电源变压器设计原则要求和程序电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~为中功率,~25VA为小功率,25VA以下为微功率。传送功率不同,电源变压器的设计也不一样,应当是不言而喻的。有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用。究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定。同一个英文名称“PowerTransformer”,还可译成“电力变压器”。电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA。电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去。电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的。高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的。如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文。正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚。如有说得不对的地方,敬请几位作者和广大读者指正。
农网建设10kV配电变压器的选用及安装分析论文
摘要: 本文从农网改造的重要性和特殊意义出发,重点对农网建设中配电变压器的选用、安装进行了详细的阐述。
关键词: 网改建设;10kV配电变压器;选用及安装
随着我国经济的快速发展,电力网络的建设也上了一个新台阶,作为电网重要组成元件之一的变压器,其数量也在激增。变压器的安装是一个工序相当复杂和重要的过程,安装质量的好坏直接影响到变压器的安全稳定运行,因此,如何合理选择配电变压器和正确安装,也是农网改造设计与施工中需要重点解决的问题。本人根据参加农网改造的实践和参考有关电力技术规程,对变压器的安装提出以下几点看法,以供参考。
一、10kV配电变压器台区的定位
农村配电变压器的台区应按“小容量,密布点,短半径”的原则来建设改造。变压器应尽可能安装在负荷中心或重要负荷附近,同时还应尽量避开车辆、行人较多的场所,且便于更换和检修设备的地方。最佳位置是指能使该台区内低压电网的线损、低压线路的投资和消耗的材料最少的位置。位置选择前应对现有的和未来10年内的负荷情况进行全面深入细致的调查和预测,使配电变压器安装位置居于负荷中心。从而使低压供电线路投资最省,电压降最小,低压线路损耗小。这与供电单位本身的经济效益和减轻农民负担密切相关。改造后的低压台区供电半径一般不大于300m,这样,既减少了线路损耗,又提高了电压质量。
总之,配电变压器安装位置的选择,关系到保证低压电压质量、减少线损、安全运行、降低工程投资、施工方便及不影响市容等。应从实际出发,全面考虑。
二、10kV配电变压器型号的选择
网改前,大部分采用高损耗SJ系列的变压器供电,损耗比重大。近年来,国家新开发的新型节能型变压器有S8和S9及S11三大类。
S9系列配电变压器的设计以增加有效材料用量来实现降低损耗,主要是增加铁心截面积以降低磁通密度,高低压绕组均使用铜导线,并加大导线截面,降低绕组电流密度,从而降低空载损耗和负载损耗。
S9与S7系列变压器相比,空载损耗平均降低10%,负载损耗平均降低25%。而S11系列变压器是在S9系列的基础上改进结构设计,选用超薄型硅钢片,进一步降低空载损耗而开发出来的,目前S11系列变压器的空载损耗比S9系列降低了30%,但投资相对比较高。因此,从性价比来考虑,新建或改造变压器时,一般应选择使用S9型低损耗变压器,原来高损耗配电变压器已全部淘汰,S7型系列配电变压器也被更换。
三、10kV配电变压器容量的选择
过去,在选择配电变压器时,由于缺乏科学分析计算,“大马拉小车”现象普遍存在,只依据用电户数大概来选择变压器容量,没科学依据,没考虑到如果选择容量过大,会出现“大马拉小车”的现象,这不仅会增加一次性投资,并且增加了空载损耗。如果选择容量太小,会引起变压器超负荷运行,过载损耗增加,最终导致烧毁变压器。为此,在选择配电变压器容量时,应按实际负荷及5~10年电力发展计划来选定,一般按变压器容量的45%~70%来选择。另外,考虑到农村有其自身的用电特点,受季节性、时间性强及用电负荷波动大的影响。有条件的村庄可采用母子变压器或调容变压器供电,以满足不同季节、不同时间的需求。
四、10kV配电变压器台架的安装
10KV配电网中杆架变压器的安装,最大容量一般控制在400KVA及以下,两杆的中心间距为,变压器在杆上倾斜不大于20mm,配电变压器台架用两根[12×3000]的槽钢固定于两电杆上,台架距地面不低于3m,台架水平倾斜不应大于台架长度的1/100。变压器脚底与台架用4根螺丝上紧,同时变压器的高、低压柱头要加装防尘罩,变压器要悬挂警告牌。另外安装铁件均需镀锌,并且100KVA以上的变压器要安装一台隔离开关。
五、跌落式熔断器的安装
配电变压器的高、低压侧均应装设熔断器。高压侧熔断器的底部对地面的垂直距离不低于,各相熔断器的水平距离不小于,为了便于操作和熔丝熔断后熔丝管能顺利地跌落下来,跌落式熔断器的轴线应与垂直线成15%~30%角。低压侧熔断器的底部对地面的垂直距离不低于,各相熔断器的水平距离不小于。
跌落式熔断器开关熔丝的选择按“配电变压器内部或高、低压出线管发生短路时能迅速熔断”的原则来进行选择,熔丝的熔断时间必须小于或等于。配电变压器容量在100kVA以下者,高压侧熔丝额定电流按变压器容量额定电流的2~3倍选择;容量在100kVh以上者,高压熔丝额定电流按变压器容量额定电流的~2倍选择。变压器低压侧熔丝按低压侧额定电流选择。
六、低压JP柜的安装
由于低压JP柜集配电、计量、保护(过载、短路、漏电、防雷)、电容无功补偿于一体,给安全用电提供了保障。所以农网改造以来,大量的JP柜被用于IOKV配电台区中,其选择与安装要求如下:
(一)JP柜的容量必须与变压器的容量相匹配。
(二)安装在杆架变压器下部角钢(2L70*7*3000)支架上的JP柜,必须安装牢固,水平倾斜小于支架长度的1/100。
(三)引线连接良好、并留有防水弯。
(四)绝缘子良好外观整洁干净、无渗漏。
(五)分合闸动作正确可靠无卡涩、指示清晰。
(六)低压电缆进、出线安装可靠。并且能防止小动物进出,造成柜内短路。
(七)低压绝缘引线安装可靠。
(八)JP柜柜门一定要关严,防止雨水进入柜内造成电气短路,或绝缘击穿对地漏电。
七、避雷器的.安装
运行经验证明:影响配电变压器安全运行的外界危险大部分来自雷电事故。因此,变压器应装设防雷装置。选用无间隙合成绝缘外套金属氧化物避雷器代替原有的阀式瓷外套避雷器,其工频电压耐受能力强,密封性好,保护特性稳定。
高压侧避雷器应安装在高压熔断器与变压器之间,并尽量靠近变压器,但必须保持距变压器端盖以上,这样不仅减少雷击时引下线电感对配变的影响,且又可以避免整条线路停电进行避雷器维护检修,还可以防止避雷器爆炸损坏变压器瓷套管等。另外,为了防止低压反变换波和低压侧雷电波侵入,应在低压侧配电箱内装设低压避雷器,从而起到保护配电变压器及其总计量装置的作用。避雷器间应用截面不少于25mm2的多股铜蕊塑料线连接在一起。为避免雷电流在接地电阻上的压降与避雷器的残压叠加在一起,作用在变压器绝缘上,应将避雷器的接地端、变压器的外壳及低压侧中性点用截面不少于25mm2的多股铜蕊塑料线连接在一起,再与接地装置引上线相连接。
