首页

> 学术期刊知识库

首页 学术期刊知识库 问题

基于聚类异常检测的论文研究

发布时间:

基于聚类异常检测的论文研究

一、基本概念 异常对象被称作离群点。异常检测也称偏差检测和例外挖掘。 常见的异常成因:数据来源于不同的类(异常对象来自于一个与大多数数据对象源(类)不同的源(类)的思想),自然变异,以及数据测量或收集误差。 异常检测的方法: (1)基于模型的技术:首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。 (2)基于邻近度的技术:通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。 (3)基于密度的技术:仅当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。二、异常点检测的方法 1、统计方法检测离群点 统计学方法是基于模型的方法,即为数据创建一个模型,并且根据对象拟合模型的情况来评估它们。大部分用于离群点检测的统计学方法都是构建一个概率分布模型,并考虑对象有多大可能符合该模型。离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。异常检测的混合模型方法:对于异常检测,数据用两个分布的混合模型建模,一个分布为普通数据,而另一个为离群点。 聚类和异常检测目标都是估计分布的参数,以最大化数据的总似然(概率)。聚类时,使用EM算法估计每个概率分布的参数。然而,这里提供的异常检测技术使用一种更简单的方法。初始时将所有对象放入普通对象集,而异常对象集为空。然后,用一个迭代过程将对象从普通集转移到异常集,只要该转移能提高数据的总似然(其实等价于把在正常对象的分布下具有低概率的对象分类为离群点)。(假设异常对象属于均匀分布)。异常对象由这样一些对象组成,这些对象在均匀分布下比在正常分布下具有显著较高的概率。 优缺点:(1)有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;(2)对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。 2、基于邻近度的离群点检测。 一个对象是异常的,如果它远离大部分点。这种方法比统计学方法更一般、更容易使用,因为确定数据集的有意义的邻近性度量比确定它的统计分布更容易。一个对象的离群点得分由到它的k-最近邻的距离给定。离群点得分对k的取值高度敏感。如果k太小(例如1),则少量的邻近离群点可能导致较低的离群点得分;如果k太大,则点数少于k的簇中所有的对象可能都成了离群点。为了使该方案对于k的选取更具有鲁棒性,可以使用k个最近邻的平均距离。 优缺点:(1)简单;(2)缺点:基于邻近度的方法需要O(m^2)时间,大数据集不适用;(3)该方法对参数的选择也是敏感的;(4)不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。 3、基于密度的离群点检测。 从基于密度的观点来说,离群点是在低密度区域中的对象。一个对象的离群点得分是该对象周围密度的逆。基于密度的离群点检测与基于邻近度的离群点检测密切相关,因为密度通常用邻近度定义。一种常用的定义密度的方法是,定义密度为到k个最近邻的平均距离的倒数。如果该距离小,则密度高,反之亦然。另一种密度定义是使用DBSCAN聚类算法使用的密度定义,即一个对象周围的密度等于该对象指定距离d内对象的个数。需要小心的选择d,如果d太小,则许多正常点可能具有低密度,从而具有高离群点得分。如果d太大,则许多离群点可能具有与正常点类似的密度(和离群点得分)。使用任何密度定义检测离群点具有与基于邻近度的离群点方案类似的特点和局限性。特殊地,当数据包含不同密度的区域时,它们不能正确的识别离群点。 为了正确的识别这种数据集中的离群点,我们需要与对象邻域相关的密度概念,也就是定义相对密度。常见的有两种方法:(1)使用基于SNN密度的聚类算法使用的方法;(2)用点x的密度与它的最近邻y的平均密度之比作为相对密度。使用相对密度的离群点检测(局部离群点要素LOF技术):首先,对于指定的近邻个数(k),基于对象的最近邻计算对象的密度density(x,k) ,由此计算每个对象的离群点得分;然后,计算点的邻近平均密度,并使用它们计算点的平均相对密度。这个量指示x是否在比它的近邻更稠密或更稀疏的邻域内,并取作x的离群点得分(这个是建立在上面的离群点得分基础上的)。 优缺点: (1)给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理; (2)与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm); (3)参数选择是困难的。虽然LOF算法通过观察不同的k值,然后取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。 4、基于聚类的技术 一种利用聚类检测离群点的方法是丢弃远离其他簇的小簇。这个方法可以和其他任何聚类技术一起使用,但是需要最小簇大小和小簇与其他簇之间距离的阈值。这种方案对簇个数的选择高度敏感。使用这个方案很难将离群点得分附加到对象上。一种更系统的方法,首先聚类所有对象,然后评估对象属于簇的程度(离群点得分)(基于原型的聚类可用离中心点的距离来评估,对具有目标函数的聚类技术该得分反映删除对象后目标函数的改进(这个可能是计算密集的))。基于聚类的离群点:一个对象是基于聚类的离群点,如果该对象不强属于任何簇。离群点对初始聚类的影响:如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。为了处理该问题,可以使用如下方法:对象聚类,删除离群点,对象再次聚类(这个不能保证产生最优结果)。还有一种更复杂的方法:取一组不能很好的拟合任何簇的特殊对象,这组对象代表潜在的离群点。随着聚类过程的进展,簇在变化。不再强属于任何簇的对象被添加到潜在的离群点集合;而当前在该集合中的对象被测试,如果它现在强属于一个簇,就可以将它从潜在的离群点集合中移除。聚类过程结束时还留在该集合中的点被分类为离群点(这种方法也不能保证产生最优解,甚至不比前面的简单算法好,在使用相对距离计算离群点得分时,这个问题特别严重)。 对象是否被认为是离群点可能依赖于簇的个数(如k很大时的噪声簇)。该问题也没有简单的答案。一种策略是对于不同的簇个数重复该分析。另一种方法是找出大量小簇,其想法是(1)较小的簇倾向于更加凝聚,(2)如果存在大量小簇时一个对象是离群点,则它多半是一个真正的离群点。不利的一面是一组离群点可能形成小簇而逃避检测。 优缺点: (1)基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的; (2)簇的定义通常是离群点的补,因此可能同时发现簇和离群点; (3) 产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性; (4)聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。新颖性和离群值检测 离群值检测:训练数据包含离群值,即与其他观测值相距甚远的观测值。离群检测估计器会尝试拟合训练数据最集中的区域,忽略异常观察。 新颖性检测:训练数据不受异常值的污染,有兴趣检测新观察值是否是异常值。该情况下离群值也称为新颖性。 离群值检测和新颖性检测均用于异常检测,离群值检测称为无监督异常检测,新颖性检测称为半监督异常检测。离群值检测的情况下,离群值/异常不能形成密集的群集,可假设离群值/异常位于低密度区域;新颖性检测的情况下,只要新颖性/异常位于训练数据的低密度区域,就可以形成密集的簇。 通过对玩具数据集进行异常检测比较异常检测算法 数据集中包含一种或两种模式(高密度区域),以说明算法处理多模式数据的能力。 对于每个数据集,将生成15%的样本作为随机均匀噪声。该比例是OneClassSVM的nu参数和其他异常值检测算法的污染参数提供的值。离群值之间的决策边界以黑色显示,但是LOF除外,因为当采用LOF用于离群值检测时,没有适用于新数据的预测方法。 OneClassSVM对异常值敏感,对异常值检测执行的不好。当训练集不受异常值污染时,此估计器最适合新颖性检测。即不适用在高维中进行离群值检测或者不对基础数据的分布进行任何假设,OneClassSVM在这些情况下可能会根据其超参数给出有用的结果。 covariance EllipticEnvelope(协方差椭圆密度)假定数据是高斯分布并学习一个椭圆。在数据不是单峰时,会退化。此估计器对异常值具有鲁棒性。 IsolationFrorest和LocalOutlierFactor针对多模式数据集效果显著。LOF针对第三种数据集,明显优于其它三种估计器,该数据集中两种模式的密度不同。LOF的局部方面,即它仅将一个样本的异常评分与其邻居评分作比较,从何体现了该方法的优势。 针对最后一个均匀分布在超立方体中的数据集,很难说一个样本比另一个样本异常得多。除了OneClassSVM有些过拟合外,所有估计器都针对该情况提出不错的解决方案。针对这种情况,应该仔细观察样本的异常分数,性能好的估算器应该为所有样本分配相似的分数。 使用局部离群因子(LOF)进行离群值检测 LOF算法是一种无监督的异常检测方法,可计算给定数据点相对于其邻居的局部密度偏差。其中密度远低于其邻居的样本为异常值。 LOF算法的优势在于同时考虑了数据集的局部和全局属性:即使在异常样本具有不同底层密度的数据集中,仍能保持良好性能。问题不在于样本有多孤立,而在于样本相对于周围邻域有多孤立。 通常考虑的邻居数量(1)大于群集必须包含的最小样本数量,以便其他样本可以是相对于该群集的局部离散值;(2)小于可能是局部异常值的最大进距采样数,此类消息通常不可用,采用n_neighbors=20。 具有局部异常值的新颖性检验 LOF是一种无监督的异常检测方法,可计算给定数据点相对于其邻居的局部密度偏差,密度远低于其邻居的样本为异常值。LOF用于新颖性检验时,切勿在训练集上使用预测、决定函数、实例得分,会导致结果错误。只能对新的看不见的数据(不在训练集中)使用这些方法。 通常考虑邻居数量(1)大于群集必须包含的最小样本数,以便其他样本可以是相对于该群集的局部离群值;(2)小于可能是局部异常值的最大进距采样数,此类消息通常不可用,采用n_neighbors=20。 隔离林 在高维数据集中执行异常检测的一种有效方法是使用随机森林,分离的观察通过随机选择一个函数,随机选择所选择的特征的最大值和最小值之间的分割值。递归分区可用树结构表示,隔离样本所需的拆分数量等于从根节点到终止结点的路径长度。随机树的森林中的平均路径长度是对正态性和决策函数的度量。随机分区产生的异常路径明显较短,因此如果随机树森林为特定样本生成的较短路径,则该树代表的值很可能是异常的。 OneClassSVM 无监督的离群值检测,支持高维分布,基于libsvm 不假定数据分布的任何参数形式,可以更好的对数据的复杂形状进行建模,能够捕获真实的数据结构,难点在于调整核函数宽度参数,以便在数据散布矩阵的形状和数据过度拟合的风险间取得折中。 协方差椭圆密度 用于检测高斯分布数据集中的异常值的对象 经验协方差估计(作为非稳健估计)受到观测值异质结构的高度影响;鲁棒协方差估计能够集中于数据分布的主要模式,但是它坚持假设数据是高斯分布,产生了对数据结构的某些估计,在一定程度上是准确的。HBOS单维效果极佳,但是标准差方法的mask 掩码效应严重。例如 数据通常在100以内,但是有两个异常点,500,1000000。这个算法就不能检出500这个异常点。 对比而言,孤立森林理论上更适合大数据的异常检测,且无掩码效应。孤立森林确定异常时训练只用样本数据。每颗树样本数量默认只有256个,默认只用100颗树。所以理论上25600个样本就能确定海量数据中的异常点了。 Sklearn的 isolation forest 例子默认是读入全量数据再采样。如果配上warm up 选项就能分批放入采样。 异常检测的深度学习研究综述

