首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数学文化的论文

发布时间:

数学文化的论文

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性1.数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。2.数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。3.数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。1.数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。2.数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。3.数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。1.数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。2.数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友.数学文化[M].长沙:湖南教育出版社,1991.[2]张维忠.数学文化与数学课程[M].上海:上海教育出版社,1999.[3]郑毓信.数学文化学[M].成都:四川教育出版社,2001.[4]李文林.数学史教程[M].高教出版社.

数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和。下文是我为大家整理的关于数学文化论文投稿的范文,欢迎大家阅读参考!数学文化论文投稿篇1 浅谈我国基础数学文化教育的历程 一、何谓数学文化 对于数学文化的界定很多,“数学文化是指,不仅数学自身属于人类社会的一种文化现象,而且数学还拥有广泛的超越数学自身意义的因素以及这些因素对人类的巨大影响,从而应把数学的发生、发展以及数学教育放到整个社会文化背景中去观察和认识。” “由于数学对象并非物质世界中的真实存在,而是人类抽象思维的产物,因此,数学就是一种文化。” 特别是一部数学史可以反映出数学文化的发生发展过程,具体的数学概念、数学方法、数学思想中都有丰富的文化底蕴,都是值得我们在教学中一一展示给大家的素材。 二、数学文化教育提出的背景 1.激发学生学习兴趣,提高数学教育质量。 不管是在哪个国家,数学教育都是基础教育的重点,然而数学一直以来被大部分学生视为比较枯燥单调难学,对数学学习缺乏兴趣甚至畏惧且望而却步。但是数学教育对每位合格的社会公民的培养又有着不可替代的重要作用,兴趣是最好的老师,怎样提高学生的学习数学的兴趣,是所有教育者都很注重的,该怎样激发学生学习数学的兴趣,其中挖掘发挥数学本身的文化内涵并实现在数学教学中成了数学教育中的热点问题,因此,提高数学教育质量是提倡数学教育中重视文化教育的原因之一。 2.素质教育的需要。 中国是数学大国,但是很长一段时间,我们过于重视数学教育的工具价值,而忽略了其作为一种文化陶冶情操的文化审美教育价值。应试教育轰轰烈烈,学生的学业负担过重,中国学生在世界上是最勤奋的学生群体,但是中国学生的创新能力不高,基础教育没有体现它最基本的功能:为社会培养高素质的合格公民。我们不需要只会读死书的书呆子,所以,为了提高国民素质,提高数学素质和数学教育质量,数学教育中的文化教育开始被大家提倡。 3.数学本身是一种文化,本来就具有文化教育的价值和功能。 20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩[3]。近年来,数学文化成了当今探讨数学发展的新视角,人们愈来愈认识到,数学的发展与人类文化息息相关,数学一直是人类文明主要的文化力量,同时人类文化发展又极大地影响了数学的进步。数学本身不仅仅是一门科学,也是一种文化,具有文化教育的价值和功能。“优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。” 三、我国基础教育中数学文化教育所经历的三个阶段 第一个阶段:基础数学文化教育的被忽视阶段(1949年至20世纪90年代) 我国刚刚成立之时,百废待兴,基础教育还在起步发展,一时连合格的数学老师都难以保证,更何况数学教育中的文化教育的重视了。从解放初期的全盘照搬苏联数学教育,直到1958年的很长一段时间的数学教育目的的对比我们发现,数学教育重视了运用已经学到的知识和技巧去解答算术应用题和日常生活中的简单计算问题,而对知识、能力和思想品德三方面的教学目的提得不够全面、明确。 之后受赶美超英的大跃进运动和十年“”的影响,我国的教育事业受到严重冲击,直到1978年年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常的轨道上来。然而,此次修订的大纲,增加了很多高等数学内容,显然与当时基础数学水平较低的现实不符,加重了学生们的学习负担。针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验。1986年颁布了《全日制中学数学教学大纲》,对教育的目标提出了适应当时具体情况和未来发展的新要求[4]。很显然,相对于今天,对于基础教育中的数学文化教育,大家还一时无暇顾及和提及。 第二个阶段:基础数学文化教育被热烈探讨阶段(20世纪90年代至2004年) 随着国力的增强,对教育的足够重视和投入,中国的数学教育,特别是基础教育,也在世界上处于领先地位。然而,应试教育也愈演愈烈,很多学者和教师发现,由于受应试教育的影响,数学课程注重知识传授,忽略了情感态度与价值观的教育,特别是数学这样的理科科目,在学生眼里就是难题,更何况全民奥数热。很大程度上奥数毁坏了中国学生对数学学习的兴趣和热情,增加了他们对数学学习的恐惧,占用了学生们发展其他素质的宝贵时间,浪费了太多人力物力。 1993年2月13日,中共中央、国务院在总结广大教育工作者改革实践经验的基础上制定发布的《中国教育改革和发展纲要》(以下简称《纲要》)中指出:“中小学要从‘应试教育’转向全面提高国民素质的轨道”,为了贯彻和落实《纲要》,中共中央于1994年召开的全国教育工作会议上提出:“基础教育必须从‘应试教育’转到素质教育的轨道上来,全面贯彻教育方针,全面提高教育质量。” 伴随着素质教育观念的广泛深入,大家对怎样提高素质教育的研究越来越广泛。具备学习的愿望、兴趣和方法,比记住一些知识更为重要,这也是素质教育所倡导的。怎样提高数学教育质量,使数学教育也完全符合素质教育的宗旨,成了大家探讨的热点,首先怎样激发学生学习数学的兴趣,还原数学本身的教育价值成了大家深思的问题。在这样的背景下,一直被忽视的数学文化教育被大家发现是贯彻数学素质教育的一个重要手段,很显然我们的数学教育中忽略了数学的文化价值,数学独特的美,数学教育中的文化教育,数学教育独特的素质教育功能,在大力提倡素质教育的同时,数学教育不再是简单的计算证明推理,也要重视数学教育中的文化教育,从而提高素质教育。 对数学教育中怎样开展文化教育的研究成为热点,其中华东师范大学张奠宙教授经过对这一阶段的研究,发表了以下看法,他认为当时的研究“都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分地揭示了数学的文化内涵,肯定数学作为文化存在的价值。这是必要的”。同时,张教授还指出两点不足,其中之一便是,“数学文化的研究,不能只说数学的重要性,强调数学对人类文明的贡献。与此同时,还应观察数学受到社会文化的影响,借助社会文明阐述数学的文化含义。这有助于人们贴近数学。” 在中学老师层面,这种思想也得到了很多人的认同,在他们 发表的教学研究的 论文中,如何恰当地将 文化 教育融入数学教育之中,以此来提高学生的学习兴趣的文章有 很多。但不是所有的领导和教师在实际的教学中都足够重视数学文化的价值和重要性或者以此贯穿于自己的课堂教学之中,也没有官方 的课程标准或者教材给予数学文化相应的地位。 第三个阶段:基础数学文化教育高度被重视并出现在教材中和实际的教学中(2004年至今) “数学是一种文化,数学教育是数学文化的教育。” 2004年开始的新课改中提出“关注数学文化的价值”,“数学文化教育在教学中要有意识的穿插,且数学史以 专题形式出现在选修教材中。”这些观念在2003年颁发的《普通高中数学课程标准(实验)》中有所体现。新的课改指出,数学教育不仅是知识的教育,也是素质的教育。新课程将数学文化作为高中数学课程内容的一个方面,并且给出了一定数量的选题,提出了具体目的和要求,教学中要恰当把握好有关选题的内容和要求。例如,如何结合 统计思想方法的学习去把握“广告中的数据与可靠性”;如何在恰当的地方设计恰当的“黄金分割引出的数学问题”,使学生通过实际问题,认识数学在 建筑、 艺术、美学、优选等方方面面的广泛 应用, 体会数学文化的价值。 