八、接地装置
目前农网改造中,农村小容量变压器布点多,雷雨季节10kV配电变压器经常遭受雷击,如果接地电阻过大,达不到规程规定值,雷电流不能迅速泄入大地,造成避雷器自身残压过高,或在接地电阻上产生很高的电压降,引起变压器烧毁事故。因此,接地装置的接地电阻必须符合规程规定值。对10kV配电变压器:容量在及以下,其接地电阻不应大于10Q;容量在100kVh以上,其接地电阻不应大于4Q。接地装置施工完毕应进行接地电阻测试,合格后方可回填土。同时,变压器外套必须良好接地,外壳接地运用螺栓拧紧,不可用焊接直接焊牢,以便检修。
接地装置的地下部分由水平接地体和垂直接地体组成,水平接地体一般采用4根长度为5m的40mm×4mm的扁钢,垂直接地体采用5根长度为的50mm×50mm×5mm的角钢分别与水平接地每隔5m焊接。
水平接地体在土壤中埋设深为~,垂直接地体则是在水平接地体基础上打入地里的。接地引上线采用40mm×4mm扁钢,为了检测方便和用电安全,用于柱上式安装的变压器,引上线连接点应设在变压器底下的槽钢位置。
九、变压器台区引落线
新建和改造配电变压器的引落线均应采用多股绝缘线,其截面应按变压器的额定容量选择,但高压侧引落线铜芯不应小于16mm2,铝芯不应小于25mm2,杜绝使用单股导线及不合格导线。同时应考虑引落线对周围建筑物的安全距离。
高压引落线与抱箍、掌铁、电杆、变压器外壳等距离不应小于200mm,高压引落线间的距离在引线处不小于300mm,低压引落线间的距离及其它物体的距离不小于150mm。
近年来,随着农网改造工程的实施,我市配电网络结构越来越合理,配电网设施得到大大改善,使电网达到了结构合理、供电安全可靠、运行经济。
摘 要电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。本文语言简练、逻辑严密、内容夯实。可作为从事电气工程技术人员的参考资料。关键词 电力系统故障,变压器,继电保护,整定计算目 录摘 要………………………ⅠABSTRACT………………Ⅱ1 绪论 课题背景…………………………设计题目………………………毕业设计原始资料…………… 待保护变压器的在系统中的连接情况……………………设计任务…………………继电保护的综述 ……电力系统的故障和不正常运行状态及引起的后果……… 继电保护的任务…………… 继电保护装置的组成……… 继电保护的基本要求……31.3 电力变压器故障概况…………61.4继电保护发展………………计算机化……………………71.4.2网络化…………………………保护、控制、测量、数据通信一体…………………………91.4.4智能化…………………………92 短路电流实用计算 ……………… 短路电流计算的规程和步骤 短路电流计算的一般规定… 计算步骤 ………………… 三相短路电流的计算………… 等值网络的绘制………… 化简等值网络…………… 三相短路电流周期分量任意时刻值的计算…………… 三相短路电流的冲击值…143 电力变压器保护原理分析… 瓦斯保护原理………… 变压器纵差动保护……… 构成变压器纵差动保护的基本原则…………………… 不平衡电流产生的原因和消除方法…………………… 电流速断保护原理…………电流速断保护的整定计算 躲过励磁涌流…………… 灵敏度的校验…………… 过电流保护的原理……………过电流保护………………… 复合电压起动的过电流保护……………………………负序电流和单相式低压过电流保护……………………零序过电流保护原理………24 中性点直接接地变压器的零序电流保护………………中性点可能接地或不接地变压器的保护……………… 过负荷保护原理 ……………28 过励磁保护原理……………293.8微机保护原理 …………………… 微机保护概况…………… 变压器的微机保护配置…304 保护配置与整定计算…电力变压器的保护配置…314.2 保护参数分析与方案确定……… 保护方案…… 保护设备配置选择…… 接线配置图…………………35 整定计算…………………… 带时限的过电流保护整定计算…………………………36 电流速断保护整定计算 单相低压侧装设低压侧接地保护………………………过负荷保护………………保护配置动作实现……………38结论…39参考文献……………………40附录A:接线配置图…………………41
1主题内容与适用范围 本导则适用于电压等级在35~220kV的国产油浸电力变压器、6kV及以上厂用变压器和同类设备,如消弧线圈、调压变压器、静补装置变压器、并(串)联电抗器等。 对国并进口的油浸电力变压器及同类设备可参照本导则并按制造厂的规定执行。 本导则适用于变压器标准项目大、小修和临时检修。不包括更换绕组和铁芯等非标准项目的检修。 变压器及同类设备需贯彻以预防为主,计划检修和诊断检修相结合的方针,做到应修必修、修必修好、讲究实效。 有载分接开关检修,按部颁DL/T574-95《有载分接开关运行维修导则》执行。 各网、省局可根据本导则要求,结合本地区具体情况作补充规定。 2引用标准 电力变压器 油浸式电力变压器技术参数和要求 GB7251-87变压器油中溶解气体分析和判断导则 GBJ148-90电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GB7665-87变压器油 DL/T572-95电力变压器运行规程 DL/T574-95有载分接开关运行维修导则 3检修周期及检修项目 检修周期 大修周期 一般在投入运行后的5年内和以后每间隔10年大修一次。 箱沿焊接的全密封变压器或制造厂另有规定者,若经过试验与检查并结合运行情况,判定有内部故障或本体严重渗漏油时,才进行大修。 在电力系统中运行的主变压器当承受出口短路后,经综合诊断分析,可考虑提前大修。 运行中的变压器,当发现异常状碚或经试验判明有内部故障时,应提前进行大修;运行正常的变压器经综合诊断分析良好,总工程师批准,可适当延长大修周期。中华人民共和国电力工业部1995-06-29发布1995-11-01实施 小修周期 一般每年1次; 安装在2~3级污秽地区的变压器,其小修周期应在现场规程中予以规定。 附属装置的检修周期 保护装置和测温装置的校验,应根据有关规程的规定进行。 变压器油泵(以下简称油泵)的解体检修:2级泵1~2年进行一次,4级泵2~3年进行一次。 变压器风扇(以下简称风扇)的解体检修,1~2年进行一次。 净油器中吸附剂的更换,应根据油质化验结果而定;吸湿器中的吸附剂视失 程度随时更换。 自动装置及控制回路的检验,一般每年进行一次。 水冷却器的检修,1~2年进行一次。 套管的检修随本体进行,套管的更换应根据试验结果确定。 检修项目 大修项目 吊开钟罩检修器身,或吊出器身检修; 绕组、引线及磁(电)屏蔽装置的检修; 铁芯、铁芯紧固件(穿心螺杆、夹件、拉带、绑带等)、压钉、压板及接地片的检修; 油箱及附件的检修,季括套管、吸湿器等; 冷却器、油泵、水泵、风扇、阀门及管道等附属设备的检朔; 安全保护装置的检修; 油保护装置的检修; 测温装置的校验; 操作控制箱的检修和试验; 无盛磁分接开关和有载分接开关的检修; 全部密封胶垫的更和组件试漏; 必要时对器身绝缘进行干燥处理; 变压器油的处理或换油; 清扫油箱并进行喷涂油漆; 大修的试验和试运行。 