题目:Efficient algorithms for mining outliers from large data sets   期刊/会议:ACM SIGMOD   年份:2000   引用次数:1866   大数据异常检测。   以前的异常检测方法大多是基于统计方法,但是数据的分布往往是未知的,与假设不符。本文认可了一种异常点的定义方式,并用基于距离的方式查找异常点。   首先采用聚类的方式将数据聚成若干类,计算每个簇中样本点的k近邻距离的上下界,将距离过小的簇删除掉,以减少计算量。   首先定义异常点,首先对所有样本点计算k近邻距离,k近邻距离最大的前n个点认为是异常点。

基于www的聚类引擎研究论文

论文取题范围尽量不要太泛,在中国知网,中国期刊全文两个网站上至少参考10篇资料文献引用注明在论文中

相信不少信息管理学院的大学生都有和我一样的烦恼,写毕业论文就不知道如何定题,以下为我写毕业论文时整理的一些信息管理毕业论文题目。 "基于C/S架构的信息系统开发" "基于B/S架构的信息系统开发" "基于B/S的系统分析与设计" "基于C/S的系统分析与设计" "基于OLAP的多维数据模型的研究与应用" "中小企业网络营销研究" "比较购物搜索引擎研究与实验" "元搜索引擎研究与实现" "电子商务和营销策略研究" "电子商务对传统商业的挑战与对策" "电子商务网站个性化推荐系统研究" "聚类分析在金融领域的应用" "聚类分析在国际贸易领域的应用" "基于Web Service 供应链管理的宁波大学网络超市" "基于自动推荐的北高教圆区网上跳蚤市场" "中小型外贸企业定单管理系统" "面向宁波中小型企业的信息挖掘研究" "贝叶斯网络在企业危机信息管理中的应用研究" "不确定性推理在国际贸易决策中的应用研究" "P2P在电子商务中的应用" "基于循环经济模式生态工业圆规划研 "数字人证技术在电子商务中的研究" "电子商务模式与创新研究" "基于B/S的校园规划综合查询系统" "面向网络产品的聚合和分解研究" "面向通讯产品的聚合和分解研究" "网络团购的经济学研究" "网络团购的管理学研究" "标杆管理及其标杆识别方法(主成法/DEA法)" "面向民营企业的研究发展效率研究" "信息咨询业知识资产管理模式研究" "信息咨询市场运行机制研究" "企业危机信息管理评价指标体系研究" "企业危机知识管理框架构建研究" "浅析博客营销在网络营销中的作用" "WEB 与互联网的发展初探" "宁波物流配货网的设计与开发" "基于B/S系统的设计与应用" "宁波装饰行业门户网设计" "宁波汽配行业生产排程设计优化" "宁波市大学生岗前培训网建设" "协同商务研究与实践" "药品进销存系统分析与设计" "构建"数字宁波"的对策研究" "主要地区城镇居民信息消费的比较研究" "信息消费对经济增长的影响分析――以宁波为例" "国内外高校信息管理人才培养模式的比较" "公共信息资源管理中存在的问题和对策" "宁波与国内外中心城市在信息化发展水平和趋势上的比较研究和SWOT分析" ""十一五"期间宁波发展"电子商务",推动物流,企业,通关等信息化研究" "政府CIO制度研究" "基于的B/S系统开发" "C/S系统开发" "电子商务中信息不对称的研究" "基于XML的电子商务系统集成研究" "投资项目经济评价及决策过程研究" "宁波市经济发展预测" "我国(宁波市)居民预防性储蓄的实证研究" "在校大学生消费行为研究" "股票市场有效性分析" "国内外期货市场价格间的影响分析" "宁波中小企业的第三方电子商务平台营销策略" "电子商务支付方式与第三方支付平台" "宁波中小企业的特点及其电子商务营销模式选择" "网络营销新的营销模式(如网游营销,博客营销等)的发展与分析" "宁波中小企业信管人才需求及其对学校培养模式的影响"