新的课改后,以往无意识的数学文化的教学转化为有意识的数学文化的教学,关于数学文化的教学不单再是有关资料的介绍,而是应将资料中蕴涵的文化价值体现出来。数学教育中的文化教育以下面两种形式出现在实际的教学中。 1.数学文化内容的介绍穿插于数学知识的教学中。 “教师在课堂上可以介绍一些重要的基本概念的发生、 发展,使学生认识数学发生、发展的规律,同时也了解人类从数学的角度认识客观世界的过程。例如,关于解析几何与微积分的创立、发展的资料比比皆是,选取和整理成数学素材时应关注那些体现 社会发展和数学发展相互促进的内容,或反映数学家为追求真理表现出来的那种锲而不舍的精神,求真务实、说理、批判、质疑等方面的内容。通过恰当的提示、引导,让学生从对相关资料了解的基础上,上升到对其中蕴涵的数学文化价值的认识”。 “几句话,一个故事,一个片段等,总之,我们在知识教育的同时,以知识为载体使学生体会和认识数学的文化价值,促进学生科学观的形成,全面提高学生的数学素养。” 2.数学史作为数学文化的载体出现在新教材中。 新课程中选修系列之中包括数学史选讲,数学史选讲作为选修课程已经进入高中数学新课程。选讲教材告别了过去那种单一的数学学习内容和方式,跳出数学知识和技能训练的题海,从宏观上审视数学的历史演变,感悟数学发展史的风雨历程,了解各种数学思想方法如何产生、发展和应用。 数学史是数学文化融入数学课程的最好载体,数学史展示了数学产生和发展的过程,它是劳动人民勤劳智慧的集中体现,是数学知识、数学思想和数学方法的宝库。“通过数学发展进程中的主要人物、事件及其背景的介绍,可以使学生掌握数学的脉络,懂得数学发展的客观规律,以及数学于人类社会发展之间的相互作用;通过了解古今中外数学家的生平简介以及基本数学思想方法,从中吸取丰富的营养和 经验教训,有助于学生形成正确的数学思想观念,树立独立思考、勇于探索的进取精神;通过不同文化背景的数学的比较,引入多元文化的数学,可以使学生从更广阔的视野去认识人类文明的数学成就,欣赏丰富多彩的数学 文化。”总之,数学史有助于我们全面认识数学 教育的文化价值,探索数学文化为主导的数学教育,数学史的教育价值在课程改革的实验区已经显现出来。 四、结束语 数学是人类文化的重要组成部分,是人类 社会进步的产物,也是推动社会 发展的动力。作为一种文化,数学文也是公民必备的科学家养。在美国数学教育中,教材也强调数学史知识的介绍,在介绍中注意数学家的闪光点,可教育性的材料,有引起学生学习数学兴趣的材料,也有关于世界各国的重要数学史实, 力图使学生对数学的历史发展有比较完善的认识,以扩大学生的眼界[8]。 在中国这样一个曾经的世界四大文明古国,一度在数学教育中缺失的数学文化教育被重视起来,“数学文化”已是新课程的重要内容之一,数学教育是数学文化的教育。在此思想指导下的中国基础数学教育,才能更好地激发学生的数学学习兴趣,改变他们的数学观,树立学习的自信心,真正了解数学的美、数学的历史,进而促进他们人格的健康成长,扩宽他们的视野,了解多元文化的数学,这样的数学教育才是才是真正的素质教育[9]。 数学文化论文投稿篇2 浅析高中数学教学中的数学文化 摘 要:数学文化是人类知识宝库的重要组成部分,在数学教学中只是传授数学知识,解决数学问题是不够的,还应渗透数学文化,通过数学文化教育,展示数学的美和数学精神的魅力,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质。本文在介绍数学文化主要特征的基础上,对高中数学教学中如何渗透数学文化进行了分析。 关键词:高中数学;数学文化;主要功能;渗透 数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和,其中物质产品主要指数学语言、数学命题、数学问题以及数学方法等方面,精神产品主要指数学思想、数学意识、数学精神等方面。在高中数学教学中渗透数学文化,是学生数学学习的基本需要,其目的是使学生在学习数学的过程中受到文化感染,领略数学的美,体悟数学文化的价值,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质,促进学生个性的良好发展。 1 数学文化的主要特征 数学是一种文化,数学文化是人类知识宝库的重要组成部分,其特征主要包括以下几个方面: (1)历史性。数学的发展离不开历史的积淀过程,人们对数学本质的认识也是源于数学史的发展,因此,可以说数学文化具有一定的社会历史性。数学学习要讲究数学方法,而数学史是研究数学方法的重要依据,因而从某种意义上说,一切与数学有关的研究,与数学史息息相关。了解数学史,既可以增强全局观念,又可以调动学习热情。 (2)思维性。数学文化的主体是数学知识以及运用这些知识所形成的数学思想和数学方法,它们都是人类通过数学语言总结出来的可应用于现实世界的空间形式及数学关系的思维成果,因此,可以说思维是数学的内在灵魂,数学是思维的基本体现。 (3)审美性。数学是一门科学,也是一门艺术。数学中的简单性、对称性、统一性、协调性等基本特征都是数学美的重要内容。在我国古代,数学是“礼、乐、射、御、书、数”六艺之一,在西方,数学与和谐曾被认为是宇宙的主要根源,因此,可以说数学具有很强的审美性,数学世界充满了美感。而数学的美感正是数学文化对人类意志品质、高尚情操陶冶的一种体现。 2 数学文化在高中数学教学中的渗透 渗透数学史,培养数学文化意识 在高中数学教学中,教师要有意识地渗透数学史,在了解数学史的过程中,培养学生的数学文化意识。对此,可通过开设数学史选修课渗透数学史。在选修课中可以介绍一些与数学有关的具有深远意义的历史事件,如数学思想逐渐演变的历史事件,数学家逐渐纠错的历史事件等。或通过推荐有价值的与数学息息相关的作品,如张景中院士的《新概念几何》、西奥妮・帕帕斯写的《数学的奇妙》等,抑或引导学生通过网络、报刊等各种资源搜集、查找有关古今中外著名数学家的事迹,了解他们对数学做出的主要贡献,拓宽学生的数学视野,体会数学的文化品位。 渗透数学思想方法,提高学生的数学素养 数学思想方法是指对数学知识和方法形成的规律性理性认识,为分析、处理和解决数学问题提供了指导方针和解题策略。高中数学教学不能仅满足于单纯的知识传授,而是要帮助学生把握数学知识的本质,引导学生借助数学思想方法解决实际数学问题,提高自身的数学素养。如: 已知当x∈[0,1]时,不等式x2cosa-x(1-x)+(1-x)2sina>0恒成立,求a的取值范围。分析:本题通过构造的思想方法,即可轻易地求出结果。可设f(x)=x2cosa-x(1-x)+(1-x)2sina=(cosa+sina+1)x2-(1+2sina)x+sina,由题意可知:f(0)=sina>0 ①; f(1)=cosa>0 ②,在条件①②下对称轴x=∈[0,1],此时只要△<0,即sin2a> ③, 再联立①②③即可求出a的取值范围。 发展学生的数学思维,培养数学的理性精神 数学教学的关键在于发展学生的数学思维,培养数学的理性精神。数学思维是理性思维的重要形式,注重学生数学思维的培养对于提高学生的思维能力,增强学生的解题能力有着十分重要的作用。发展学生的数学思维一方面要注意培养学生的数学意识,理清学生的思维脉络。数学的知识点是前后衔接、环环紧扣的, 因此,在教学中对于每一个问题,教师要既要考虑学生原有的知识基础,又要考虑与它相关联的知识内容。只有这样,才能更好地激发学生的思维,并逐步形成知识脉络。另一方面要注意激发学生的思维动机,提高学生思维的水平。动机是人们行为活动的内趋力。激发学生思维的动机,是培养其思维能力的重要因素。在数学教学中,教师可以通过创设合理的问题情景,使学生产生情感上的共鸣,进而引发学生最强烈的思考动机和最佳的思维定向,形成良好的数学思维品质。 开展数学课题研究性学习,体悟数学文化的真正价值 在实际数学教学过程中,教师可将某些数学定理、公式作为研究性课题开展研究性学习,让学生主动去发现、检验、论证,体验到数学家发现数学的真实过程,了解数学概念、定理、公式、结论形成的过程,获得再创造的快乐,进而把握数学的本质,体悟数学文化的真正价值。同时在进行研究性学习活动的过程中,教师应给予学生适当的指导。如在进行“直线方程的推导”时,教师可以适当地提出一些问题,引导学生思考:a.在我们生活中,常通过什么方法固定一条直线?b.要想确定一条直线的方程,需要给定什么样的条件?如何求出其直线方程的一般式?当学生完成课题研究后,教师可及时展示学生的研究成果,进行合作交流,提出不同的意见,以保持学生学习数学的积极性。 总之,数学文化是数学的精髓,重视学生对数学文化的感悟,能帮助学生加深对数学的认识与理解,从而帮助学生更好地学好数学,进而爱上数学。猜你喜欢: 1. 关于数学文化的论文投稿 2. 数学文化方面的论文发表 3. 关于数学文化的论文优秀范文 4. 关于数学文化的论文免费参考 5. 数学文化的论文范文参考