小修项目 处理已发现的缺陷; 放出储油柜积污器中的污油; 检修油位计,调整油位; 检朔冷却装置:季括油泵、风扇、油流继电器、差压继电器等,必要时吹扫冷却器管束; 检修安全保持记装置:包括储油柜、压力释放阀(安全气道)、气体继电器、速动油压继电器等; 检修油保护装置; 检修测温装置:包括压力式温度计、电阻温度计(绕组温度计)、棒形温度计等; 检修调压装置、测量装置及控制箱,并进行调试; 检查接地系统; 检修全部阀门和塞子,检查全部密封状态,处理渗漏油; 清扫油箱和附件,必要时进行补漆; 清扫并绝缘和检查导电接头(包括套管将军帽); 按有关规程规定进行测量和试验。 临时检修项目 可视具体情况确定。 对于老、旧变压器的大修,建议可参照下列项目进行改进 油箱机械强度的加强; 器身内部接地装置改为引并接地; 安全气道改为压力释放阀; 高速油泵改为低速油泵; 油位计的改进; 储油柜加装密封装置; 气体继电器加装波纹管接头。 4检修前的准备工作 查阅档案了解变压器的运行状况 运行中所发现的缺陷和异常(事故)情况,出口短路的次数和情况; 负载、温度和附属装置的运行情况; 查阅上次大修总结报告和技术档案; 查阅试验记录(包括油的化验和色谱分析),了解绝缘状况; 检查渗漏油部位并作出标记; 进行大修前的试验,确定附加检修项目。 编制大修工程技术、组织措施计划 其主要内容如下: 人员组织及分工; 施工项目及进度表; 特殊项目的施工方案; 确保施工安全、质量的技术措施和现场防火措施; 主要施工工具、设备明细表,主要材料明细表; 绘制必要的施工图。 施工场地要求 变压器的检修工作,如条件许可,应尽量安排在发电厂或变电所的检修间内进行; 施工现场无检修间时,亦可在现场进行变压器的检修工作,但需作好防雨、防潮、防尘和消防措施,同时应注意与带电设备保持安全距离,准备充足的施工电源及照明,安排好储油容量、大型机具、拆卸附件的放置地点和消防器材的合理布置等。 5变压器的解体检修与组装 解体检修 办理工作票、停电,拆除变压器的外部电气连接引线和二次接线,进行检修前的检查和试验。 部分排油后拆卸套管、升高座、储油柜、冷却器、气体继电器、净油器、压力释放阀(或安全气道)、联管、温度计等附属装置,并分别进行校验和检修,在储油柜放油时应检查油位计指示是否正确。 排出全部油并进行处理。 拆除无励磁分接开关操作杆;各类有载分接开关的拆卸方法参见《有载分接开关运行维修导则》;拆卸中腰法兰或大盖宫接螺栓后吊钟罩(或器身)。 检查器身状况,进行各部件的紧固并测试绝缘。 更换密封胶垫、检修全部阀门,清洗、检修铁芯、绕组及油箱。 组装 装回钟罩(或器身)紧固螺栓后按规定注油。 适量排油后安装套管,并装好内部引线,进行二次注油。 安装冷却器等附属装置。 整体密封试验。 注油至规定定的油位线。 大修后进行电气和油的试验。 解体检修和组装时的注意事项。 拆卸的螺栓等零件应清洗干净分类妥善保管,如有损坏应检修或更换。 拆卸时,首先拆小型仪表和套管,后拆大型组件,组装时顺序相反。 冷却器、压力释放阀(或安全气道)、净油器及储油柜等中件拆下后,应用盖板密封、对带有电流互感器的升高座应注入合格的变压器油(或采取其它防潮密封施)。 套管、油位计、温度计等易损部件拆下后应妥善保管,防止损坏和受潮;电容式套管应垂直放置。 组装后要检查冷却器、净油器和气体继电器阀门,按照规定开启或关闭。 对套管升高座、上部管道孔盖、冷却器和净油器等上部的放气孔应进行多次排气,直至排尽为止,并重新密封好擦净油迹。 拆卸无盛磁分接开关操作杆时,应记录分接开关的位置,并作好标记;拆卸有载分接开关时,分接头应置于中间位置(或按制造厂的规定执行)。 组装后的变压器各零部件应完整无损。 认真做好现场记录工作。 检修中的起重和搬运 起重工作及注意事项 起重 荼应分工明确,专人指挥,并有统一信号; 根据变压器钟罩(或器身)的重要选择起重工具,包括起重机、钢丝绳、吊环、U型挂环、千斤顶、枕木等; 起重前应先拆除影响起重工作的各种连接; 如系吊器身,应先紧固器身有关螺栓; 起吊变压器整体或钟罩(器身)时,钢丝绳应分别挂在专用起吊装置上,遇棱角处应放置衬垫;起吊100mm左右时应停留检查悬挂及捆绑情况,确认可靠后再继续起吊; 起吊时钢丝绳的夹角不应大于60°,否则应采用专用吊具或调整钢丝绳套; 起吊或落回钟罩(或器身)时,四角应系缆绳,由专人扶持,使其保持平稳; 起吊或降落速度应均匀,掌握好重心,防止倾斜; 起吊或落回钟罩(或器身)时,应使高、低压侧引线,分接开关支架与箱壁间保持一定的间隙,防止碰伤器身; 当钟罩(或器身)因受条件限制,起吊后不能移动而需在空中停留时,应采取支撑等防止坠落措施; 吊装套管时,其斜度应与套管升高座的斜度基本一致,并用缆绳绑扎好,防止倾倒损坏瓷件; 采用汽车吊起重时,应检查支撑稳定性,注意起重臂伸张的角度、回转范围与临近带电设备的安全距离,并设专人监护。 搬运工作及注意事项 了解道路及沿途路基、桥梁、涵洞、地道等的结构及承重载荷情况,必要时予以加固,通过重要的铁路道口,应事先与当地铁路部门取得联系。 了解沿途架空电力线路、通信线路和其它障碍物的高度,排除空中障碍,确保安全通过。 变压器在厂(所)内搬运或较长距离搬运时,均应绑轧固定牢固,防止冲击震动、倾斜及碰坏零件;搬运倾斜角在长轴方向上不大于15°,在短轴方向上不大于10°;如用专用托板(木排)牵引搬运时,牵引速度不大于100m/h,如用变压器主体滚轮搬运时,牵引速度不大于200m/h(或按制造厂说明书的规定)。 利用千斤顶升(或降)变压器时,应顶在油箱指定部位,以防变形;千斤顶应垂直放置;在千斤顶的顶部与油箱接触处应垫以木板防止滑倒。 在使用千斤顶升(或降)变压器时,应随升(或降)随垫木方和木板,防止千斤顶失灵突然降落倾倒;如在变压器两侧使用千斤顶时,不能两侧同时升(或降),应分别轮流工作,注意变压器两侧高度差不能太大,以防止变压器倾斜;荷重下的千斤顶不得长期负重,并应自始至终有专人照料。 变压器利用滚杠搬运时,牵引的着力点应放在变压器的重心以下,变压器底部应放置专用托板。为增加搬运时的稳固性,专用托板的长度应超过变压器的长度,两端应制成楔形,以便于放置滚框;运搬大型变压器时,专用托板的下中应加设钢带保护,以增强其坚固性。 采用专用托板、滚框搬运、装卸变压器时,通道要填平,枕木要交错放置;为便于滚杠的滚动,枕木的搭接处应沿变压器的前进方向,由一个接头稍高的枕木过渡到稍低的枕木上,变压器拐弯时,要利用滚框调整角度,防止滚杠弹出伤人。 为保持枕木的平整,枕木的底部可适当加垫厚薄不同的木板。 采用滑全国纪录组牵引变压器时,工作人员和需站在适当位置,防止钢丝绳松扣或拉断伤人。 变压器在搬运和装卸前,应核对高、低压侧方向,避免安装就位时调换方向。 充氮搬运的变压器,应装有压力监视表计和补氮瓶,确保变压器在搬运途中始终保持正压,氮气压力应保持,露点应在-35℃以下,并派专人监护押运,氮气纯度要求不低于。 (2005-06-25)整体组装 整体组装前的准备工作和要求 组装前应彻底清理冷却器(散热器),储油柜,压力释放阀(安全气道),油管,升高座,套管及所有组、部件。用合格的变压器油冲洗与油直接接触的组、部件。 所附属的油、水管路必须进行彻底的清理,管内不得有焊渣等杂物,并作好检查记录。 油管路内不许加装金属网,以避免金属网冲入油箱内,一般采用尼龙网。 安装上节油箱前,必须将油箱内部、器身和箱底内的异物、污物清理干净。 