聚类分析算法论文

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。下面是我分享给大家的聚类分析算法论文,欢迎阅读。

一、引言

聚类分析算法是给定m维空间R中的n个向量,把每个向量归属到k个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为:类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。聚类分析的基本思想是:采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系。盐矿区系统是一个多层次、复杂的大系统,涉及诸多模糊、不确定的因素。平顶山市盐矿区的经济分类是以整个平顶山市的所有盐矿区为研究对象,以各盐矿区为基本单元,以经济为中心,以发展战略和合理布局为目标进行经济类型区划。其基本原则是:平顶山市的盐矿区资源开发、利用的相对一致性;自然、经济、社会条件的一致性;保持一定行政地域单元的相对稳定性。现行的平顶山市盐矿区行政划分不能反映出各个盐矿区的共同点,有必要通过模糊聚类分析将那些经济实际状况相似的铁矿区归类,剖析、发现各况矿区的差异,对症下药,为制定发展对策提供依据。

二、建立指标体系

1、确定分类指标进行经济区划分,应考虑的指标因素是多种多样的。既要以岩盐矿资源储量为主,又要适当考虑岩盐质量和勘察阶段和开发利用状况;既要有直接指标,又要有间接指标;既要考虑矿区发展的现状,又要考虑矿区发展的过程和矿区发展的未来方向。参考有关资料,结合专家意见,我们确定了对平顶山市盐矿区进行经济区划分的指标。如表1所示。表中列举了具体指标及各指标的原始数据(数据来源于河南省2006年矿产资源储量简表)。表1盐矿区经济划分指标体系及指标数据注:表中N表示缺失数据,勘察阶段1、2、3分别表示:初步勘探、详细普查、详细勘探,利用状况1~7分别表示:近期不宜进一步工作、可供进一步工作、近期难以利用、推荐近期利用、计划近期利用、基建矿区、开采矿区。

2、转换指标数据由于不同变量之间存在不同量纲由于不同变量之间存在不同量纲、不同数量级,为使各个变量更具有可比性,有必要对数据进行转换。目前进行数据处理的方法大致有三种,即标准化、极差标准化和正规化。为便于更直观的比较各市之间同一指标的数值大小,我们采用了正规化转换方式。其计算公式为:为了方便叙述,做如下设定:设Xi(i=1,2,3,…,21)为具体指标层中第i个评价指标的值,Pi(i=1,2,3,…,21)为第i个指标正规化后的值,0≤Pi≤1,Xs,i(Xs,i=Xmax-Xmin),为第i个评价指标的标准值,Xmax为最大值,Xmin为最小值。(1)对于越高越好的`指标①Xi≥Xmax,则Pi=1;②Xi≤Xmin,则Pi=0;③Xmin

三、聚类分析

1、聚类步骤(Stage).从1~3表示聚类的先后顺序。

2、个案合并(ClusterCombined)。表示在某步中合并的个案,如第一步中个案1叶县田庄盐矿段和个案2叶县马庄盐矿段合并,合并以后用第一项的个案号表示生成的新类。

3、相似系数(Coefficients).据聚类分析的基本原理,个案之间亲密程度最高即相似系数最接近于1的,最先合并。因此该列中的系数与第一列的聚类步骤相对应,系数值从小到大排列。

4、新类首次出现的步骤(StageClusterFirstAppears)。对应于各聚类步骤参与合并的两项中,如果有一个是新生成的类(即由两个或两个以上个案合并成的类),则在对应列中显示出该新类在哪一步第一次生成。如第三步中该栏第一列显示值为1,表示进行合并的两项中第一项是在第一步第一次生成的新类。如果值为O,则表示对应项还是个案(不是新类)。

5、新类下次出现步骤(NextStage)。表示对应步骤生成的新类将在第几步与其他个案或新类合并。如第一行的值是11,表示第一步聚类生成的新类将在第11步与其他个案或新类合并。

6、解析图DendrogramusingAverageLinkage(BetweenGroups)RescaledDistanceClusterCombine聚类树状图(方法:组间平均连接法)图清晰的显示了聚类的全过程。他将实际距离按比例调整到0~25之间,用逐级连线的方式连接性质相近的个案或新类,直至并未一类。在该图上部的距离标尺上根据需要(粗分或细分)选定一个划分类的距离值,然后垂直标尺划线,该垂线将与水平连线相交,则相交的交点数即为分类的类别数,相交水平连线所对应的个案聚成一类。例如,选标尺值为5,则聚为3类:叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段为一类,叶县姚寨盐矿为一类。若选标尺值为10,则聚为2类:叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段、叶县姚寨盐矿为一类。

四、结论

对平顶山市5个盐矿区进行经济区划分,究竟划分为几个区合适,既不是越多越好,也不是越少越好。划分经济区的目的,就是要根据各盐矿经济区资源特点、勘察、开发的不同,分类指导经济活动,使人们的经济活动更加符合当地的实际,使各经济区能充分发挥各自的优势,做到扬长避短,趋利避害,达到投人少、产出多,创造良好的经济效益和社会效益之目的。分区太多,就失去了分区的意义,分区太少,则分类指导很难做到有的放矢。综合以上聚类分析结果,我们可以得出三个方案。其中两个方案比较合适,可供选择。方案一:(当比例尺为5时,分为3类)叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段为一类,叶县姚寨盐矿为一类。从聚类分析中看出平顶山市盐矿区分类图方案一。方案二:(当比例尺为10时,分为2类)叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段、叶县姚寨盐矿为一类。从聚类分析中看出平顶山市盐矿区分类图方案二。平顶山市盐矿区分类图方案2聚类分析的原理就是将矿石质量、资源储量、勘查阶段、利用状况相近或相类似的矿区聚合在一起,其分析结果也是直观易见的。在此结合平顶山市实际行政区划以及矿山企业特征我们对铁矿区划分做一个调整使其理论与实际能够结合的更紧密使其更好的指导实践。

1、叶县田庄盐段、叶县马庄盐矿段为一类,这一类属于矿床规模相当,资源储量接近,勘查开发阶段接近,利用程度相当,故,可以分为一类。

2、叶县娄庄盐矿、叶县五里堡盐矿段为一类,这一类属于勘查开发阶段处于同一阶段。

3、叶县姚寨盐矿为一类,这一类属于储量较高,盐矿品位较高,故其勘察开采规划有别于其它两类。总的说来,运用聚类分析是基本成功的,大部分的分类是符合实际的。综合以上论述盐矿区划分如下表所示:当然聚类分析有其优点也有其缺点:(1)优点:聚类分析模型的优点就是直观,结论形式简明。(2)缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试问内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

