你好,mdr 1和abcde这个是一样的,是万里通过离职,祝你生活愉快
当然是不一样啦,因为这两个的侧重点是不一样的,一个适合听人的声音,一个更加适合听摇滚的声音。
ATP binding cassette subfamily B member 1多药耐药性蛋白
你做的应该是MTHFR基因多态性的检测,检测是cc纯合型,结果还不错,要是结果是TT纯合的,吃甲氨蝶呤毒副作用就会很大
2004年4月20日,一艘载满125辆各种型号的物流论文封面格式沃尔沃卡车的物流论文封面格式万吨巨轮抵达广州黄埔港码头,这是沃尔沃首次如此大规模地批量进口卡车,同时也创下了国内近年来单一船次、单一品牌进口卡车的数量之最。本刊记者亲临现场见证了这一壮观的场面。 最近一段时间,沃尔沃卡车在中国市场的活动频繁,不断成为新闻的注目焦点。继3月31日的第一批国产沃尔沃卡车在济南的合资工厂下线仅隔半个多月,沃尔沃卡车公司又有如此大规模的动作,令人不禁起了探解之意。 在广州黄埔码头的到车现场,记者恰逢沃尔沃卡车亚洲区副总裁,大中国区常务副总裁兼首席运营官吴瑜章先生,和沃尔沃卡车华南区进口卡车总代理商毛维理先生,他们的侃侃而谈解答了记者的疑惑。 沃尔沃卡车公司在几年前就清醒地认识到,中国的公路建设会有爆炸性的发展。随着越来越多的高速公路的贯通,中国的公路运输会发生质的变化。早在20世纪90年代,我国的公路运输量就超过铁路,成为第一大物流运输形式。国家对公路尤其是高速公路建设的投入决心很大。从1996年到2000年,国家每年投资2000亿元人民币进行公路建设,累计投资已超过9000亿元。到2003年底,我国建成了由“两纵两横和三条主要公路”为基干的全国高速公路网。2010年,将在此基础上将公路网建成“五纵七横”的网络。从物流角度分析,300到500公里内的运输及更长距离的门到门的服务均使用重型卡车来完成。
我门的是到中国知网或者图书馆找的
经常有病人问:癌症会不会传染,癌症病人需不需要隔离?癌症本身并不会传染。传染必须具备3个条件:传染源、传播途径和易感人群。癌细胞不释放传染因子,所以不具备传染性。但是,有的病人说:我和我家里人都得了肿瘤,那是不是传染的呢?值得一提的是,近年来,癌症表现出的家族聚集性越来越被人们所重视。同一家族中,胃癌高发,或者乳腺癌高发,或者肺癌高发,越来越使人们谈癌色变。那么家族聚集性到底是怎么一回事?拿胃癌举例,10%的胃癌表现为家族聚集性胃癌,家族聚集性胃癌可能由强遗传易感基因引起,也可能由家族人群相似的饮食、生活习惯所引起。比如某些家庭喜欢吃腌制食物或偏咸食物,某些家庭喜欢吃辣,某些家庭喜欢饮酒等,这些都容易诱发胃癌。另外,幽门螺旋杆菌感染是引发胃癌的又一重要因素。我国人群中幽门螺旋杆菌的带菌率在61%是相当高的,其主要因为我国人群在饮食习惯上有共用餐具的特点,加上饮食不洁、不节等原因,在一个家庭中极易造成互相传染的聚集性现象。再加上生活环境、习惯相同等不利因素,所以也具有诱发家族聚集性胃癌的可能。癌症并不具有传染性,但它的家族聚集性表现却不容忽视。我们所能做到的只有:定期体检,加强自身锻炼,增强免疫力,健康饮食,健康作息,保持身心愉悦。及时有漏网之鱼的癌细胞残存,也可以用自身的免疫力消灭它。
首先,我是胃肠外科医生,我要告诉各位,胃癌不会传染,与胃癌的患者一起吃饭、工作和生活,并不会引起胃癌传染。为什么一个家族里面经常有几个胃癌的患者呢?主要是以下几方面的原因:(1)不良的饮食习惯一个家庭的各位成员,每天吃着一样的东西, 拥有相同或者相似的饮食习惯。而消化道肿瘤,与饮食因素的关系是非常密切的。不良的饮食习惯,包括以下方面:爱吃腌制食品,例如咸鱼,腌菜,咸菜等等,或者口味比较重,爱吃咸的,炒菜放盐多,爱吃酱油。胃粘膜是无法耐受高盐的,长期的高盐饮食,会损害胃粘膜,导致急慢性的胃损伤,炎症,溃疡,甚至是胃癌。