有安装标志的零、部件,如气体继电器、分接开关、高压、中压套管或高座及压力释放阀(或安全气道)升高座等与油箱的相对位置和角度需按照安装标志组装。 准备好全套密封胶垫和密封胶。 准备好合格的变压器油。 将注油设备、抽真空设备及管路清扫干净;新使用的油管亦应先冲洗干净,以去除油管内的脱模剂。 组装 装回钟罩(或器身); 安装组件时,应按制造厂的“发装使用说明书”规定进行; 油箱顶部若有定位件,应按并形尺寸图及技术要求进行定位和密封; 制造时无升高坡度的变压器,在基础上应使储油柜的气体继电器侧具有规定的升高坡度; 变压器引线的根部不得受拉、扭及弯曲; 对于高压引线,所包扎的绝缘锥部分必须进入套管的均压球内,防止扭曲; 在装套管前必须检查无盛磁分接开关连杆是否已插入分接开关的拨叉内,调整至所需的分接位置上; 各温度计座内应注以变压器油; 按照变压器外形尺寸图(装配图)组装已拆卸的各组、部件,其中储油柜、吸湿器和压力释放阀(安全气道)可暂不装,联结法兰用盖板密封好;安装要求和注意事项按各组部件“安装使用说明书”进行。 排油和注油 排油和注油的一般规定 检查清扫油罐、油桶、管路、滤油机、油泵等,应保持清洁干燥,无灰尘杂质和水分。 排油时,必须将变压器和油罐的放气孔打开,放气孔宜接入干燥空气装置,以防潮气侵入。 储油柜内油不需放出时,可将储油柜下面的阀门关闭。将油箱内的变压器油全部放出。 有载调压变压器的有载分接开关油室内的油应分开抽出。 强油水冷变压器,在注油前应将水冷却器上的差压继电器和净油器管路上的塞子关闭。 可利用本体箱盖阀门或气体继电器联管处阀让安装抽空管,有载分接开关与本体应安连通管,以便与本体等压,同时抽空注油,注油后应予拆除恢复正常。 向变压器油箱内注油时,应经压力式滤油机(220kV变压器宜用真空滤油机)。 图1真空注油连接示意图 1-油罐;2,4,9,10-阀门;3-压力滤油机或真空滤油机;5-变压器;6-真空计;7-逆止阀;8-真空泵 真空注油 220kV变压器必须进行真空注油,其它奕坟器有条件时也应采用直空注油,真空注油应遵守制造厂规定,或按下述方法进行,其连接图见图1。 通过试抽真空检查油箱的强度,一般局部弹性变形不应超过箱壁厚度的2倍,并检查真空系统的严密性。 操作方法: 以均匀的速度抽真空,达到指定真空度并保持2h后,开始向变压器油箱内注油(一般抽空时间=1/3~1/2暴露空气时间),注油温度宜略高于器身温度; 以3~5t/h的速度将油注入变压器距箱顶约200mm时停止,并继续抽夫空保持4h以上; 变压器补油:变压器经真空注油后补油时,需经储油柜注油管注入,严禁以下部油门注入,注油时应使油流缓慢注入变压器至规定的油面为止,再静止12h。 胶囊式储油柜的补油 进行胶囊排气:打开储油柜上部排气孔,由注油管将油注满储油柜,直至排气孔出油,再关闭注油管和排气孔; 从变压器下部油门排油,此时空气经吸湿器自然进入储油柜胶囊内部,至油位计指示正常油位为止。 隔膜式储油柜的补油 注油前应首先将磁力油位计调整至零位,然后打开隔膜上的放气塞,将隔膜内的气体排除再关闭放气塞; 由注油管向隔膜内注油达到比指定油位稍高,再次打开放气塞充分排除隔膜内的气体,直到向外溢油为止,经反复调整达到指定油位; 发现储油柜下部集气盒油标指示有空气时,应用排气阀进行排气; 正常油位低时的补油,利用集气盒下部的注油管接至滤油机,向储油柜内注油,注油过中发现集气盒中有空气时应停止注油,打开排气管的阀门向外排气,如此反复进行,直至储油柜油位达到要求为止。 油位计带有小胶带时储油柜的注油 变压器大修后储油柜未加油前,先对油位计加油,此时需将油表呼吸塞及小胶囊室的塞子打开,用漏斗从油表呼吸塞座处徐徐加油,同时用手按动小胶带,以便将囊中空气全部排出; 打开油表放油螺栓,放出油表内多余油量(看到油有内油位即可),然后关上小胶囊室的塞子,注意油表呼吸塞不必拧得太紧,以保证油表内空气自由呼吸。 整体密封试验 变压器安装完毕后,应进行整体密封性能的检查,具体规定如下: 静油柱压力法:220kV变压器油柱高度3m,加压时间24h;35~110kV变压器油柱高度2m,加压时间24h;油柱高度从拱顶(或箱盖)算起。 充油加压法:加油压时间12h,应无渗漏和损伤。 变压器油处理 一般要求 大修后注入变压器内的变压器油,其质量应符合GB7665-87规定; 注油后,应从变压器底部放油阀(塞)采取油样进行化验与色谱分析; 根据地区最低温度,可以选用不同牌号的变压器油; 注入套管内的变压器油亦应符合GB7665-87规定; 补充不同牌号的变压器油时,应先做混油试验,合格后方可使用。 压力滤油 采用压力式滤油机过滤油中的水分和杂质;为提高滤油速度和质量,可将油加温至50~60℃。 滤油机使用前应先检查电源情况,滤油机及滤网是否清洁,极板内是否装有经干燥的滤油纸,转动方向是否正确,外壳有无接地,压力表指示是否正确。 启动员滤油机应先开出油阀门,后开进油阀门,停止时操作顺序相反;当装有加热器时,应先启动滤油机,当油流通过后,再投入加热器,停止时操作顺序相反。 滤油机压力一般为,最大不超过
三比值法气体分析在变压器故障判断中的应用论文
摘要: 变压器故障条件下在绝缘油中产生大量气体,三比值法气体分析能根据各组分的含量、比值、产气速率判断变压器的故障原因及性质,在解决各类变压器故障中发挥了十分重要的作用。本文对三比值法气体分析在变压器故障判断中的应用做了介绍,供广大电力人员作参考。
关键词: 三比值法 气体分析变压器故障判断应用
电力变压器内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,对359台故障变压器统计表明:过热性故障占63%;高能量放电故障占%;过热兼高能量放电故障占10%;火花放电故障占7%;受潮或局部放电故障占%。电气测量不能发现以上很多隐性故障,如何找到一种能早期发现这些隐性故障的检测手段和方法以快速判断变压器故障的原因、性质和发展趋势是十分必要的。而三比值法气体分析就是在变压器故障分析中被大量采用的有效的化学测量方法。
一、绝缘油产气原理
1、 产品老化及故障条件下温度上升与放电导致绝缘油分解并产生气体
绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3、CH2和CH化学基团并由C-C键键合在一起。由于电或热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基如:CH3*、CH2*CH*,或C*(其中包括许多更复杂的形式),这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。
故障初期,所形成的气体溶解于油中;当故障能量较大时,也可能聚集成自由气体。碳的固体颗粒及碳氢聚合物可沉积在设备的内部。 低能量故障,如局部放电,通过离子反应促使最弱的键C-H键(338 kJ/mol)断裂,大部分氢离子将重新化合成氢气而积累。对C-C键的断裂需要较高的温度(较多的能量),然后迅速以C-C键(607 kJ/mol)、C=C键(720 kJ/mol)和C 三C(960 kJ/mol)键的.形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。 乙烯是在大约为500℃(高于甲烷和乙烷的生成温度)下生成的。乙炔的生成一般在800℃~1200℃的温度。因此,大量乙炔是在电弧的弧道中产生的(低于800℃也会有少量的乙炔生成)。油起氧化反应时伴随生成少量的CO和CO2。油碳化生成碳粒的温度在500℃~800℃。