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

数学中的数学文化论文题目

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文 ★

★ 大学生数学毕业论文  ★

★ 大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

数学文化论文的题目

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

★ 2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

我有一本书电子版的 《数学的美》吴振奎 写的,次数比较系统介绍数学美。徐利治先生的书也不错 我的毕业论文题目是:数学奇异美现在正在写着呢。不要忘记给我加分

数学与文化系别:中文系 专业:08新闻 学号:200830161010 姓名:李西淳 数学与经济学的关系内容摘要:经济学需要很好的逻辑能力,数学培养了这种能力,经济学还要有计算等方面的能力,这也是数学需要并培养的。高等数学主要是侧重于掌握数学知识,及培养应用数学的能力,而数学分析却对培养学生的逻辑分析能力和创造性思维能力大有作用,数学可以是研究经济学的一种方法但不是唯一的方法。关键词:数学 经济学 关系 意义 局限性 一、 数学与经济学关系概述数学与经济的关系在今天可以说是息息相关,任何一项经济学的研究、决策,几乎都不能离开数学的应用。比如,在宏观经济中的综合指标控制、价格控制,都有数学问题,在微观经济中数理统计的“实验设计”、“质量控制(QC)”、“多元分析”等,对提高产品的质量往往能起到重要的作用。当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行决策和预测。 当今在经济学中使用数学方法的趋势越来越明显,领域越来越广泛。自从1969年诺贝尔经济学奖创设以来,利用数学工具分析经济问题的理论成果获奖不断。事实上,从1969年到1998年的30年中,有l9位诺贝尔经济学奖的获得者以数学作为主要研究方法,占总人数的%;而几乎所有的获奖者都运用数学方法来研究经济理论。在中国,最近几年对在经济学中使用数学方法的问题讨论比较热烈,数学的介入究竟是祸还是福,对此,可谓仁者见仁,智者见智。有的人认为,数学使经济学由乌托邦上升为科学;而另一些人则认为,数学就像魔鬼一样,会使经济学误入歧途。这说明我国经济学界在经历大力引进西方经济学的热潮后开始了独立自主的思考和探索。二、数学对现代经济学研究和发展的影响随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分、析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。二、 数学在经济学应用中的意义 如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。四、数学在经济学中应用的局限性首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济的发展。 数学在现代经济学中的作用数学现在已经成为现代经济学研究中最重要的工具。现代经济学中几乎每个领域或多或少都用到数学、统计及计量经济学方面的知识,因此数学与经济学的关系是相当密切的。参考文献:田国强 <<现代经济学的基本分析框架与研究方法>> 张真.投入产出经济学中运用数学方法的机理分析[J]. 林毅夫.关于经济学方法论的对话[J].东岳论丛 赵凌云.经济学数学化的是与非[J].经济学家