其他的不良饮食习惯还有不爱吃蔬菜水果,维生素摄入量过少,喜欢抽烟、喝酒、喜欢吃高脂食物等等,还有饮食不规律,饱一顿饥一顿,喜欢吃宵夜等等,这些因素都可能与胃癌有着非常密切的关系。(2)幽门螺杆菌感染幽门螺杆菌是一种专门生活在胃里面的细菌,可以导致胃炎,胃溃疡,黏膜相关淋巴组织(mucosa associated lymphoid tissue,MALT)淋巴瘤,胃癌。幽门螺杆菌已经被世界卫生组织的国际癌症研究机构列为一类致癌物。幽门螺杆菌可以通过口口途径传播,一起吃饭,嘴对嘴喂食,接吻等方式,都可以导致幽门螺杆菌传播。胃癌还可以通过粪口途径传播,便后没有洗手,可以引起传染,而且,幽门螺杆菌可以在水中存活数日,有可能通过饮用水传播。所以,一个家族里面,如果有一个人感染了幽门螺杆菌,可能全家都难以幸免。(3)遗传因素尽管胃癌不会传染,但是有可能遗传。如果家族中有一个人罹患胃癌,他的后代患胃癌的几率是显著增加的,这里面有可能是遗传基因在发挥作用,后代从父母那里获得了一些不好的基因,导致癌症的发病率也增加。已有报道称胃癌与某些癌症综合症有关,包括遗传性非息肉性结直肠癌,家族性腺瘤性息肉病,遗传性弥漫性胃癌,P-J综合征等等。遗传性弥漫性胃癌是一种高度侵袭性的肿瘤,预后不良。有研究显示,遗传性弥漫性胃癌与CDH1基因突变有关系,遗传呈现为高外显率的常染色体显性遗传,携带突变基因,终身患癌的概率,男性为40%至67%,女性为60%至83%。综上所述,胃癌并不会传染,与胃癌患者一起吃饭,睡觉,工作和生活,并不会引起癌症直接传播,大家可以放心。但是,不良的饮食习惯,幽门螺杆菌感染,还有遗传因素,这三个因素会导致胃癌具有家族聚集性。
通常来说,癌症是不会传染的,即使是肝癌和肺癌也不会传染。但是,癌症的产生,与遗传有一定的关系。尤其是肝癌,肺癌乳腺癌等,如果有家族病史,那么后代患癌症的概率要大一些。所以如果有家族病史,一定要记得定期进行身体检查。
此外,胃癌虽然不会传染,但是引起胃癌的幽门螺旋杆菌确实会传染。主要通过人们共用餐具,一起聚餐进行传染。据说中国有将近一半的人患有幽门螺旋杆菌感染。这是引起胃癌的一大因素。
所以,为了健康,在聚餐的时候,采分餐制或者使用公筷,还是很有必要的。
定期进行体检,提前知道自身状况,也是非常有必要。不能为了省那么几百块钱而造成更大的损失。
胃癌是不会传染的,癌症应该都是不会传染的。之所以一家人都患上癌症,有可能是这一家人的基因出现了问题,因为有一些癌症的话是由于家族基因导致的。
胃癌是不会传染的,癌症应该都是不会传染的。之所以一家人都患上癌症,有可能是这一家人的基因出现了问题,因为有一些癌症的话是由于家族基因导致的。胃癌是不会传染的,癌症应该都是不会传染的。之所以一家人都患上癌症,有可能是这一家人的基因出现了问题,因为有一些癌症的话是由于家族基因导致的。胃癌是不会传染的,癌症应该都是不会传染的。之所以一家人都患上癌症,有可能是这一家人的基因出现了问题,因为有一些癌症的话是由于家族基因导致的。胃癌是不会传染的,癌症应该都是不会传染的。之所以一家人都患上癌症,有可能是这一家人的基因出现了问题,因为有一些癌症的话是由于家族基因导致的。胃癌是不会传染的,癌症应该都是不会传染的。之所以一家人都患上癌症,有可能是这一家人的基因出现了问题,因为有一些癌症的话是由于家族基因导致的。
