH中得到了广泛的应用。截止2003年6月美国已有FTTH用户98万,日本有46万户,并预计在今后几年,美国和日本FTTH用户将以每年超过200%的增长速度增加。3.运营商的竞争需要FTTH 从中国电信独家垄断国内电信市场被打破之日起,国内电信业的竞争便日趋激烈,特别是对Internet宽带接入市场的竞争更是显得白热化。参与宽带接入市场竞争企业几乎包括了目前所有电信运营商。其中,传统电信运营商有中国电信、中国联通等,新兴电信运营有中国网通、铁通等,驻地网运营商有长城宽带、聚友网络等。表是中国主要宽带接入技术发展现状与前景。从表中可看出,由于其技术上和组网上的缺陷,基于5类线的LAN接入技术很难再有大规模的发展;由于我国CATV网络发展不均衡、行业垄断明显和住宅区住户密集的市场特征,Cable Modem宽带接入技术始终没有很好发展,预计在将来其发展也将继续受到限制;VDSL是比ADSL更高带宽的接入技术,但由于其技术不甚成熟、接入距离短等缺陷,至今没有在国内应用,但近期内可能会开始使用;而ADSL是目前我国最普及、发展最好的宽带接入技术,尽管ADSL存在带宽受限、出线率低等缺点,但其仍将以技术成熟、网络建设成本低等优点,在未来将进一步得到发展。无论ADSL或VDSL,都将使拥有接入电话线资源的中国电信在未来宽带接入市场一统天下。显而易见。为了打破中国电信ADSL对宽带接入市场的垄断,其他运营商只有选择技术新、更具竞争力的接入手段与其竞争,那就是FTTH!4.房地产开发商的竞争需要FTTH 目前国内房地产市场竞争非常激烈,房地产开发商往往通过在小区或大楼采用最先进的宽带接入技术,别出心裁包装商品房,如几年前使用综合布线大楼、智能化小区,后来使用所谓宽频社区、宽带上网等概念进行炒作。可以预见,随着光纤到家的全光接入网技术的成熟和市场的逐步形成,宽带接入技术的主要用户之一房地产开发商将会积极从现有宽带接入技术的过渡方案,转移到全光接入网最终解决方案,进行房地产市场全新概念的下一轮炒作。5.为用户提供多业务需要FTTH 如今是通信技术飞速发展和信息爆炸的年代,人们已在享受多种通信技术和信息来源,人们自然需要能支撑多种通信业务的宽带通信接入技术,能满足这一需求的无疑是以光纤为传输媒介的FTTH宽带接入技术。如前所述,光纤宽带接入技术是接入网的最终和全业务解决方案,它突破了目前宽带通信瓶颈,在接入网同时实现计算机互联网、电话网和有线电视网的三网合一,提供数据、话音和视频多种业务。6.廉价的光缆推动FTTH 最近几年,由于光纤拉制工艺日趋完善,光缆价格一降再降,目前室外光缆每芯每公里已低于400元人民币,已经低于铜缆、五类线的价格。廉价光缆无疑为实现低成本的FTTH宽带接入提供更大可能。 综上所述,在接入网大规模铺设光缆和提供光纤宽带接入的时机已成熟!而且从宽带接入技术和市场发展趋势看,谁今天铺设FTTH的光缆,谁就拥有通信的未来。二、EPON和GPON前景比较 EPON和GPON具有各自的技术定位,不存在严格的优劣之分;但目前看来EPON的技术成熟度和商用化程度已经远远超过GPON。 的确,从FTTx在我国以及整个亚太地区的发展情况来看,EPON已成为实现FTTx的主流选择。 EPON发展态势喜人 在我国,EPON在商用化和实际性能方面均已有着不凡的表现。 在商用化方面,EPON正在向全国范围扩展。据记者了解,在结束了北京、上海、湖北、广东四地两万户的采用EPON的FTTH试点工程之后,中国电信认为EPON技术商用化趋于成熟,并于2006年底开放新的EPON试点方案,允许各个省市在总部备案后进行试点工程。 同时,EPON设备厂商也在迅速跟进中国市场EPON商用化的进程。PMC-Sierra公司在不久前香港举行的第十届ITU世界电信展上,推出了据称是第一款的端到端EPON芯片方案,并且率先针对中国电信集团新的数据加密与解密算法、服务程序质量以及分类协议标准进行的设计,非常适合于在中国市场的大规模部署。 而在实际性能方面,EPON通过附加一些增强特性,已经能越来越好地满足更多技术需求。记者在与北邮光通信中心和光网络研究室了解到,传统认为EPON弱在支持TDM业务,但目前EPON设备商采用各种TDMoverEthernet的专利技术和在普通以太网上使用各种PWE3设备,一般都能满足不同环境下的TDM业务传输需求;通过在设备方面附加增强特性,EPON在QoS和OAM方面已经能很好与GPON标准中定义的大部分功能相媲美。 可以说,EPON技术本身的易部署性和对以太网的继承性,决定了它强大的生命力。