偶们今天数学文化节考的论文题目是“圆”,围绕着圆写一段文章;偶也再顺便帮你想两个题目(偶也是初一的噢):有理数(什么是有理数;有理数的几种分类方法;有理数在生活中的体现……)数轴(什么是数轴;数轴可以干哪些事;在生活中数轴有什么用处……)棱柱(棱柱的定义;生活中何处可以见到棱柱;棱柱有哪几种类别……)棱锥(同上);七巧板(七巧板是如何形成的;七巧板的妙用;用七巧板可拼出多少个凸多边形,如何证明……);三视图(不同情况下的三视图……)还有的我就想不起来了,你自己再仔细想想吧……

数学文化论文的选题

数学硕士论文开题报告

导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!

一、数学文化的内涵

数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。

受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。

19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。

他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。

二、数学文化研究的意义

区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。

数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。

数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。

数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。

如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。

数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。

三、数学的文化特征

1.数学的抽象性

在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”

数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。

2.数学的确定性

数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。

然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”

3.数学的继承性

科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。

从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。

四、提纲

目录

第1章 概述

文化的内涵

文明的内涵

数学文化的内涵

数学文化研究的意义与现状

第2章 数学的文化特征

数学的文化特征

数学的抽象性

数学的确定性

数学的继承性

数学的简洁性

数学的统一性

数学的功能特征

数学的渗透性

数学的传播性

数学的工具性

数学的预见性

数学的艺术特征

数学的艺术性

数学与音乐

数学与美术

数学与文学

第3章 数学与人类文明

数学是人类逻辑能力的来源

数学唤醒人类理性精神

数学促进人类思想解放

数学改善人类生活

数学完善人类品格

数学提高人类文化素质

第4章 数学与社会文明

数学促进社会进步

数学推动知识发展

第5章 我国数学文化与数学教育的研究进展

数学文化与数学教育研究综述

数学文化与数学教育活动进展

第6章 对数学教育的若干思考

数学素养是国民文化素质的重要构成.

数学教育现状

数学文化教育亟需解决的问题与建议

结束语

参考文献

致谢

五、亟需解决的问题与建议

1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。

2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学

六、进度安排

20XX年11月01日-11月07日 论文选题。

20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。

20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。

20XX年12月10日-12月19日 确定并上交开题报告。

20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。

20XX年02月16日-02月20日 完成论文修改工作。

20XX年02月21日-03月20日 定稿、打印、装订。

20XX年03月21日-04月10日 论文答辩。

七、参考文献

[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.

[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.

[3]范森林.中国政治思想的起源[M/OL].

[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.

[5]郑毓信.数学哲学的内容和意义[J/OL].

[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.

[7]顾沛.数学文化[M],北京:高等教育出版社,2008.

[8]南开大学数学文化课程简介.

[9]吉林大学本科生数学文化课程教学大纲--数学文化.

[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.

[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.

[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).

[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.

[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.

[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.

[16]数学地质四川省高校重点实验室.

[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.