2、 固体绝缘材料分解产生气体
纸、层压纸板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键及葡萄糖甙键,它们的热稳定性比油中的碳氢键要弱,并能在较低的温度下重新化合。聚合物裂解的有效温度高于105℃,完全裂解和碳化高于300℃,在生成水的同时生成大量的CO和CO2以及少量烃类气体和呋喃化合物,同时油被氧化。CO和CO2的形成不仅随温度而且随油中氧的含量和纸的湿度增加而增加。
二、产气与故障关系
故障气体的组成和含量与故障的类型及其严重程度有密切关系。在变压器里,当产气速率大于溶解速率时,会有一部分气体进入气体继电器或储油柜中。当变压器气体继电器内出现气体时,分析其中的气体,同样有助于对设备的状况做出判断。
不同的故障类型产生的主要特征气体和次要特征气体可归纳为表1。
变压器内部是否正常或存在故障,常用气相色谱分析结果的三项主要指标(总烃、已炔、氢)来判断。油中气体含量正常值和注意值见表2。
仅根据表3所列气体含量的绝对值很难对故障的严重程度作出正确判断,还必须考察故障的发展趋势,这与故障的产气速率密切相关。产气速率分为绝对产气速率和相对产气速率两种。规范规定对于密封式(隔膜式)变压器,总烃产气速率的注意值为;总烃的相对产气速率大于10%时应引起注意。
三、判断故障性质的三比值法
三比值法是利用气相色谱分析结果中五种特征气体含量的三个比值(C2H2 /C2H4、CH4/ H2 、C2H4 /C2H6)来判断变压器内部故障性质。实践表明,这一方法判断故障性质的准确率相当高。由于当采用不完全脱气方法脱气时,各组分的脱气速率可能相差很大;但三比值法中,每一对比值之两种气体脱气速率之比都接近于1。所以采用三比值法克服了因脱气速率的差异所带来的不利影响。
三比值法按照比值范围,把三个比值以不同的编码来表示,编码规则如表4。
四、故障判断的步骤
1、气相色谱分析结果的三项指标(总烃、乙炔、氢)与规程的注意值进行比较,并分析CO、CO2的含量。
2、当主要指标达到或超过注意值时,应进行追踪分析、查明原因,结合产气速率估计是否存在故障或故障严重程度及发展趋势。有一项或几项主要指标超过注意值时,说明设备存异常情况,要引起注意。但规程推荐注意值是指导性,它不是划分设备是否异常唯一判据,不应当作强制性标准执行;而应进行跟踪分析,加强监视,注意观察其产生速率变化。有设备特征气体低于注意值,但增长速度很高,也应追踪分析,查明原因;有设备因某种原因使气体含量超过注意值,能立即判定有故障,而应查阅原始资料,若无资料,则应考虑一定时间内进行追踪分析;当增长率低于产气速率注意值,仍可认为是正常。判断设备是否存故障时,不能只一次结果来判定,而应多次分析以后,将分析结果绝对值与导则注意值作比较,将产气速率与产气速率参考值作比较,当两者都超过时,才判定为故障。当确定设备存潜伏性故障时,就要对故障严重性作出正确判断。判断设备故障严重程度,除分析结果绝对值外,必须用产气速率来考虑故障发展趋势,计算故障产气速率可确定设备内部有无故障,又可估计故障严重程度。当有意识用产气速率考察设备故障程度时,必须考察期间变压器不要停运而尽量保持负荷稳定性,考察时间以1~3个月为宜。考察期间,对油进行脱气处理或较短运行期间及油中含气量很低时进行产气速率考察,会带来较大误差。
3、可能发生故障时,用特征气体法或三比值法对故障类型作初步判断,一般用三比值法更准确。但用三比值法应注意有关问题有:
(1)采用三比值法来判断故障性质时必须符合条件:
1)色谱分析气体成分浓度应不少于分析方法灵敏度极根值10倍。
2)应排除非故障原因引入数值干扰。
3)一定时间间隔内(1~3个月)产气速率超过10%/月。
(2)注意三比值表以外比值应用,如122、121、222等组合形式表中找不到相应比值组合,对这类情况要进行对应分析和分解处理。如有认为122组合可以分解为102+020,即说明故障是高能放电兼过热。另外,追踪监视中,要认真分析含气成分变化规律,找出故障类型变化、发展过程,例如三比值组合方式由102—122,则可判断故障是先过热,后发展为电弧放电兼过热。当然,分析比值组合方式时,还要结合设备历史状况、运行检修和电气试验等资料,最后作出正确结论。
(3)注意对低温过热涉及固体绝缘老化正确判断。绝缘纸150˙C以下热裂解时,主要产生CO2外,还会产生一定量CO、乙烯和甲烷,此时,成分三比值会出现001、002、021、022等组合,这样就可能造成误判断。这种情况下,必须首先考虑各气体成分产气速率,CO2始终占主要成分,产气速率一直比其他气体高,则对001--002及021--022等组合,应认为是固体绝缘老化或低温过热。
(4)注意设备结构与运行情况。三比值法引用色谱数据是针对典型故障设备,而不涉及故障设备各种具体情况,如设备保护方式、运行情况等。如开放式变压器,应考虑到气体逸散损失,特别是甲烷和氢气损失率,引用三比值时,应对甲烷、H2比值作些修正。另外,引用三比值是各成分气体超过注意值,特别是产气速率,有理由判断可能存故障时才应用三比值进一步判断其故障性质,用三比值监视设备故障性质应故障不断产气过程中进行。设备停运,故障产气停止,油中各成分能会逐渐散失,成分比值也会发生变化,,不宜应用三比值法。
(5)目前对尚没有列入三比值法某些组合判断正研究之中。例如121或122对应于某些过热与放电同时存情况,202或212装有载调压开关变压器应考虑开关油箱油可能渗漏到本体油中情况。
4、气体继电器内出现气体时,应将其中气体分析结果与油中气体分析结果作比较。比较时应将气、液两相气体进行换算。若故障气体含量均很少,说明设备是正常的。若溶解气体略高于气体继电器,说明设备存在产气较慢的潜伏性故障;若气体继电器明显超过油内气体含量,则说明设备存在产气较快的故障。
5、结合其他检查性试验(直流电阻、空载试验、绝缘试验、局部放电试验和测量微量水分、外部检查等)及设备结构、运行、检修等情况作综合性分析,可相应采取红外检测、超声波检测和其它带电检测等技术手段加以综合诊断判断故障的性质和部位,采取相应措施如缩短试验周期、加强监视、限制负荷、近期安排内部检查或立即停运检查等。综合分析诊断应注意问题:
1)变压器内部故障形式和发展是比较复杂,往往与多种因素有关,这就特别需要进行全面分析。首先要历史情况和设备特点以及环境等因素,确定所分析气体究竟是来自外部还是内部。所谓外部原因,包括冷却系统潜油泵故障、油箱带油补焊、油流继电器接点火花,注入油本身未脱净气等。排除外部可能,分析内部故障时,也要进行综合分析。例如,绝缘预防性试验结果和检修历史档案、设备当时运行情况,包括温升、过负荷、过励磁、过电压等,及设备结构特点,制造厂同类产品有无故障先例、设计和工艺有无缺陷等。
2)油中气体分析结果,对设备进行诊断时,还应从安全和经济两方面考虑。某些过热故障,一般不应盲目建议吊罩、吊心,进行内部检查修理,而应首先考虑这种故障是否可以采取其他措施,如改善冷却条件、限制负荷等来予以缓和或控制其发展,有些过热性故障吊罩、吊心也难以找到故障源。这一类设备,应采用临时对策来限制故障发展,油中溶解气体未达到饱和,不吊罩、吊心修理,仍有可能安全运行一段时间,观察其发展情况,再考虑进一步处理方案。这样处理方法,既能避免热性损坏,又能避免人力、物力浪费。