图像的异常检测论文

科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。1 医学影像融合的必要性 影像的融合是技术更新的需要 随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 影像的融合弥补了单项检查成像的不足 目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 影像的融合是临床的需要 影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2 医学影像融合的可行性 影像学各项检查存在着共性和互补性为影像的融合奠定了基础 尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。 医学影像的数字化技术的应用为影像的融合提供了方法和手段 现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。3 医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息

论文: Generative adversarial network in medical imaging: A review 这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接 中找到。 GAN在医学成像中通常有两种使用方式。第一个重点是生成方面,可以帮助探索和发现训练数据的基础结构以及学习生成新图像。此属性使GAN在应对数据短缺和患者隐私方面非常有前途。第二个重点是判别方面,其中辨别器D可以被视为正常图像的先验知识,因此在呈现异常图像时可以将其用作正则器或检测器。示例(a),(b),(c),(d),(e),(f)侧重于生成方面,而示例 (g) 利用了区分性方面。下面我们看一下应用到分割领域的文章。 (a)左侧显示被噪声污染的低剂量CT,右侧显示降噪的CT,该CT很好地保留了肝脏中的低对比度区域[1]。 (b)左侧显示MR图像,右侧显示合成的相应CT。在生成的CT图像中很好地描绘了骨骼结构[2]。 (c)生成的视网膜眼底图像具有如左血管图所示的确切血管结构[3]。(d)随机噪声(恶性和良性的混合物)随机产生的皮肤病变[4]。 (e)成人胸部X光片的器官(肺和心脏)分割实例。肺和心脏的形状受对抗性损失的调节[5]。 (f)第三列显示了在SWI序列上经过域调整的脑病变分割结果,无需经过相应的手动注释训练[6]。 (g) 视网膜光学相干断层扫描图像的异常检测[7]。 通常,研究人员使用像像素或逐像素损失(例如交叉熵)进行分割。尽管使用了U-net来组合低级和高级功能,但不能保证最终分割图的空间一致性。传统上,通常采用条件随机场(CRF)和图割方法通过结合空间相关性来进行细分。它们的局限性在于,它们仅考虑可能在低对比度区域中导致严重边界泄漏的 pair-wise potentials (二元势函数 -- CRF术语)。另一方面,鉴别器引入的对抗性损失可以考虑到高阶势能。在这种情况下,鉴别器可被视为形状调节器。当感兴趣的对象具有紧凑的形状时,例如物体,这种正则化效果更加显着。用于肺和心脏mask,但对诸如血管和导管等可变形物体的用处较小。这种调节效果还可以应用于分割器(生成器)的内部特征,以实现域(不同的扫描仪,成像协议,模态)的不变性[8、9]。对抗性损失也可以看作是f分割网络(生成器)的输出和 Ground Truth 之间的自适应学习相似性度量。因此,判别网络不是在像素域中测量相似度,而是将输入投影到低维流形并在那里测量相似度。这个想法类似于感知损失。不同之处在于,感知损失是根据自然图像上的预训练分类网络计算而来的,而对抗损失则是根据在生成器演变过程中经过自适应训练的网络计算的。 [10] 在鉴别器中使用了多尺度L1损失,其中比较了来自不同深度的特征。事实证明,这可以有效地对分割图执行多尺度的空间约束,并且系统在BRATS 13和15挑战中达到了最先进的性能。 [11] 建议在分割管道中同时使用带注释的图像和未带注释的图像。带注释的图像的使用方式与 [10] 中的相同。 [10] 和 [12] ,同时应用了基于元素的损失和对抗性损失。另一方面,未注释的图像仅用于计算分割图以混淆鉴别器。 [13] 将pix2pix与ACGAN结合使用以分割不同细胞类型的荧光显微镜图像。他们发现,辅助分类器分支的引入为区分器和细分器提供了调节。 这些前述的分割训练中采用对抗训练来确保最终分割图上更高阶结构的一致性,与之不同的是, [14] -- code 中的对抗训练方案,将网络不变性强加给训练样本的小扰动,以减少小数据集的过度拟合。表中总结了与医学图像分割有关的论文。 参考链接: [1] X. Yi, P. Babyn. Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J. Digit. Imaging (2018), pp. 1-15 [2] . Wolterink, . Dinkla, . Savenije, . Seevinck, . van den Berg, I. Išgum. Deep MR to CT synthesis using unpaired data International Workshop on Simulation and Synthesis in Medical Imaging, Springer (2017), pp. 14-23 [3] P. Costa, A. Galdran, . Meyer, M. Niemeijer, M. Abràmoff, . Mendonça, A. Campilho. End-to-end adversarial retinal image synthesis IEEE Trans. Med. Imaging(2017) [4] Yi, X., Walia, E., Babyn, P., 2018. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by Wasserstein distance for dermoscopy image classification. arXiv: . [5] Dai, W., Doyle, J., Liang, X., Zhang, H., Dong, N., Li, Y., Xing, ., 2017b. Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv: . [6] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [7] T. Schlegl, P. Seeböck, . Waldstein, U. Schmidt-Erfurth, G. Langs Unsupervised anomaly detection with generative adversarial networks to guide marker discovery International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 146-157 [8] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [9] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, ., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: . [10] Y. Xue, T. Xu, H. Zhang, . Long, X. Huang Segan: adversarial network with multi-scale l 1 loss for medical image segmentation Neuroinformatics, 16 (3–4) (2018), pp. 383-392 [11] Y. Zhang, L. Yang, J. Chen, M. Fredericksen, . Hughes, . Chen. Deep adversarial networks for biomedical image segmentation utilizing unannotated images International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 408-416 [12] Son, J., Park, ., Jung, ., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: . [13] Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [14] W. Zhu, X. Xiang, . Tran, . Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) [15] D. Yang, D. Xu, . Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, D. Comaniciu. Automatic liver segmentation using an adversarial image-to-image network International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 507-515 [16] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, ., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: . [17] Rezaei, M., Yang, H., Meinel, C., 2018a. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. arXiv: . [18] A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, . Kirschke, . Menze. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2018) [19] M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel. A conditional adversarial network for semantic segmentation of brain tumor International MICCAI Brainlesion Workshop, Springer (2017), pp. 241-252 [20] P. Moeskops, M. Veta, . Lafarge, . Eppenhof, . Pluim. Adversarial training and dilated convolutions for brain MRI segmentation Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer (2017), pp. 56-64 [21] Kohl, S., Bonekamp, D., Schlemmer, ., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, ., Maier-Hein, K., 2017. Adversarial networks for the detection of aggressive prostate cancer. arXiv: . [22]Y. Huo, Z. Xu, S. Bao, C. Bermudez, . Plassard, J. Liu, Y. Yao, A. Assad, . Abramson, . Landman. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks Medical Imaging 2018: Image Processing, 10574, International Society for Optics and Photonics (2018), p. 1057409 [23]K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [24]Z. Han, B. Wei, A. Mercado, S. Leung, S. Li. Spine-GAN: semantic segmentation of multiple spinal structures Med. Image Anal., 50 (2018), pp. 23-35 [25]M. Zhao, L. Wang, J. Chen, D. Nie, Y. Cong, S. Ahmad, A. Ho, P. Yuan, . Fung, . Deng, et al. Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2018), pp. 720-727 [26] Son, J., Park, ., Jung, ., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: . [27]Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [28] S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh. Generative adversarial networks to segment skin lesions Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE (2018), pp. 881-884 Close [29]W. Zhu, X. Xiang, . Tran, . Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018)