数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和。下文是我为大家整理的关于数学文化论文投稿的范文,欢迎大家阅读参考!数学文化论文投稿篇1 浅谈我国基础数学文化教育的历程 一、何谓数学文化 对于数学文化的界定很多,“数学文化是指,不仅数学自身属于人类社会的一种文化现象,而且数学还拥有广泛的超越数学自身意义的因素以及这些因素对人类的巨大影响,从而应把数学的发生、发展以及数学教育放到整个社会文化背景中去观察和认识。” “由于数学对象并非物质世界中的真实存在,而是人类抽象思维的产物,因此,数学就是一种文化。” 特别是一部数学史可以反映出数学文化的发生发展过程,具体的数学概念、数学方法、数学思想中都有丰富的文化底蕴,都是值得我们在教学中一一展示给大家的素材。 二、数学文化教育提出的背景 1.激发学生学习兴趣,提高数学教育质量。 不管是在哪个国家,数学教育都是基础教育的重点,然而数学一直以来被大部分学生视为比较枯燥单调难学,对数学学习缺乏兴趣甚至畏惧且望而却步。但是数学教育对每位合格的社会公民的培养又有着不可替代的重要作用,兴趣是最好的老师,怎样提高学生的学习数学的兴趣,是所有教育者都很注重的,该怎样激发学生学习数学的兴趣,其中挖掘发挥数学本身的文化内涵并实现在数学教学中成了数学教育中的热点问题,因此,提高数学教育质量是提倡数学教育中重视文化教育的原因之一。 2.素质教育的需要。 中国是数学大国,但是很长一段时间,我们过于重视数学教育的工具价值,而忽略了其作为一种文化陶冶情操的文化审美教育价值。应试教育轰轰烈烈,学生的学业负担过重,中国学生在世界上是最勤奋的学生群体,但是中国学生的创新能力不高,基础教育没有体现它最基本的功能:为社会培养高素质的合格公民。我们不需要只会读死书的书呆子,所以,为了提高国民素质,提高数学素质和数学教育质量,数学教育中的文化教育开始被大家提倡。 3.数学本身是一种文化,本来就具有文化教育的价值和功能。 20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩[3]。近年来,数学文化成了当今探讨数学发展的新视角,人们愈来愈认识到,数学的发展与人类文化息息相关,数学一直是人类文明主要的文化力量,同时人类文化发展又极大地影响了数学的进步。数学本身不仅仅是一门科学,也是一种文化,具有文化教育的价值和功能。“优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。” 三、我国基础教育中数学文化教育所经历的三个阶段 第一个阶段:基础数学文化教育的被忽视阶段(1949年至20世纪90年代) 我国刚刚成立之时,百废待兴,基础教育还在起步发展,一时连合格的数学老师都难以保证,更何况数学教育中的文化教育的重视了。从解放初期的全盘照搬苏联数学教育,直到1958年的很长一段时间的数学教育目的的对比我们发现,数学教育重视了运用已经学到的知识和技巧去解答算术应用题和日常生活中的简单计算问题,而对知识、能力和思想品德三方面的教学目的提得不够全面、明确。 之后受赶美超英的大跃进运动和十年“”的影响,我国的教育事业受到严重冲击,直到1978年年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常的轨道上来。然而,此次修订的大纲,增加了很多高等数学内容,显然与当时基础数学水平较低的现实不符,加重了学生们的学习负担。针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验。1986年颁布了《全日制中学数学教学大纲》,对教育的目标提出了适应当时具体情况和未来发展的新要求[4]。很显然,相对于今天,对于基础教育中的数学文化教育,大家还一时无暇顾及和提及。 第二个阶段:基础数学文化教育被热烈探讨阶段(20世纪90年代至2004年) 随着国力的增强,对教育的足够重视和投入,中国的数学教育,特别是基础教育,也在世界上处于领先地位。然而,应试教育也愈演愈烈,很多学者和教师发现,由于受应试教育的影响,数学课程注重知识传授,忽略了情感态度与价值观的教育,特别是数学这样的理科科目,在学生眼里就是难题,更何况全民奥数热。很大程度上奥数毁坏了中国学生对数学学习的兴趣和热情,增加了他们对数学学习的恐惧,占用了学生们发展其他素质的宝贵时间,浪费了太多人力物力。 1993年2月13日,中共中央、国务院在总结广大教育工作者改革实践经验的基础上制定发布的《中国教育改革和发展纲要》(以下简称《纲要》)中指出:“中小学要从‘应试教育’转向全面提高国民素质的轨道”,为了贯彻和落实《纲要》,中共中央于1994年召开的全国教育工作会议上提出:“基础教育必须从‘应试教育’转到素质教育的轨道上来,全面贯彻教育方针,全面提高教育质量。” 伴随着素质教育观念的广泛深入,大家对怎样提高素质教育的研究越来越广泛。具备学习的愿望、兴趣和方法,比记住一些知识更为重要,这也是素质教育所倡导的。怎样提高数学教育质量,使数学教育也完全符合素质教育的宗旨,成了大家探讨的热点,首先怎样激发学生学习数学的兴趣,还原数学本身的教育价值成了大家深思的问题。在这样的背景下,一直被忽视的数学文化教育被大家发现是贯彻数学素质教育的一个重要手段,很显然我们的数学教育中忽略了数学的文化价值,数学独特的美,数学教育中的文化教育,数学教育独特的素质教育功能,在大力提倡素质教育的同时,数学教育不再是简单的计算证明推理,也要重视数学教育中的文化教育,从而提高素质教育。 对数学教育中怎样开展文化教育的研究成为热点,其中华东师范大学张奠宙教授经过对这一阶段的研究,发表了以下看法,他认为当时的研究“都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分地揭示了数学的文化内涵,肯定数学作为文化存在的价值。这是必要的”。同时,张教授还指出两点不足,其中之一便是,“数学文化的研究,不能只说数学的重要性,强调数学对人类文明的贡献。与此同时,还应观察数学受到社会文化的影响,借助社会文明阐述数学的文化含义。这有助于人们贴近数学。” 在中学老师层面,这种思想也得到了很多人的认同,在他们 发表的教学研究的 论文中,如何恰当地将 文化 教育融入数学教育之中,以此来提高学生的学习兴趣的文章有 很多。但不是所有的领导和教师在实际的教学中都足够重视数学文化的价值和重要性或者以此贯穿于自己的课堂教学之中,也没有官方 的课程标准或者教材给予数学文化相应的地位。 第三个阶段:基础数学文化教育高度被重视并出现在教材中和实际的教学中(2004年至今) “数学是一种文化,数学教育是数学文化的教育。” 2004年开始的新课改中提出“关注数学文化的价值”,“数学文化教育在教学中要有意识的穿插,且数学史以 专题形式出现在选修教材中。”这些观念在2003年颁发的《普通高中数学课程标准(实验)》中有所体现。新的课改指出,数学教育不仅是知识的教育,也是素质的教育。新课程将数学文化作为高中数学课程内容的一个方面,并且给出了一定数量的选题,提出了具体目的和要求,教学中要恰当把握好有关选题的内容和要求。例如,如何结合 统计思想方法的学习去把握“广告中的数据与可靠性”;如何在恰当的地方设计恰当的“黄金分割引出的数学问题”,使学生通过实际问题,认识数学在 建筑、 艺术、美学、优选等方方面面的广泛 应用, 体会数学文化的价值。 新的课改后,以往无意识的数学文化的教学转化为有意识的数学文化的教学,关于数学文化的教学不单再是有关资料的介绍,而是应将资料中蕴涵的文化价值体现出来。数学教育中的文化教育以下面两种形式出现在实际的教学中。 1.数学文化内容的介绍穿插于数学知识的教学中。 “教师在课堂上可以介绍一些重要的基本概念的发生、 发展,使学生认识数学发生、发展的规律,同时也了解人类从数学的角度认识客观世界的过程。例如,关于解析几何与微积分的创立、发展的资料比比皆是,选取和整理成数学素材时应关注那些体现 社会发展和数学发展相互促进的内容,或反映数学家为追求真理表现出来的那种锲而不舍的精神,求真务实、说理、批判、质疑等方面的内容。通过恰当的提示、引导,让学生从对相关资料了解的基础上,上升到对其中蕴涵的数学文化价值的认识”。 “几句话,一个故事,一个片段等,总之,我们在知识教育的同时,以知识为载体使学生体会和认识数学的文化价值,促进学生科学观的形成,全面提高学生的数学素养。” 2.数学史作为数学文化的载体出现在新教材中。 新课程中选修系列之中包括数学史选讲,数学史选讲作为选修课程已经进入高中数学新课程。选讲教材告别了过去那种单一的数学学习内容和方式,跳出数学知识和技能训练的题海,从宏观上审视数学的历史演变,感悟数学发展史的风雨历程,了解各种数学思想方法如何产生、发展和应用。 数学史是数学文化融入数学课程的最好载体,数学史展示了数学产生和发展的过程,它是劳动人民勤劳智慧的集中体现,是数学知识、数学思想和数学方法的宝库。“通过数学发展进程中的主要人物、事件及其背景的介绍,可以使学生掌握数学的脉络,懂得数学发展的客观规律,以及数学于人类社会发展之间的相互作用;通过了解古今中外数学家的生平简介以及基本数学思想方法,从中吸取丰富的营养和 经验教训,有助于学生形成正确的数学思想观念,树立独立思考、勇于探索的进取精神;通过不同文化背景的数学的比较,引入多元文化的数学,可以使学生从更广阔的视野去认识人类文明的数学成就,欣赏丰富多彩的数学 文化。”总之,数学史有助于我们全面认识数学 教育的文化价值,探索数学文化为主导的数学教育,数学史的教育价值在课程改革的实验区已经显现出来。 四、结束语 数学是人类文化的重要组成部分,是人类 社会进步的产物,也是推动社会 发展的动力。作为一种文化,数学文也是公民必备的科学家养。在美国数学教育中,教材也强调数学史知识的介绍,在介绍中注意数学家的闪光点,可教育性的材料,有引起学生学习数学兴趣的材料,也有关于世界各国的重要数学史实, 力图使学生对数学的历史发展有比较完善的认识,以扩大学生的眼界[8]。 在中国这样一个曾经的世界四大文明古国,一度在数学教育中缺失的数学文化教育被重视起来,“数学文化”已是新课程的重要内容之一,数学教育是数学文化的教育。在此思想指导下的中国基础数学教育,才能更好地激发学生的数学学习兴趣,改变他们的数学观,树立学习的自信心,真正了解数学的美、数学的历史,进而促进他们人格的健康成长,扩宽他们的视野,了解多元文化的数学,这样的数学教育才是才是真正的素质教育[9]。 数学文化论文投稿篇2 浅析高中数学教学中的数学文化 摘 要:数学文化是人类知识宝库的重要组成部分,在数学教学中只是传授数学知识,解决数学问题是不够的,还应渗透数学文化,通过数学文化教育,展示数学的美和数学精神的魅力,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质。本文在介绍数学文化主要特征的基础上,对高中数学教学中如何渗透数学文化进行了分析。 关键词:高中数学;数学文化;主要功能;渗透 数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和,其中物质产品主要指数学语言、数学命题、数学问题以及数学方法等方面,精神产品主要指数学思想、数学意识、数学精神等方面。在高中数学教学中渗透数学文化,是学生数学学习的基本需要,其目的是使学生在学习数学的过程中受到文化感染,领略数学的美,体悟数学文化的价值,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质,促进学生个性的良好发展。 1 数学文化的主要特征 数学是一种文化,数学文化是人类知识宝库的重要组成部分,其特征主要包括以下几个方面: (1)历史性。数学的发展离不开历史的积淀过程,人们对数学本质的认识也是源于数学史的发展,因此,可以说数学文化具有一定的社会历史性。数学学习要讲究数学方法,而数学史是研究数学方法的重要依据,因而从某种意义上说,一切与数学有关的研究,与数学史息息相关。了解数学史,既可以增强全局观念,又可以调动学习热情。 (2)思维性。数学文化的主体是数学知识以及运用这些知识所形成的数学思想和数学方法,它们都是人类通过数学语言总结出来的可应用于现实世界的空间形式及数学关系的思维成果,因此,可以说思维是数学的内在灵魂,数学是思维的基本体现。 (3)审美性。数学是一门科学,也是一门艺术。数学中的简单性、对称性、统一性、协调性等基本特征都是数学美的重要内容。在我国古代,数学是“礼、乐、射、御、书、数”六艺之一,在西方,数学与和谐曾被认为是宇宙的主要根源,因此,可以说数学具有很强的审美性,数学世界充满了美感。而数学的美感正是数学文化对人类意志品质、高尚情操陶冶的一种体现。 2 数学文化在高中数学教学中的渗透 渗透数学史,培养数学文化意识 在高中数学教学中,教师要有意识地渗透数学史,在了解数学史的过程中,培养学生的数学文化意识。对此,可通过开设数学史选修课渗透数学史。在选修课中可以介绍一些与数学有关的具有深远意义的历史事件,如数学思想逐渐演变的历史事件,数学家逐渐纠错的历史事件等。或通过推荐有价值的与数学息息相关的作品,如张景中院士的《新概念几何》、西奥妮・帕帕斯写的《数学的奇妙》等,抑或引导学生通过网络、报刊等各种资源搜集、查找有关古今中外著名数学家的事迹,了解他们对数学做出的主要贡献,拓宽学生的数学视野,体会数学的文化品位。 渗透数学思想方法,提高学生的数学素养 数学思想方法是指对数学知识和方法形成的规律性理性认识,为分析、处理和解决数学问题提供了指导方针和解题策略。高中数学教学不能仅满足于单纯的知识传授,而是要帮助学生把握数学知识的本质,引导学生借助数学思想方法解决实际数学问题,提高自身的数学素养。如: 已知当x∈[0,1]时,不等式x2cosa-x(1-x)+(1-x)2sina>0恒成立,求a的取值范围。分析:本题通过构造的思想方法,即可轻易地求出结果。可设f(x)=x2cosa-x(1-x)+(1-x)2sina=(cosa+sina+1)x2-(1+2sina)x+sina,由题意可知:f(0)=sina>0 ①; f(1)=cosa>0 ②,在条件①②下对称轴x=∈[0,1],此时只要△<0,即sin2a> ③, 再联立①②③即可求出a的取值范围。 发展学生的数学思维,培养数学的理性精神 数学教学的关键在于发展学生的数学思维,培养数学的理性精神。数学思维是理性思维的重要形式,注重学生数学思维的培养对于提高学生的思维能力,增强学生的解题能力有着十分重要的作用。发展学生的数学思维一方面要注意培养学生的数学意识,理清学生的思维脉络。数学的知识点是前后衔接、环环紧扣的, 因此,在教学中对于每一个问题,教师要既要考虑学生原有的知识基础,又要考虑与它相关联的知识内容。只有这样,才能更好地激发学生的思维,并逐步形成知识脉络。另一方面要注意激发学生的思维动机,提高学生思维的水平。动机是人们行为活动的内趋力。激发学生思维的动机,是培养其思维能力的重要因素。在数学教学中,教师可以通过创设合理的问题情景,使学生产生情感上的共鸣,进而引发学生最强烈的思考动机和最佳的思维定向,形成良好的数学思维品质。 开展数学课题研究性学习,体悟数学文化的真正价值 在实际数学教学过程中,教师可将某些数学定理、公式作为研究性课题开展研究性学习,让学生主动去发现、检验、论证,体验到数学家发现数学的真实过程,了解数学概念、定理、公式、结论形成的过程,获得再创造的快乐,进而把握数学的本质,体悟数学文化的真正价值。同时在进行研究性学习活动的过程中,教师应给予学生适当的指导。如在进行“直线方程的推导”时,教师可以适当地提出一些问题,引导学生思考:a.在我们生活中,常通过什么方法固定一条直线?b.要想确定一条直线的方程,需要给定什么样的条件?如何求出其直线方程的一般式?当学生完成课题研究后,教师可及时展示学生的研究成果,进行合作交流,提出不同的意见,以保持学生学习数学的积极性。 总之,数学文化是数学的精髓,重视学生对数学文化的感悟,能帮助学生加深对数学的认识与理解,从而帮助学生更好地学好数学,进而爱上数学。猜你喜欢: 1. 关于数学文化的论文投稿 2. 数学文化方面的论文发表 3. 关于数学文化的论文优秀范文 4. 关于数学文化的论文免费参考 5. 数学文化的论文范文参考