3)油脱气处理必要性,要分几种情况区别对待:当油中溶解气体接近饱和时,应进行油脱气处理,避免气体继电器动作或油中析出气泡发生局部放电;当油中含气量较高而不便于监视产气速率时,也可考虑脱气处理后,从起始值进行监测。但需要明确是,油脱气并非处理故障必须手段,少量可燃性气体油中并不危及安全运行,监视故障过程中,过分频繁脱气处理是不必要。
4)分析故障同时,应广泛采用新测试技术,例如电气或超声波法局部放电测量和定位、红外成像技术检测、油及固体绝缘材料中微量水分测定,以及油中金属微粒测定等,以利于寻找故障线索,分析故障原因,并进行准确诊断。
五、按国家规定的气体分析检测周期对变压器加强检测,保障变压器的正常稳定运行,减少故障的发生。
1、 出厂设备的检测
220KV变压器在出厂试验全部完成后要做一次色谱分析。制造过程中的色谱分析由用户和制造厂协商决定。
2、 投运前的检测
定期检测的新设备及大修后的设备,投运前应至少做一次检测。如果在现场进行感应耐压和局部放电试验,则应在试验后停放一段时间再做一次检测。
3、投运时的检测
新的或大修后的变压器至少应在投运后4天、10天、30天各做一次检测,若无异常,可转为定期检测。
4、运行中的定期检测
220 kV及以上定期检测 6个月一次。
5、特殊情况下的检测
当设备出现异常情况时(如气体继电器动作,受大电流冲击或过励磁等),或对测试结果有怀疑时,应立即取油样进行检测,并根据检测出的气体含量情况,适当缩短检测周期。
结语: 变压器油气体色谱分析是预防性试验和故障分析判断的重要方法,已得到广泛应用。在用气体特征值和注意值及产气速率估计已存在故障的条件下,三比值法分析能较准确地做出故障分析、判断故障类型、性质和严重程度,采用三比值法时要注意结合其他检测试验和新式先进在线监测工具及设备结构、运行、检修情况,经综合分析和判断后对故障准确定位并采取相应措施。变压器故障原因可能十分复杂,往往同时有多种故障存在,并在发展中。加强预防性试验和定期分析检测对保障变压器的正常运行十分必要。三比值法也在实践中被人们不断探索中,必将在电力应用中发挥更大作用。
摘 要电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。本文语言简练、逻辑严密、内容夯实。可作为从事电气工程技术人员的参考资料。关键词 电力系统故障,变压器,继电保护,整定计算目 录摘 要………………………ⅠABSTRACT………………Ⅱ1 绪论 课题背景…………………………设计题目………………………毕业设计原始资料…………… 待保护变压器的在系统中的连接情况……………………设计任务…………………继电保护的综述 ……电力系统的故障和不正常运行状态及引起的后果……… 继电保护的任务…………… 继电保护装置的组成……… 继电保护的基本要求……31.3 电力变压器故障概况…………61.4继电保护发展………………计算机化……………………71.4.2网络化…………………………保护、控制、测量、数据通信一体…………………………91.4.4智能化…………………………92 短路电流实用计算 ……………… 短路电流计算的规程和步骤 短路电流计算的一般规定… 计算步骤 ………………… 三相短路电流的计算………… 等值网络的绘制………… 化简等值网络…………… 三相短路电流周期分量任意时刻值的计算…………… 三相短路电流的冲击值…143 电力变压器保护原理分析… 瓦斯保护原理………… 变压器纵差动保护……… 构成变压器纵差动保护的基本原则…………………… 不平衡电流产生的原因和消除方法…………………… 电流速断保护原理…………电流速断保护的整定计算 躲过励磁涌流…………… 灵敏度的校验…………… 过电流保护的原理……………过电流保护………………… 复合电压起动的过电流保护……………………………负序电流和单相式低压过电流保护……………………零序过电流保护原理………24 中性点直接接地变压器的零序电流保护………………中性点可能接地或不接地变压器的保护……………… 过负荷保护原理 ……………28 过励磁保护原理……………293.8微机保护原理 …………………… 微机保护概况…………… 变压器的微机保护配置…304 保护配置与整定计算…电力变压器的保护配置…314.2 保护参数分析与方案确定……… 保护方案…… 保护设备配置选择…… 接线配置图…………………35 整定计算…………………… 带时限的过电流保护整定计算…………………………36 电流速断保护整定计算 单相低压侧装设低压侧接地保护………………………过负荷保护………………保护配置动作实现……………38结论…39参考文献……………………40附录A:接线配置图…………………41
3、 [电气工程与自动化]电力变压器的差动保护 论文+答辩ppt摘 要电力变压器是电力系统普遍使用的重要电气设备,它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器。同时差动保护是变压器非常重要的保护,因此,必须根据变压器的容量和参... 类别:毕业论文 大小:650 KB 日期:2008-09-24 4、 [电气工程与自动化]电力变压器电流保护 论文+答辩ppt摘 要电力变压器是电力系统中普遍使用的重要电气设备,他的安全运行直接关系到电力系统供电和稳定运行,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本次毕业设计... 类别:毕业论文 大小:725 KB 日期:2008-09-24 5、 [电气工程与自动化]35KV工厂电源变压器保护设计 论文+答辩ppt摘 要变压器是工厂供配电系统中不可缺少的重要电能转换设备,它的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件。所以必须根据变压器的容量和重要程度装... 类别:毕业论文 大小: MB 日期:2008-09-24
论文题目:PLC和变频技术在恒压供水系统中的应用 PLC和变频技术在恒压供水系统中的应用WwWWW 摘要: 本文是针对节能和提高供水质量问题而提出的恒压供水系统设计和应用的研究.文中分析了旧系统存在的问题,介绍了水位自动检测技术及保护措施,阐述了采用变频技术、PLC技术及自动控制技术相结合来实现的恒压供水控制的系统总体设计方案和软件设计。通过实践证明.该系统具有较强的功能.对供水质量、节约能源和运行可靠性具有较好的改善。关键词:变频技术;PLC技术;恒压供水;自启动1 引言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。下面笔者根据这方面的工作经验谈谈在恒压供水系统设计和实践过程中的一些思路和做法。2 变频器的工作原理在恒压供水控制系统中,关键技术主要是变频技术。目前效率最高、性能最好的系统是变压变频调速控制系统。2.1变频器的基本构成变频器的基本构成如图1所示,由主回路(包括整流器、滤波器、逆变器)和控制电路组成。 整流器的作用是把三相交流整流成直流。滤波器是用来缓冲直流环节和负载之间的无功能量。逆变器最常见的结构形式是利用六个半导体器件开关组成的三相桥式逆变电路,有规律地控制逆变器中主开关的通与断,可以得到任意频率的三相交流输出。控制电路主要是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等。2.2变频器基本原理 变频器的基本原理是利用逆变器中的开关元件,由控制电路按一定的规律控制开关元件的通断,从而在逆变器的输出端获得一系列等幅而不等宽的矩形脉冲波形,来近似等效于正弦电压波。