1. 使用复杂的模型:使用更复杂的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)或变分自编码器(VAE)等,可以提高图异常检测的准确性。2. 结合图像和图数据:结合图像和图数据可以提高异常检测的准确性,例如可以使用卷积神经网络(CNN)提取图像特征,然后将这些特征与图数据结合使用来进行异常检测。3. 弱化异常数据的影响:通过对异常数据进行去噪、降维等处理,可以减少异常数据对整个图的影响,从而提高异常检测的准确性。4. 结合其他数据源:将图数据与其他数据源结合使用,例如社交网络数据、地理信息数据、生物数据等,可以提高异常检测的准确性。5. 优化损失函数:通过设计更合理的损失函数,可以提高异常检测模型的准确性。例如,可以设计基于图结构的损失函数、基于异常度量的损失函数等。6. 数据增强:通过对图数据进行增强,例如添加噪声、旋转、缩放等,可以增加训练数据的多样性,提高异常检测模型的准确性。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

基于聚类的图像分割方法研究论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

简要说一下:图像分割基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通集合。常用方法有:1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。具体的阈值分割:阈值分割方法分为以下3类:1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。参详书目当然是《数字图像处理》,及网上的一些有用文档;工具:MATLAB或VC++

问题一:聚类分析的意义是什么 科技名词定义中文名称:聚类分析 英文名称:cluster *** ysis 定义1:按照某种距离算法对数据点分类。 应用学科:地理学(一级学科);数量地理学(二级学科) 定义2:把观测或变量按一定规则分成组或类的数学分析方法。 应用学科:生态学(一级学科);数学生态学(二级学工) 聚类分析指将物理或抽象对象的 *** 分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。 问题二:数据挖掘,聚类分析算法研究的目的和意义是什么! 15分 图像分割 基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通 *** 。常用方法有: 1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法; 2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割; 3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。 具体的阈值分割: 阈值分割方法分为以下3类: 1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。 2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。 3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。 全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点: 1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。 2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。 3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。 全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。 参详《数字图像处理》工具:MATLAB或VC++ 问题三:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。 常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。 注意事项: 1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类; 2. K-均值法要求分析人员事先知道样品分为多少类; 3. 对变量的多元正态性,方差齐性等要求较高。 应用领域:细分市场,消费行为划分,设计抽样方案等 优点:聚类分析模型的优点就是直观,结论形式简明。 缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。 问题四:聚类分析的结果分成几类,但是这几类有什么关系呢,这几类有什么含义。 5分 这个要看你是面对什么问题了,如:用聚类做财务舞弊,则会有以下几类:正常财务报表、虚增利润舞弊财务报表、关联交易财务舞弊报表等 问题五:SPSS新手求问聚类分析 聚类分析主要作用是把一些数据分成未知的几类这样理解对吗? 系统聚类的 建议买本spss的教程,可以更加系统的学习。要是写论文的话, 可以帮忙数据 he 分析。 问题六:主成分分析法和聚类分析法的区别 问题七:如何评价spss系统聚类分析结果? 用方差分析来判定聚类结果好坏,类与类之间是否差异性显著,呵呵~~ 问题八:聚类分析主要解决什么类型的实际问题 主要解决实现不知道类别标签的样本集的分类问题.聚类其实也是实现分类的功能.聚类和分类的区别:分类是用知道类别标签的样本集去训练一个分类器,然后用该分类器对其他未知类别的样本进行归类,由于训练分类器用到了知道类别的样本,所以属于有导师学习;聚类是完全不知道各个样本的类别,按照一定的聚类度量准则直接进行聚类,所以属于无导师的学习. 聚类可以用在图像处理,模式识别,客户信息分析,金融分析,医学等很多领域.用模糊聚类进行图像分割就是一个非常典型的应

异常检测好写论文吗

很明确告诉你“会的,有影响。”论文检测结果不通过怎么办?1、如果你的论文检测结果不通过学校的要求的话,你的毕业论文就会被判为不合格。对于学校的这个判定,如果你没有异议的话,就会直接返稿给你重新进行修改;2、如果你不接受这个结果的话,是可以向学校发起申诉的。每所学校都会申诉程序,同学们可以按照申诉程序提交申诉书,进行二次查重检测。3、如果你的论文在二次查重后有异议,是需要学校委员会对院分委会的意见进行讨论之后再行决定的。4、如果申诉后仍然判定为不合格,是可能被延迟答辩、取消答辩资格、甚至处分或开除学籍的,严重的话导师也需要承担相应责任。所以论文检测不通过会影响毕业,而且是后果很严重的那种。因此如果是你自身的论文有很多内容是抄袭的,请大家务必认真修改哦

1、我们的论文提交给学校后,这时学校会统一对论文进行查重率检测,一旦重复率超出要求就会导致查重不通过,那么肯定是对我们能不能正常毕业的有一定的影响的。

2、每所学校对论文查重不合格的会区别情况进行处理,比如本科毕业论文重复率超出30%同时低于50%的,那么论文就会面临退回,这时我们就还要机会对论文进行修改然后再提交。如果论文重复率超出50%会判定为抄袭,答辩时间机会推迟。研究生毕业论文重复率超出50%的情况下,很大可能会直接延毕。当然,在具体的处理方式上,不同学校或多或少会有差别。

3、学校对我们论文进行查重检测后,查重率不达标的情况下论文就会被退回,在自己没有意见的时候就要在有效的时间内修改好论文。假如有异议,也能向学校提出申诉,但要弄清楚申诉后再次复查不合格的情况下,仍然要对论文进行重新修改;更严重的,要延期答辩,取消答辩资格,或者开除学籍。

4、大部分高校一般都只会通过1-2次的查重机会,也就是两次查重都不达标的情况下,答辩时间是会延期的,那么并不表示第三次给学生重新修改的机会,此时肯定会影响到学生的正常毕业,所以论文的撰写和查重大家一定要认真对待,不要存在侥幸心理。