作者:唐家三公主链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。基于数学核心素养的教学设计——以“简单的线性规划问题”为例职前数学教师学科知识的调查研究——以小学“数与代数”内容为例向量数量积的多元表示及其应用在线教育平台用户行为研究数学分析中的函数表示苏教版小学数学教材中组合问题的内容编排高中生理解数学归纳法的障碍分析及应对策略SOLO分类理论在评价解题特征中的应用研究“中国学习者悖论”之解——基于学生数学学习态度的视角表征视角下的数形结合思想教学研究软集分析理论中的积分理论软度量空间下的软P-H-R 型压缩及软Meir-Keeler 压缩的不动点定理人教版、苏教版与北师版教材的对比分析——以初中教材《全等三角形》为例小学生对除法概念及性质理解水平的调查研究国际背景下中国学生数学观现状研究——基于淮海经济区初二学生的调查模糊软度量空间的性质及其上的不动点理论一类非线性微分方程的Hyers-Ulam稳定性关于苏教版和人教版教科书中数学核心素养的比较分析不动点原理及其应用2013-2017年江苏高考数学试题浅析基于综合风险评价模型对水资源短缺的预测 ---以徐州市为例新课程标准下的高中数学教学设计和试题编写相关研究基于小波降噪的HMM模型在沪深300指数择时中的应用C语言编程在小学数学教学中的初探浅谈极限思想在中小学的应用斯金纳的强化理论在数学课堂教学上的应用一类特殊函数的极限数学实验在初中数学教学中的应用从常微分方程的解到代数方程的根新课程标准下高中数学教学过程中如何培养学生的核心素养小学数学几何直观能力培养的教学策略研究常微分方程特殊形式转换成标准形式的应用几类数学思想在中学数学中的应用关于Fibonacci数列通项公式证明的数学方法分类中学数学翻转课堂实施情况及实现路径平面与球面三角形的比较具有多时滞的2型糖尿病血糖-胰岛素调节系统周期解的存在性及其稳定性研究常见统计流形的几何结构初中生几何证明认知障碍分析及对策研究数学错题本的教学价值和实现路径两类二阶差分方程解的渐近性质二元函数极值的充分条件新课标下小学数学教材中“综合与实践”的比较——以苏教版和人教版为例蝴蝶定理的证明、推广及其应用对《等周问题的一个初等证明》的报告中学阶段的数学启发式教学热方程在几何中的应用一类具有负反馈和抑制的反应扩散生态模型动力学行为的理论分析等宽曲面的构造高中不等式证明的对策研究比较视角下江苏高考"不等式"内容的综合难度研究线性变换思想在中学数学中的应用整数环上多项式的可约性数学分析中的部分问题初探对江苏近十年高考数学一卷最后一题的研究黎卡提方程与二阶齐次线性微分方程的解法探究三阶常系数线性微分方程的常数变易法一类二阶线性微分方程的常数变易法BKP方程的十类解用方程思想解决中学数学问题浅谈微元法在数学中的应用管状曲面上的特殊曲线一类函数列的积分中值点列的收敛子列的渐进性数学文化在数学教学中的渗透研究悬链面上的渐近线一类二阶非线性微分方程的解法昆虫爬行最短路径问题黄金椭圆的若干优美性质