袁丽,1971年7月,医学硕士,诉讼法学博士,四川大学在站博士后,中国政法大学证据科学研究院(证据科学教育部重点实验室)副教授,法大法庭科学技术鉴定研究所副主任法医师。主要从事法医学的教学、科研及鉴定工作。1994年赣南医学院临床医学专业毕业,获医学学士学位;2004年中国人民公安大学法医学专业毕业,获医学硕士学位;2010年中国人民公安大学诉讼法专业物证技术方向毕业,获法学博士学位;2011年四川大学基础医学与法医学院,在站博士后。 1、参与教育部重点课题攻关项目《医疗纠纷解决机制的法律问题研究》,2006;2、参与教育部规划基金项目《DNA科学证据规则研究》的研究工作,2006;3、参与国家自然基金项目《Y染色体miniSTR国产化试剂的研究与法医学应用》的研究工作,2007;4、主持北京市教育委员会共建项目《道路交通事故中困难检材的DNA分析》,2007;5、主持中国政法大学2009年校级人文社会科学研究项目《DNA证据应用研究》;6、主持上海市法医学重点实验室开放课题《非CODIS系统STR在中国多个群体遗传多态性的研究》,2010,项目批准号KF1003;7、主持教育部一般人文项目《DNA证据相关问题研究》,2011,项目批准号11YJC820158。 论文:1、袁丽. 法医学专业法医学教学存在的问题与对策研究[J]. 公安学刊, 2010(6), 、袁丽, 鲁涤, 姜伯玮, 等. 手部皮肤脱落细胞的DNA检验[J]. 中国法医学杂志, 2010(4): 、袁丽, 叶健, 姜成涛, 等. 3个STR基因座在岫岩满族及广州汉族群体遗传多态性[J]. 中国人民公安大学学报, 2010, 2, 、袁丽, 叶健, 姜成涛, 等. 山西地区汉族人群六个短串联重复序列基因座的遗传多态性[J]. 中华医学遗传学杂志, 2010, 27(2), 、袁丽, 鲁涤, 杨雪, 印佳. 车辆上脱落细胞STR检验[J]. 证据科学, 2010, 18(1): 、袁丽, 叶健, 姜成涛, 等. 荧光复合扩增调查北方汉族6个STR基因座遗传多态性[J]. 中国人民公安大学学报, 2010, 1, 、袁丽, 鲁涤, 刘耀. 低拷贝DNA模板检验方法探讨[J]. 中国法医学杂志, 2009, 24(6): 、袁丽, 狄胜利. 早产和胎盘早剥的损伤程度鉴定(附1例分析)[J]. 证据科学, 2009, 17(5):、袁丽, 常林. 试论医疗过失司法鉴定文书[J].(收录在“第十七届医学法学大会”国际研讨会论文全文光盘),中国司法鉴定. 2008, 12:、袁丽, 鲁涤. 动物STR遗传标记检测与应用. 法医遗传学进展与应用.2008, 、袁丽. 论DNA鉴定结论的证据效力的研究[J]. 中国司法鉴定, 2008, 3:、袁丽, 王旭. 车祸后孤立性颅脑深部血肿1例伤残评定[J].法律与医学, 2007, 14(4):、袁丽.微量DNA的STR分型策略[J]. “证据理论与科学”国际研讨会论文集, 2007: 、袁丽, 姜成涛, 叶健. 用克隆技术制备STR等位基因分性标准物的研究[J].中国人民公安大学学报, 2007, 3:、袁丽, 张俊.DNA证据审查初探[J].中国人民公安大学学报, 2007, 2:、袁丽, 鲁涤, 杨雪.甲醛固定石蜡包埋组织的DNA鉴定2例[J].中国人民公安大学学报, 2006, 10(4): 、袁丽, 鲁涤.动物PCR-STR分型技术在法庭科学中的应用[J].第八届全国物证鉴定技术破案研讨会论文选, 2006:、袁丽, 鲁涤, 毋丽娜.石蜡包埋人体组织STR检验的探讨[J].法律与医学杂志, 2006, 13(1):、袁丽, 鲁涤, 杨雪.中国北方汉族人群D6S1043、D2S1338和PentaE基因座遗传多态性[J].中国法医学杂志, 2006, 21(1):、袁丽, 叶健, 鲁涤, 等。等位基因分型标准物的法医应用和制备研究[J].法律与医学杂志, 2005, 12(3):、袁丽, 鲁涤, 杨雪.国产STR荧光复合试剂盒DNAtyper15应用结果分析[J].刑事技术, 2004, 增刊:、袁丽, 陈帅峰, 胡盟, 等.D2S1338基因座在华北汉族的遗传多态性分析[J].