计算机网络安全就是通过利用多种技术、手段、 措施 ,保证网络系统的安全运行,确保网络传输和交换过程中数据的完整性、保密性和可用性。下面是我给大家推荐的计算机网络安全2000字论文,希望大家喜欢!计算机网络安全论文篇一 浅议计算机网络安全防护技术 [摘要] 计算机与网络的发展给人类社会的进步提供了无限机遇,同时也对信息安全带来了严峻挑战。计算机网络安全就是通过利用多种技术、手段、措施,保证网络系统的安全运行,确保网络传输和交换过程中数据的完整性、保密性和可用性。本文重点介绍影响到网络的各种不安全因素,并进一步提出了一些保证网络安全的措施。 [ 关键词] 计算机;网络安全;防护技术 一、计算机网络安全问题 计算机网络中的安全问题主要作用于两个方面,一是对多种信息数据的威胁,包括对信息数据的非法修改、窃取、删除、非法使用等一系列的数据破坏;二是对计算机网络中的各种设备进行攻击。致使系统网络紊乱、瘫痪,乃至设备遭到损坏。 1.网络结构和设备本身安全隐患 现实中的网络拓扑结构是集总线型、星型等多种拓扑结构与一体的混合型结构,拓扑结构中各个节点使用不同的网络设施,包括路由器、交换机、集线器等。每种拓扑结构都有其相应的安全隐患,每种网络设备由于本身技术限制,也存在不同的安全缺陷,这都给网络带来了不同的安全问题。 2. 操作系统 安全 操作系统直接利用计算机硬件并为用户提供使用和编程接口。各种应用软件必须依赖于操作系统提供的系统软件基础,才能获得运行的高可靠性和信息的完整性、保密性。同样,网络系统的安全性依赖于网络中各主机系统的安全性。如果操作系统存在缺陷和漏洞,就极易成为黑客攻击的目标。因此,操作 系统安全 是计算机网络安全的基础。 3.病毒和黑客 病毒可利用计算机本身资源进行大量自我复制,影响计算机软硬件的正常运转,破坏计算机数据信息。黑客主要通过网络攻击和网络侦察截获、窃取、破译、修改破坏网络数据信息。病毒和黑客是目前计算机网络所面临的最大威胁。 二、计算机网络安全防护技术 1.加密技术 数据加密就是对原有的明文或数据按照某种算法,置换成一种不可读的密文,然后再进行信息的存储和传输。密文获得者只有输入相应的密匙才能读出原来的内容,实现数据的保密性。加密技术的关键在于加密的算法和密匙的管理。 加密的算法通常分为对称加密算法和非对称加密算法。对称加密算法就是加密和解密使用同一密匙。对称加密算法加密、解密速度快,加密强度高算法公开。非对称加密算法加密和解密使用不同的密匙,用加密密匙加密的数据只有相应的解密密匙才能打开。非对称加密算法加密数据安全可靠性高,密匙不易被破译。 2.防火墙技术 防火墙技术是目前网络间访问控制、防止外部人员非法进入内部网络,保护内网资源最广泛使用的一种技术。防火墙部署在不同网络安全级别的网络之间,防火墙通过检测数据包中的源地址、目标地址、源端口、目标端口等信息来匹配预先设定的访问控制规则,当匹配成功,数据包被允许通过,否则就会被丢弃。目前市场上常见的防火墙多为状态检测防火墙,即深度包过滤防火墙。防火墙无法防止内部网络用户带来的威胁,也不能完全防止传送已感染的程序和文件。 3.入侵检测技术 网络入侵检测技术主要通过收集操作系统、应用程序、网络数据包等相关信息,寻找可能的入侵行为,然后采取报警、切断入侵线路等手段,阻止入侵行为。网络入侵检测是一种主动的安全防护技术,它只对数据信息进行监听,不对数据进行过滤,不影响正常的网络性能。 入侵检测 方法 主要采用异常检测和误用检测两种。异常检测根据系统或用户非正常行为和计算机资源非正常情况,检测出入侵行为,其通用性强,不受系统限制,可以检测出以前未出现过的攻击方式,但由于不可能对整个系统用户进行全面扫描,误警率较高。误用检测是基于模型的知识检测,根据已知的入侵模式检测入侵行为。误警率低,响应速度快,但要事先根据入侵行为建立各种入侵模型,需要大量的时间和工作。 入侵检测系统分为基于主机和基于网络的入侵检测系统。基于主机的入侵检测技术是对主机系统和本地用户中的历史审计数据和系统日志进行监督检测,以便发现可疑事件,其优点:入侵检测准确;缺点是容易漏检。基于网络的入侵检测系统是根据一定的规则从网络中获取与安全事件有关的数据包,然后传递给入侵分析模块进行安全判断.并通知管理员。优点:节约资源,抗攻击能力好,可实时检测响应。缺点:数据加密限制了从网络数据包中发现异常情况。 4.防病毒技术 网络病毒技术主要包括病毒预防技术、病毒检测技术和病毒消除技术。病毒预防技术通过自身常驻系统内存,优先获得系统控制权,监视、判断病毒是否存在,防止病毒的扩散和破坏。病毒检测技术通过侦测计算机病毒特征和文件自身特征两种方式,判断系统是否感染病毒。病毒消除技术是计算机病毒感染程序的逆过程,根据对病毒的分析,安装网络版查杀病毒软件,杀灭病毒。 总之,随着网络规模的不断扩大,网络安全的重要性也越来越受到关注。目前,我国信息网络安全研究历经了通信保密、数据保护两个阶段。正在进入网络信息安全研究阶段,企业网络安全解决办法主要依靠防火墙技术、入侵检测技术和网络防病毒技术。但是,网络安全不仅仅是技术问题,更多的是社会问题。应该加强f64络安全方面的宣传和 教育 。加强网络使用者的安全防范意识,由被动接受到主动防范才能使网络安全隐患降到最低。 参考文献: [1]张晓薇浅谈计算机网络安全的影响因素与保证措施《黑龙江科技信息》2009年36期 [2]安录平 试述计算机网络安全防护技术《黑龙江科技信息》2009年36期 [3]邢文建 Exploration of ARP virus defense system based on the analysis of NDIS《Proceedings of The Second International Conference on Modelling and Simulation》 计算机网络安全论文篇二 试谈计算机网络安全防护 摘 要:随着计算机网络的迅速发展和普及,人们越来越依赖于网络,大量的信息交换通过互联网实现,同时也有很多重要信息储存在互联网上,网络安全问题也随之产生。因此,计算机网络的安全防护也引起了越来越多的重视,本文重点介绍了网络安全中面临的威胁,并相应的提出了解决措施。 关键词:计算机;网络安全;防护 1 引言 信息技术的发展给人们的生活带来了天翻地覆的变化,计算机网络已经融入了人们的日常生活中,改变着也同时方便了生活和工作。在人们对信息网络的需求和依赖程度与日俱增的今天,网络安全问题也越来越突出。因此,全面的分析影响网络安全的主要原因,有针对性的提出进行网络安全保护的相关对策具有十分重要的意义。Internet的的两个重要特点就是开放性和共享性,这也是导致开放的网络环境下计算机系统安全隐患产生的原因。