图2所示出正弦波的正半周,并将其分为n等分(n=12)。每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的等幅矩形所代替。这样,由n个等幅而不等宽的矩形脉冲所组成的波形与正弦波的正半周等效。正弦波的负半周也可以用相同的方法来等效。可采用正弦波与三角波相交的方案来确定各分段矩形脉冲的宽度。当逆变器输出端需要升高电压时,只要增大正弦波相对三角波的幅值,这时逆变器的输出的矩形脉冲幅值不变而宽度相应增大,达到了调压的要求。当逆变器的输出端需要变频时,只要改变正弦波的频率就可以了。3 控制系统总体设计过去的供水控制系统投资多,采用的模式为多台小功率水泵供水。在运行实践中暴露出主控电路设计不合理和逻辑控制设计不合理的现象。新系统总体设计方案如图3所示。在该供水系统的控制电路中除采用了变频器(VVVF),还采用一些先进控制装置如数字调节器(PID)、可编程控制器(PLC)等,这些装置都是以电脑芯片为内核完成各自不同的控制功能。为简化控制电路,根据负荷需要,使用一台18.5KW大容量水泵供水。为提高使用的安全系数,选用一台日本富士22.5KW变频器进行水泵调速,该变频器内置PID调节功能,但不具备参数监视功能。为能有效监视调节工况,特选数字显示调节器进行监视和控制,以备实现串级PID控制。鉴于外部I/O可控点数不多,可编程控制器PLC选用20点即可满足控制要求。4 水位检测电路设计4.1水位检测开关考虑到水位检测装置要求故障率少,运行可靠,为简化检测环节,设计中采用结构简单的浮子式水位检测开关,但为防止信号串扰,另外增加了一个隔离转换装置。该装置内选用了干簧继电器用以提高开关接点的可靠性和使用寿命。4.2水位检测逻辑控制水位检测逻辑控制功能如前所述完全由可编程控制器PLc编程实现,减少了硬件配置,提高了运行的可靠性和应用的灵活性。PLC的I/O地址分配见图4(a)所示,简化梯形图如图4(b)所示。其逻辑电路主要完成如下功能,见图4(b)所示。(1)水位信号保持功能水位开关检测分别由PLC的常开接点实现。由于水位由于簧管的常开接点来检测,只有在水面越过该点时闭合,低于该点即断开,因此信号需由PLC保持。(2)水位信号显示、报警、保护功能水位正常时01002动作,使输出绿灯亮。水位低时01003动作,使输出红灯亮,且通过其常闭接点停供水泵。水位高时20000、01000同时启动,使输出黄灯亮(闪光l5秒转平光)且无条件停蓄水泵。 5 操作保护功能设计除了常规保护功能外还增加了人性化操作功能。考虑到泵短时间内的频繁启动对泵运行不利,故设置1分钟内只允许连续启动两次,第三次需延时3分钟后进行,以利泵的散热,延长设备使用寿命,减少功耗。编程时可采用定时器和计数器配合来实现。这项功能在启停调试设备过程中得到检验。6 系统自启动功能设计(1)自启动概述为了方便运行维护人员,有两种情况可以考虑自启动:①系统断电一段时间后恢复供电的自启动,系统在正常运行工况下突然停电时,如果其它检测无异常则来电后可实现自启动,这一点在夜间更为重要,可给维护人员带来方便,此项功能得到了维护人员的认可。②低水位使泵跳闸后水位恢复时的自启动管网用水负荷过大或蓄水水压过低流量减少造成的低水位,会引起供水泵跳闸。在水位恢复正常后可实现自启动。(2)自启功能的实现 如图5所示。图中,“自启动条件”有两个:一是计数器C103接点,二是“水位正常”信号接点。由于计数器C103具有停电记忆特性,所以只要水位恢复正常时01002闭合就可自启动。其过程是:微分继电器20006(13)产生的微分信号由20009继电器保持,再经时间继电器"1"020延时后使其输出的常开接点"1"020(见图4b)接通启动回路,则水泵重新运转。 (3)自启动的预置自启动功能可根据用户需要事先预置,否则,该功能会被屏蔽。设计方案如下:①预置和解除均借用运行状态下的启动按钮。预置时按动启动按钮三下使计数器C103启动,则其常开接点C103闭合。解除自启功能:按住启动按钮1秒,使计数器C103复位或按停止按钮使泵停运的同时也解除了自启动设置。②预置的显示借用水位正常灯(闪光3秒),解除借用高水位报警灯(闪光3秒)。7 结束语上述无塔供水控制系统经投入使用,各项设计功能运行正常,供水质量有了很大提高,单位大功率设备用电量也明显减少。期间,还经历了系统实际异常情况自动处理的考验,如“储水罐满水后的蓄水泵自动跳闸”、“电力网停电来电后的供水泵自启动”、“电源缺相报警”等,这些功能都得到了很好的验证。参考文献[1]张燕宾主编.变频调速应用实践.机械工业出版社,2001.[2]北京四通工控技术有限公司编.FRENIC5000G11S/P11S说明手册.2001.[3]北京鹭岛公司编.OMRON可编程控制器使用手册.2000.[4]高勤主编.电器与PLC控制技术.高等教育出版社,2001. 借鉴一下吧,以前搞了很多,找不到了~不好意思
这个要看你的控制方式了你要是简单的实现转速控制以及启停,可以用PLC往变频器里写入控制字来实现。以西门子440的变频器和S7-300的PLC为例。比如说,你采用DP通讯的方式对变频器进行控制,在你进行硬件组态时候会分配给你一个变频器的地址,你要启动就往这个地址的前四位写入47F,停止写入0.接下来的四位表示的就是你输入变频器的频率。
哥们帮你搞定,有什么好处
概述变压器的功率损耗可分为两部分,即固定损耗与可变损耗。固定损耗就是空载损耗(即铁损和激磁功率损耗,简称铁损),它只与变压器的容量以及电压的高低有关,而与负载的大小无关。空载损耗空载损耗可分为有功损耗和无功损耗两部分,有功部分基本上是铁芯的磁滞损耗和涡流损耗,一般在产品说明书或出厂试验报告中注明。无功部分是励磁电流产生的损耗,它近似地等于变压器的空载功率,可根据空载电流用下式计算。QO=IO%/100Se式中QO空载损耗中的无功损耗(千乏);IO%空载电流占额定电流的百分数;Se额定容量(千伏安)。可变损耗变压器的可变损耗就是短路损耗(即绕组中的损耗,简称铜损),它也分为两部分,即有功部分和无功部分,有功部分是变压器原、副绕组的电阻通过电流时产生的损耗,它和电流的平方成正比。因此它的大小取决于变压器负载的大小和功率因数的高低。无功部分主要是漏磁通产生的损耗,它可通过下式进行计算:QD=UD%/100Se式中QD短路损耗中的无功部分(千乏);UD%短路电压占额定电压的百分数;Se额定容量(千伏安)。因素变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。铜损是指变压器线圈电阻所引起的损耗。当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。变压器的铁损包括两个方面。一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时。铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率比就越小,效率也就越高。反之,功率越小,效率也就越低。个人见解,希望对您有帮助。
主要是导线损耗及鉄损耗、温度提开、线电阻也加大
关于变压器的保护措施分析论文
摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。
关键词:换流变压器 保护 分析