数学史的文化论文题目

我可以写,私信

数学是整个小学 教育 教学的重点和难点,同时也是很多学生的弱项,小学数学教师如何提高教学质量,激发学生学习兴趣,是贯穿于整个教学中的主要任务。下面我给大家带来小学数学论文题目与选题参考,希望能帮助到大家!

小学数学论文题目

1、小学低年级数学游戏 教学 方法 的案例研究

2、以学习为中心的小学数学教学过程研究

3、激发小学生数学学习兴趣的实践研究

4、农村小学与初中数学教学衔接问题的研究

5、小学低年级学生数学学习兴趣的培养

6、游戏化教学在小学数学教学中的应用与研究

7、激发兴趣对小学生数学探究能力影响的研究

8、小学数学教学中信息技术应用策略研究

9、《几何画板》在小学平面图形上的教学应用研究

10、小学高年级学生数学直觉思维能力培养的研究

11、培养小学第一学段学生计算能力的策略研究

12、交互式电子白板在小学数学教学中的应用研究

13、基于学习共同体的学校教研组建设调查研究

14、小学阶段教师对数学评价任务的认识研究

15、小学低年级数学游戏教学方法的案例研究

16、中美小学阶段数学课程标准比较研究

17、小学 四年级数学 教师课堂提问有效性调查研究

18、农村小学 三年级数学 体验式教学调查与实验探究

19、农村小学与初中数学教学衔接问题的研究

20、小学课堂环境改善的行动研究

21、网络环境下小学数学主题教学模式应用研究

22、培养小学生数学学习兴趣的教学策略研究

23、小学五年级 儿童 数学学习策略干预对改善其执行功能的研究

24、小学生数学 创新思维 的培养

25、促进小学生数学课堂参与的教学策略研究

26、使学生真正成为学习的主人

27、改革课堂教学的着力点

28、谈素质教育在小学数学教学中的实施

29、素质教育与小学数学教育改革

30、浅谈学生数学思维能力的培养

31、浅议表象积累与培养学生的思维能力

32、也谈学生创新意识培养

33、实施创新教学策略 培养学生创新意识

34、谈谈计算教学的改革

35、小学数学数与计算教学的回顾与思考

36、小学数学教材结构的研究与探讨

37、 小学数学应用题的研究

38、 改进教学方法培养创新技能

39、21世纪我国小学数学教育改革展望

40、面向21世纪的小学数学课程改革与发展

41、不拘一格育“鸣凤”