随着对网络安全问题研究的不断深入,逐渐产生了不同的安全机制、安全策略和网络安全工具,保障网络安全。 计算机网络安全事实上是一门涉及多学科理论知识的综合性学科,主要包括计算机科学、 网络技术 、密码技术、通信技术、数论、信息安全技术和信息论等多种不同学科。网络安全防护是从硬件和软件两方面保护系统中的数据,使其免受恶意的入侵、数据更改和泄露、系统破坏,以保证系统能够正常的连续运行,网络不被中断。 2 计算机网络面临的安全威胁 网络面临的安全威胁也是各种各样,自然灾害、网络系统自身的脆弱性、误操作、人为的攻击和破坏等都是网络面临的威胁。 自然灾害 计算机网络也是由各种硬件搭建而成,因此也是很容易受到外界因素的影响。很多计算机安放空间都缺乏防水、防火、防震、防雷、防电磁泄露等相关措施,因此,一旦发生自然灾害,或者外界环境,包括温度、湿度等,发生剧烈变化时都会破化计算机系统的物理结构。 网络自身脆弱性 (1)计算机网络的基础设施就是操作系统,是所有软件运行的基础和保证。然而,操作系统尽管功能强大,具有很强的管理功能,但也有许多不安全因素,这些为网络安全埋下了隐患。操作系统的安全漏洞容易被忽视,但却危害严重。除操作系统外,其他软件也会存在缺陷和漏洞,使计算机面临危险,在网络连接时容易出现速度较慢或 死机 现象,影响计算机的正常使用。 (2)计算机网络的开放性和自由性,也为攻击带来了可能。开放的网络技术,使得物理传输线路以及网络通信协议也成为网络攻击的新目标,这会使软件、硬件出现较多的漏洞,进而对漏洞进行攻击,严重的还会导致计算机系统严重瘫痪。 (3)计算机的安全配置也容易出现问题,例如防火墙等,一旦配置出现错误,就无法起到保护网络安全的作用,很容易产生一些安全缺口,影响计算机安全。加之现有的网络环境并没有对用户进行技术上的限制,任何用户可以自由的共享各类信息,这也在一定程度上加大了网络的安全防护难度。 很多网民并不具有很强的安全防范意识,网络上的账户密码设置简单,并且不注意保护,甚至很多重要账户的密码都比较简单,很容易被窃取,威胁账户安全。 人为攻击 人为的攻击是网络面临的最大的安全威胁。人为的恶意攻击分为两种:主动攻击和被动攻击。前者是指采取有效手段破坏制定目标信息;后者主要是为了获取或阻碍重要机密信息的传递,在不影响网络正常的工作情况下,进行信息的截获、窃取、破译。这两种攻击都会导致重要数据的泄露,对计算机网络造成很大的危害。黑客们会利用系统或网络中的缺陷和漏洞,采用非法入侵的手段,进入系统,窃听重要信息,或者通过修改、破坏信息网络的方式,造成系统瘫痪或使数据丢失,往往会带来严重不良影响和重大经济损失。 计算机病毒是一种人为开发的可执行程序,具有潜伏性、传染性、可触发性和严重破坏性的特点。一般可以隐藏在可执行文件或数据文件中,不会被轻易发现,也就使计算机病毒的扩散十分迅速和难以防范,在文件的复制、文件和程序运行过程中都会传播。触发病毒后可以迅速的破坏系统,轻则降低系统工作效率,重则破坏、删除、改写文件,使数据丢失,甚至会破坏系统硬盘。平时在软盘、硬盘、光盘和网络的使用中都会传播病毒。近年来也出现了的很多恶性病毒,例如“熊猫烧香病毒”等,在网络上迅速传播,产生了十分严重的不良后果。 除病毒之外,垃圾邮件和间谍软件等也会威胁用户的隐私和计算机安全。 3 网络安全防护措施 提高安全防护技术手段 计算机安全防护手段主要包括防火墙技术、加密技术、访问控制和病毒防范等。总的来说,提高防护手段,主要是从计算机系统管理和物理安全两方面着手。 计算机网络安全,首先要从管理着手,一是对于使用者要进行网络 安全教育 ,提高自我防范意识。二是要依靠完整的网络安全管理制度,严格网络执法,打击不法分子的网络犯罪。另外,要加强网络用户的法律法规意识和道德观念,减少恶意攻击,同时传播网络防范基本技能,使用户能够利用计算机知识同黑客和计算机病毒等相抗衡。 物理安全是提高网络安全性和可靠性的基础。物理安全主要是网络的物理环境和硬件安全。首先,要保证计算机系统的实体在安全的物理环境中。网络的机房和相关的设施,都有严格的标准和要求要遵循。还要控制物理访问权限,防止未经授权的个人,有目的的破坏或篡改网络设施。 完善漏洞扫描设施 漏洞扫描是一种采取自动检测远端或本地主机安全的技术,通过扫描主要的服务端口,记录目标主机的响应,来收集一些特定的有用信息。漏洞扫描主要就是实现安全扫描的程序,可以在比较短的时间内查出系统的安全脆弱点,从而为系统的程序开发者提供有用的参考。这也能及时的发现问题,从而尽快的找到解决问题的方法。 4 结束语 经过本文的分析,在通讯技术高速发展的今天,计算机网络技术也不断的更新和发展,我们在使用网络的同时,也要不断加强计算机网络安全防护技术。新的应用会不断产生,网络安全的研究也必定会不断深入,以最大限度地提高计算机网络的安全防护技术,降低网络使用的安全风险,实现信息平台交流的安全性和持续性。 参考文献 [1]赵真.浅析计算机网络的安全问题及防护策略[J].上海工程技术学院教育研究,2010,(03):65-66. [2]刘利军.计算机网络安全防护问题与策略分析[J].华章,2011,(34):83-84. [3]赵海青.计算机网络应用安全性问题的防护策略[J].青海教育,2012,(04):45-46. [4]郑恩洋.计算机网络安全防护问题与策略探讨[J].计算机光盘软件与应用,2012,(15):158-158. 计算机网络安全论文篇三 浅谈计算机网络安全影响因素与对策 0引言 随着计算机网络的发展,病毒、黑客、木马等的恶意攻击使网络安全问题日益突出,如何提高网络安全的防御能力越来越受到人们的关注。本文分析了当前计算机网络安全所面临的威胁及影响因素,并针对存在的问题提出了加强网络安全防御能力的对策。网络技术的发展给人们提供了信息交流的平台,实现了信息资源的传播和共享。但随着计算机网络应用的广泛深入,运行环境也复杂多变,网络安全问题变得越来越突出,所造成的负面影响和严重性不容忽视。病毒、黑客、木马等的恶意攻击,使计算机软件和硬件受到破坏,使计算机网络系统的安全性与可靠性受到非常大的影响,因此需要大力发展网络安全技术,保证网络传输的正常运行。 1影响计算机网络安全的因素 系统缺陷 虽然目前计算机的操作系统已经非常成熟,但是不可避免的还存在着安全漏洞,这给计算机网络安全带来了问题,给一些黑客利用这些系统漏洞入侵计算机系统带来了可乘之机。漏洞是存在于计算机系统中的弱点,这个弱点可能是由于软件或硬件本身存在的缺陷,也可能是由于系统配置不当等原因引起的问题。因为操作系统不可避免的存在这样或那样的漏洞,就会被黑客加以利用,绕过系统的安全防护而获得一定程度的访问权限,从而达到侵入他人计算机的目的。 