0 引言
超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。
1 换流变压器的特点
短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。
直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。
谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。
调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。
直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通变压器。这些不同主要包括以下几点:
直流系统的故障相当于换流变压器的区外故障,一般短路电流都不会太大。对于整流侧,穿越换流变的'电流会增大,但由于直流控制保护系统的快速作用,很快会减小。对于逆变侧,直流系统的故障会造成直流电流无法传变至交流侧,反而会使穿越电流减小。
对于换流变压器保护来说,直流系统造成的最严酷的区外故障为整流侧的阀短路故障,相当于换流变出口的两相或三相短路故障。但由于直流保护的干预,实际只会出现半个周波的两相短路。对于逆变侧,由于触发角很大,阀短路时流过换流变压器的电流较整流侧小很多。
换流变压器发生区内故障时,直流系统一般不会提供短路电流。这是由直流控制系统的作用造成的。在整流侧,功率由交流侧转换至直流侧,换流变压器的故障只会造成这种转换的停止,而不会使功率反向,因此直流侧不会提供短路电流;在逆变侧,当故障轻微换相可以正常进行时,由于直流系统的定电流控制特性,直流侧不会提供额外的短路电流。如果故障严重,必然造成换相无法进行(交流电压降低),直流侧更不会提供短路电流。
由于直流控制系统快速的调节作用,在需要的时候,可以快速的将功率传输由一个方向反至另一个方向,对于换流变压器来说,就会出现快速的潮流反向。
换流变压器保护区内发生接地故障时,实际造成了阀的短路。由于阀的单向导电性,故障电流半周电流大,半周电流小,导致差电流中含有较大的二次谐波。
对于逆变侧的换流变压器的区内故障,往往会导致换相失败的发生,从而在穿越电流电流中产生很大的谐波,但差电流(即提供给故障点的电流)仍主要为工频分量。
由于换流变压器的特殊运行方式以及较大的漏抗(作为换相电抗),二次侧故障一般不会造成各侧TA的饱和,即使饱和造成保护的“误动作”也是正确的(换流变的区外即阀的区内故障,都会造成直流的停运)。但对于一个半开关的接线方式,交流系统区外故障时高压侧TA存在饱和的可能。。这种情况下的误动作是不可接受的,必须防止。
在阀未解锁前,当阀侧交流连线存在接地故障时,并不产生接地电流,也不会对变压器造成损害。但如此时不发现故障,阀一解锁后,就会造成阀的短路。因此要设置保护检测这种情况下的接地故障。
2 换流变压器的保护措施
保护的配置原则 为了保证既可靠又安全,在既简单又经济的情况下,可以这样配置换流变压器保护:每台换流变压器保护装设两台保护装置,每台保护装置的电源、输入独立,每台装置的输出都可以到达断路器的两个跳闸线圈以及直流控制的两个系统。每台装置采取措施防止自身误动作,而靠两装置的或出口防止故障情况下的拒动作。 保护的配置及原理 为了避免换流站特有的谐波对保护的影响,保护装置应从硬件和软件上采取措施,使保护只针对工频分量。
主保护包括稳态比率差动、差动速断、工频变化量比率差动、零序比率差动、过激磁保护。后备保护包括过流、零序过流、过电压、零序过压、饱和保护。
稳态比率差动保护 由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。换流变压器的TA一般装在各侧绕组上,因此原、副边绕组电流相位相同,因此只需要对变比的影响进行补偿。以下的叙述的前提均为已消除了变压器各侧幅值和相位的差异。
稳态比例差动保护用来区分感受到的差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。装置采用初始带制动的变斜率比率制动特性,稳态比率差动元件由低值比率差动(灵敏)和高值比率差动(不灵敏)两个元件构成。为了保证区内故障的快速切除,只有低值比率差动元件(灵敏)设有TA饱和判据,高值比率差动元件(不灵敏)不设TA饱和判据。
对于换流变压器分接头调整造成的差动电流不平衡,可用三种方法来解决:一是通过整定值躲开;二是利用浮动门槛自适应调整;三是利用分接头位置来调整。方法一、二简单实用,三实现起来复杂。
工频变化量比率差动保护 装置中依次按相判别,当满足 一定条件时,工频变化量比率差动动作。工频变化量比率差动保护经过涌流判别元件、过激磁闭锁元件闭锁后出口。
由于工频变化量比率差动的制动系数可取较高的数值,其本身的特性抗区外故障时TA的暂态和稳态饱和能力较强。工频变化量比率差动元件提高了装置在变压器正常运行时内部发生轻微匝间故障的灵敏度。且工频变化量比率差动保护不会受换流变压器分接头调整造成的差动电流不平衡的影响。
后备保护 后备保护包括过流、零序过流、过电压、零序过压、饱和保护。
3 小结
分析换流变压器与交流系统的主变压器比较所具有特点,阐述了这些特点以及直流输电的各种特殊运行工况对换流变压器保护带来的影响,并提出了相应的保护方案。
(一)变压器的空载损耗 此损耗包括铁芯中磁滞和涡流损耗及空载电流在初级线圈电阻上的损耗,前者称为铁损后者称为铜损。由于空载电流很小,后者可以略去不计,因此,空载损耗基本上就是铁损。影响铁损的因素很多,以数学式表示,则 式中 Pn、Pw——表示磁滞损耗和涡流损耗 kn、kw——常数 f——变压器外施电压的频率 赫 Bm——铁芯中最大磁通密度韦/米2 n——什捷因麦兹常数,对常用的硅钢片,当Bm=(1.0~1.6)韦/米2时,n≈2,对目前使用的方向性硅钢片,取2.5~3.5。 根据变压器的理论分析,科假定初级感应电势为E1(伏),则: E1=KfBm (2) K为比例常数,由初级匝数及铁芯截面积而定,则铁损为: 由于初级漏阻抗压降很小,若忽略不计, E1=U1 (4) 可见,变压器的铁损与外施电压有很大关系如果电压V为一定值,则铁损不变,(因为f不变),又因为正常运行时U1=U1N,故空载损耗又称不变损耗.如果电压波动,则空载损耗即变化。 (二)负载损耗 此损耗是指变压器初、次级线圈中电流在电阻上产生的铜损耗及励磁电流在励磁电阻上产生的铁损耗。当电流为额定电流时,后者很小,可以不计,故主要是电流在初、次级线圈电阻上的铜损。 对三相变压器在任意负载时,铜耗表达式: 式中 I1——初级线圈的负载电流 I2’——次级线圈折算到初级的电流 R1——初级线圈的电阻 R2’——次级线圈折算得初级的电阻 由上式可见,变压器的铜损和负载电流的平方成正比。考虑到负载运行时,负载电流的变化,故此损耗又称可变损耗。若令β表示负载系数,即则铜损式中 ~线圈电流为额定值时的铜损。 (三)附加损耗 此损耗包括附加铁损及附加铜损,由于这两种损耗数量很小,又难以测定,可以不计。总之,变压器的损耗主要是不变损耗和可变损耗。变压器的效率,其计算公式如果负载的性质一定,令φ2表示功率因数角,则在额定电压下,三相变压器输出功率 SN——变压器的额定容量。输入功率,可根据功率平衡得到 (8)式表明变压器的效率和其额定容量初、负载的性质与大小以及变压器本身的损耗有关。