42、使学生真正成为学习的主人

43、 改革课堂教学的着力点

44、谈素质教育在小学数学教学中的实施

45、素质教育与小学数学教育改革

46、 浅谈学生数学思维能力的培养

47、浅议表象积累与培养学生的思维能力

48、也谈学生创新意识培养

49、《9和几的进位加法》教学设计

50、实施创新教学策略 培养学生创新意识

51、10以内加法整理和复习

52、改良“有余数除法计算”教法

53、给学生创新的时间和空间

54、和谐愉悦 主动探索--一年级《统计》教学片断评析

55、小学数学教育--教师之家--教师培训

56、面向21世纪的数学素质及其培养

57、能被3整除的数的特征

58、数学教学中培养学生创造思维能力

59、改进几何初步知识教学的初步探索

最新小学数学论文题目

1、基于DEA-Tobit模型的中国西部农村小学效率研究

2、中美职前小学教师教育中数学课程的比较研究——以上海师范大学和纽约城市大学为例

3、小学教育专业数学教学中应用现代教育技术探索

4、基于数学 文化 观的小学教育专业高等数学课程研究

5、数学史与小学数学教学:历史文化向度的思考——以竖式乘法为例

6、关于小学教育专业初等数论课程例题和练习题的几点思考

7、小学教育专业数学课程整合的策略

8、小学教育专业数学课教学突出专业特点的研究

9、小学教育专业(本科)高数类课程建设和教学改革的思考

10、高师小学数学教育类课程改革的路径选择

11、小学教育专业理科高等数学教学改革实践

12、用初等数论知识巧解小学数学题

13、Floyd算法在中心小学选址上的应用

14、小学教育本科专业数学课程教学研究

15、师范院校小学数学教育专业课程设置的现状及对策研究

16、学教育专业有效高等数学教学的探讨

17、关于小学教育本科专业数学课程目标的思考

18、整合数学类课程,提高小学教育专业本科学生的数学素养

19、小学教育专业数学核心课程体系探析

20、地方高校小学教育专业数学课程改革研究——以湖北科技学院为个例

21、浅谈微积分学习对提高小学数学教师素质的作用

22、基于数学文化观的小学教育专业高等数学课程研究

23、论高等数学与小学数学思维上的相通性

24、高师小学数学微格教学的 反思 与实践

25、新建本科院校小学教育专业数学分析教学初探

26、小学教育专业数学分析课程教学的几点思考

27、初中起点六年制本科小学教育专业(数学方向)高等代数课程的教学探索

28、小学教育专业本科生高等数学学习状况的调查研究

29、师范数学教学与小学数学教师学科知识相关性的调查研究

30、五年制师范小学教育专业《高等代数》教材初探

31、实践取向小学教育理科方向高等代数课程建设的探索与实践优先出版

32、高等数学与小学数学的链接点

33、学习义务教育教学大纲改革小学数学教学

34、小学教育专业微积分教学设计探讨——以《微分的概念》教学设计为例

35、高等数学与小学数学相关性的研究

36、对高师小学教育专业《高等数学》的思考

37、九年义务教育小学数学教学大纲审查说明

38、对小学教育专业数学类课程体系建构的思考

39、小学职前教师概率课程教学研究

40、试论高等数学课程体系改革——以小学教育专业为例

小学生数学论文题目与选题

1、浅议表象积累与培养学生的思维能力

2、浅谈学生创新意识培养

3、实施创新教学策略

4、改良“有余数除法计算”教法 小学数学数与计算教学的回顾与思考

5、小学数学教材结构的研究与探讨

6、小学数学应用题的研究

7、改进教学方法培养创新技能

8、21世纪我国小学数学教育改革展望

9、面向21世纪的小学数学课程改革与发展

10、改革课堂教学的着力点

11、谈素质教育在小学数学教学中的实施

12、素质教育与小学数学教育改革

13、浅谈学生数学思维能力的培养

14、改革课堂教学的着力点

15、谈素质教育在小学数学教学中的实施

16、素质教育与小学数学教育改革

17、浅谈学生数学思维能力的培养

18、浅议表象积累与培养学生的思维能力

19、谈学生创新意识培养

20、实施创新教学策略

21、谈谈计算教学的改革

22、信息技术与小学数学课程整合的研究与实践

23、运用CAI技术,优化素质教育

24、合理运用学具提高数学课堂教学效率

25、略谈“问题解决”与小学数学教学

26、渗透数学思想方法提高学生思维素质

27、引导学生参与教学过程发挥学生的主体作用

28、优化数学课堂练习设计的探索与实践

29、实施“开放性”教学促进学生主体参与

30、数学练习要有趣味性和开放性

31、“五、四、三自主式学法指导”教学模式初探

32、引导学生主动参与教学活动

33、改进几何初步知识教学的初步探索

34、多媒体课件在优化课堂教学中的功能及其策略研究

35、创新从习惯抓起

36、培养学生的创新意识要处理好的几个关系

37、让学生在数学学习中获得持续发展

38、小学数学创新学习的实验与研究

39、小学数学课题教学中学生创新意识的培养

40、浅谈小学数学总复习的“步步反馈,逐层提高”法

41、入情才能入理激情方能启思

42、实施“生活数学”教育培养自主创新能力

43、数学作业批改中巧用评语

44、提高元认知水平培养自学能力

45、“圆的面积”的教案

46、圆柱的认识

47、运用多媒体辅助教学优化数学教学方法

48、组织课堂讨论优化课堂教学

49、重视学生获取知识的思维过程

50、小论文巧算圆的面积

51、倒推转化巧拿硬币

52、联系生活实际提高课堂效率

53、数学教学中如何调动学生的学习积极性

54、根据心理学的理论进行计算法则教学

55、简单应用题教学再探

56、创设情境,培养学生创造个性

57、数学教学中培养学生创造思维能力

58、启动学海搁浅之舟-- 转化数学学习后进生的体会

59、学生“四会”能力的培养

60、联系实际,强化操作,努力优化数学教学

小学数学论文题目与选题参考相关 文章 :

★ 小学数学教学论文参考(2)

★ 小学数学课题研究论文范文

★ 数学教育毕业论文题目参考选题大全

★ 小学数学应用题论文(2)

★ 小学数学课题方案

★ 小学数学教育专业毕业论文

★ 小学数学建模的优秀论文范文

★ 浅谈小学数学教育教学论文

★ 班主任教育论文题目选题大全

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广

相关百科

热门百科

首页
发表服务