计算机病毒 病毒是破坏电脑信息和数据的最大威胁,通常指能够攻击用户计算机的一种人为设计的代码或程序,可以让用户的计算机速度变慢,数据被篡改,死机甚至崩溃,也可以让一些重要的数据信息泄露,让用户受到巨大损失。典型的病毒如特洛伊木马病毒,它是有预谋的隐藏在程序中程序代码,通过非常手段伪装成合法代码,当用户在无意识情况下运行了这个恶意程序,就会引发计算机中毒。计算机病毒是一种常见的破坏手段,破坏力很强,可以在很短的时间降低计算机的运行速度,甚至崩溃。普通用户正常使用过程中很难发现计算机病毒,即使发现也很难彻底将其清除。所以在使用计算机过程中,尤其包含一些重要信息的数据库系统,一定加强计算机的安全管理,让计算机运行环境更加健康。 管理上的欠缺 严格管理是企业、机构及用户网络系统免受攻击的重要措施。很多用户的网站或系统都疏于这方面的管理,如使用脆弱的用户口令、不加甄别地从不安全的网络站点上下载未经核实的软件、系统升级不及时造成的网络安全漏洞、在防火墙内部架设拨号服务器却没有对账号认证等严格限制等。为一些不法分子制造了可乘之机。事实证明,内部用户的安全威胁远大于外部网用户的安全威胁,使用者缺乏安全意识,人为因素造成的安全漏洞无疑是整个网络安全性的最大隐患。 2计算机网络安全防范措施 建立网络安全管理队伍 技术人员是保证计算机网络安全的重要力量,通过网络管理技术人员与用户的共同努力,尽可能地消除不安全因素。在大力加强安全技术建设,加强网络安全管理力度,对于故意造成灾害的人员必须依据制度严肃处理,这样才能使计算机网络的安全得到保障,可靠性得有效提高,从而使广大用户的利益得到保障。 健全网络安全机制 针对我国网络安全存在的问题,我国先后颁布了《互联网站从事登载新闻业务管理暂行规定》、《中国互联网络域名注册暂行管理办法》、《互联网信息服务管理办法》等相关法律法规,表明政府已经重视并规范网络安全问题。但是就目前来看管理力度还需要进一步加大,需要重点抓这些法律法规的贯彻落实情况,要根据我国国情制定出政治、经济、军事、 文化 等各行业的网络安全防范体系,并加大投入,加大重要数据信息的安全保护。同时,要加大网络安全教育的培训和普及,增加人们网络安全教育,拓展网络安全方面的知识,增强网络安全的防范意识,自觉与不良现象作斗争。这样,才能让网络安全落到实处,保证网络的正常运行。 加强网络病毒防范,及时修补漏洞 网络开放性的特点给人们带来方便的同时,也是计算机病毒传播和扩散的途径。随着计算机技术的不断进步,计算机病毒也变得越来越高级,破坏力也更强,这给计算机信息系统的安全造成了极大威胁。因此,计算机必须要安装防毒杀毒的软件,实时对病毒进行清理和检测,尤其是军队、政府机关及研究所等重点部门更应该做好病毒的防治工作,保证计算机内数据信息的安全可靠。当计算机系统中存在安全隐患及漏洞时,很容易受到病毒和黑客的入侵,因此要对漏洞进行及时的修补。首先要了解网络中安全隐患以及漏洞存在的位置,这仅仅依靠管理员的 经验 寻找是无法完成的,最佳的解决方案是应用防护软件以扫描的方式及时发现网络漏洞,对网络安全问题做出风险评估,并对其进行修补和优化,解决系统BUG,达到保护计算机安全的目的。 3计算机信息安全防范措施 数据加密技术 信息加密是指对计算机网络上的一些重要数据进行加密,再使用编译方法进行还原的计算机技术,可以将机密文件、密码口令等重要数据内容进行加密,使非法用户无法读取信息内容,从而保证这些信息在使用或者传输过程中的安全,数据加密技术的原理根据加密技术应用的逻辑位置,可以将其分成链路加密、端点加密以及节点加密三个层次。 链路加密是对网络层以下的文件进行加密,保护网络节点之间的链路信息;端点加密是对网络层以上的文件进行加密,保护源端用户到目的端用户的数据;节点加密是对协议传输层以上的文件进行加密,保护源节点到目的节点之间的传输链路。根据加密技术的作用区别,可以将其分为数据传输、数据存储、密钥管理技术以及数据完整性鉴别等技术。根据加密和解密时所需密钥的情况,可以将其分为两种:即对称加密(私钥加密)和非对称加密(公钥加密)。 对称加密是指加密和解密所需要的密钥相同,如美国的数据加密标志(DES);非对称加密是指加密与解密密钥不相同,该种技术所需要的解密密钥由用户自己持有,但加密密钥是可以公开的,如RSA加密技术。加密技术对数据信息安全性的保护,不是对系统和硬件本身的保护,而是对密钥的保护,这是信息安全管理过程中非常重要的一个问题。 防火墙技术 在计算机网络安全技术中,设置防火墙是当前应用最为广泛的技术之一。防火墙技术是隔离控制技术的一种,是指在内部网和外部网之间、专用网与公共网之间,以定义好的安全策略为基准,由计算机软件和硬件设备组合而成的保护屏障。 (1)包过滤技术。信息数据在网络中传输过程中,以事先规定的过滤逻辑为基准对每个数据包的目标地址、源地址以及端口进行检测,对其进行过滤,有选择的通过。 (2)应用网关技术。通过通信数据安全检查软件将被保护网络和其他网络连接在一起,并应用该软件对要保护网络进行隐蔽,保护其数据免受威胁。 (3)状态检测技术。在不影响网络正常运行的前提下,网关处执行网络安全策略的引擎对网络安全状态进行检测,对有关信息数据进行抽取,实现对网络通信各层的实施检测,一旦发现某个连接的参数有意外变化,则立即将其终止,从而使其具有良好的安全特性。防火墙技术作为网络安全的一道屏障,不仅可以限制外部用户对内部网络的访问,同时也可以反过来进行权限。它可以对一些不安全信息进行实时有效的隔离,防止其对计算机重要数据和信息的破坏,避免秘密信息泄露。 身份认证 采取身份认证的方式控制用户对计算机信息资源的访问权限,这是维护系统运行安全、保护系统资源的一项重要技术。按照用户的权限,对不同的用户进行访问控制,它的主要任务是保证网络资源不被非法使用和访问,是防止不法分子非法入侵的关键手段。主要技术手段有加密控制、网络权限控制、键盘入口控制、逻辑安全控制等。 4结束语 计算机网络安全是一项复杂的系统工程,随着网络安全问题日益复杂化,计算机网络安全需要建立多层次的、多 渠道 的防护体系,既需要采取必要的安全技术来抵御病毒及黑客的入侵,同时还要采用 规章制度 来约束人们的行为,做到管理和技术并重。我们只有正视网络的脆弱性和潜在威胁,大力宣传网络安全的重要性,不断健全网络安全的相关法规,提高网络安全防范的技术水平,这样才能真正解决网络安全问题。 猜你喜欢: 1. 计算机网络安全技术论文赏析 2. 计算机网络安全技术论文范文 3. 计算机网络信息安全的论文 4. 计算机网络安全方面的论文 5. 计算机网络安全的相关论文

相关百科

热门百科

首页
发表服务