EPON继承了以太网“简单即是美”的优良传统,尽量在技术标准的框架内作小的改动来增加功能,EPON和其技术联盟可以说是一直处于相互推动的良性发展。有专家指出,美欧地区采用从APON/BPON到GPON,是符合他们自身技术演进道路的,而能在亚太地区实现FTTx规模化的,是符合亚太市场需要的EPON。 可以预见,在包交换网络成为主流的今天,继承了以太网技术的EPON将在FTTx领域发挥巨大的作用。 GPON受困成本瓶颈 相较于EPON如火如荼的发展态势,GPON却一直受制于自身的技术复杂性带来的高成本。成本是与技术产品的商业化密切相关,而PON系统里核心芯片和光收发模块的成本在很大程度上决定了整个PON系统的成本。 在芯片方面,许巍告诉记者,目前还没有一款真正意义上的GPON商业芯片问世,大都是测试芯片。GPON芯片需要全新设计封装格式,“技术门槛”较高,芯片成本下降难;而且现有的GPON产品,大部分是针对北美市场的需求,对中国市场没有做过深入调查,还没有真正符合中国市场需求GPON产品面世。GPON芯片成本已经与EPON芯片成本拉开了很大差距。 光模块成本问题更是一个瓶颈问题。烽火通信的市场部总监高鹏告诉记者,GPON对于光模块设备技术指标的高要求,也将成为其设备商降低成本的瓶颈问题,而且“不是单纯的上量就能解决的”。 从来自光模块厂商的数据得知,GPON光模块中对于ONU发射机的功率和OLT接收机的灵敏度要求很高,只能采用DFB发射机和APD接收机,而它们的成本几乎是EPON模块中所使用的传统FP发射机和PIN接收机的6倍。 另外,GPON的光模块要满足很好的突发同步指标,对模块中的驱动和前后放大芯片要求很高,还要满足3类ODN的功率预算。以上这些因素,共同构成了GPON光模块成本降低过程中一道难以逾越的屏障。 GPON或将成为备用选择 EPON技术的成熟度和可行性,业界已经毋庸置疑,但并不能就此认为GPON在市场上已没有立足之地。不考虑成本因素的情况下,GPON在下行线路速率、线路效率、安全性、支持业务类型、网管能力等很多方面都有明显的理论优势。很多分析家认为,如果我国IPTV前景进一步明朗,市场对接入网下行带宽、多业务承载的需求会进一步扩大,等届时将对GPON起到很大的拉动作用,引导GPON产业联盟的成熟和设备成本的下降。 目前国内很多通信设备制造商对EPON和GPON的态度是重点介入EPON,但同时对GPON做另一手准备的态度。对此,许巍表示说,GPON对运营商多种业务,特别是语音业务的优良承载性,将始终是它的优势。他谈到,EPON的技术成熟程度和其广泛的商用化,决定了EPON成为当前FTTx领域内的主导技术,但大多数厂商并不打算放弃做GPON产品,他们在做FTTx产品和解决方案时,更多考虑EPON光接入网系统的可升级性,比如长光的EPON产品能够通过仅仅更换一块板型器件等简单的方式,平滑地过渡到GPON系统。 运营商方面,尽管早已对EPON的成熟度做出了明确的认可,但对GPON采取的也是不排斥的态度。7月上旬至8月下旬,中国电信集团公司在上海进行了国内首次GPON设备功能验证测试,参加测试的厂商有华为、 阿尔卡特、西门子等通信设备提供商,大部分测试设备都获得了比较让人满意的性能指标。当然,这些设备都还只是处于测试阶段,离规模化生产的商用标准还有很大差离。EPON的优点主要表现在: (1)相对成本低,维护简单,容易扩展,易于升级。EPON结构在传输途中不需电源,没有电子部件,因此容易铺设,基本不用维护,长期运营成本和管理成本的节省很大;EPON系统对局端资源占用很少,模块化程度高,系统初期投入低,扩展容易,投资回报率高;EPON系统是面向未来的技术,大多数EPON系统都是一个多业务平台,对于向全IP网络过渡是一个很好的选择。 (2)提供非常高的带宽。EPON目前可以提供上下行对称的1.25Gb/s的带宽,并且随着以太技术的发展可以升级到10Gb/s。 (3)服务范围大。EPON作为一种点到多点网络,以一种扇出的结构来节省CO的资源,服务大量用户。 (4)带宽分配灵活,服务有保证。对带宽的分配和保证都有一套完整的体系。 专家分析,EPON和GPON并非水火不容,很可能同时生存。对于带宽、多业务和安全性要求较高的大宗接入客户,以GPON实现的FTTx自然更有市场。目前看来,EPON已经成为国内FTTx领域的主流,而随着成本下降,GPON今后或将成为部分EPON市场的补充和升级选择。

相关百科

热门百科

首页
发表服务