中国人民公安大学学报, 2004, 10(2):、袁丽, 赵兴春, 张志强, 等.CTAB+磁珠法提取火烧骨DNA的研究[J].中国人民公安大学学报, 2003, 9(4):、袁丽.SNPs在法庭科学中的应用[J]. 浙江公安高等专科学校学报, 2002, 6:118-119.参编:1、中国证据法治发展报告1978-2008,中国政法大学出版社,2011年3月出版;2、中国证据法治发展报告2009,中国政法大学出版社,2011年5月出版。 《常染色体非CODIS系统STR荧光复合扩增试剂的研制及其法医学应用》,2011年获中国人民公安大学优秀博士学位论文奖。
阿司匹林抵抗与基因多态性的研究进展【关键词】 阿司匹林抵抗;基因多态性阿司匹林作为一种有效的抗血小板聚集药物广泛应用于心脑血管疾病的防治,临床观察显示阿司匹林能减少约25%的心脑血管疾病复发。然而,并不是所有患者都能从阿司匹林治疗中获益,有研究显示~个体对阿司匹林的抗血小板作用不敏感,即存在阿司匹林抵抗现象(aspirin resistance,AR) [1]。阿司匹林抵抗的确切机制不明,遗传可能为其重要因素,本文将近年AR与基因多态性方面的研究作如下综述。1 阿司匹林抵抗 阿司匹林抵抗的定义 Bhatt[2]等将阿司匹林抵抗分为临床性及生化性。临床性为患者口服阿司匹林后仍发生缺血性血管疾病;生化性为口服阿司匹林后,未能改变血小板功能试验结果。 阿司匹林抵抗的分型 有研究[3]将生化性阿司匹林抵抗分为3型:(1)Ⅰ型阿司匹林抵抗(药动学型):口服同样剂量的阿司匹林,体内血栓素(TX)合成和胶原诱导血小板聚集均未被抑制。而体外富血小板血浆中加入100 μmol/L阿司匹林后可被抑制,提示使用小剂量阿司匹林有相当大的药动学差异。(2)Ⅱ型阿司匹林抵抗(药效学型):无论体内及体外,口服阿司匹林后,TX合成和胶原诱导血小板聚集均未被抑制,提示该型阿司匹林抵抗的机制与环氧化酶(COX)的遗传多态性有关。(3)Ⅲ型阿司匹林抵抗(假性阿司匹林抵抗):口服阿司匹林后能抑制TX合成,但不能抑制胶原诱导的血小板聚集。该型患者之所以被冠以“假性抵抗”,因为阿司匹林已抑制了TX合成,而不能抑制其他物质如胶原诱导的血小板聚集。2 阿司匹林抵抗机制AR发生的具体机制尚不清楚,可能与药物剂量不足[4],环氧化酶1(COX1)及血小板糖蛋白(GP)的基因多态性,胶原,吸烟,血脂异常等多种因素有关。血小板活化路径可由血栓素A2(thromboxaneA2,TXA2)、二磷酸腺苷(adenosine diphosphate,ADP) 、胶原、凝血酶和糖蛋白(glycoprotein,GP)Ⅱb/Ⅲa 受体等诱导,而阿司匹林仅能有效地阻断血栓素A2途径。目前,对于血小板活化路径及基因多态性与阿司匹林抵抗的关系研究主要集中在以下几个方面[56]:(1)血栓素激活途径中编码环氧合酶1 (cycloxygenase1 ,COX1) 的基因多态性。(2)GPⅡb/Ⅲa激活途径中编码血小板膜GPⅢa的血小板抗原1/血小板抗原2 (platelet antigen1/platelet antigen2,PLA1/PLA2)多态性。(3)胶原激活途径中编码血小板膜GPⅠa/GPⅡa的807C/T和873G/A多态性。(4)5二磷酸腺苷受体P2Y1的基因多态性。这些多态性位点有可能影响阿司匹林的抗血小板作用。现从基因水平分析阿司匹林抵抗的机制。 环氧合酶基因多态性 COX是前列腺素合成过程中的重要限速酶,它有两种同工酶:COX1和COX2。COX1是花生四烯酸转换为前列腺素G/H途径中的第一个酶,其有两种酶活性,一种环氧化酶活性催化前列腺素G的生成,一种氢过氧化物酶(HOX)活性减少前列腺素G,生成前列腺素H,前列腺素H更进一步被COX催化成为前列腺素和血栓素[7]。阿司匹林抗血小板作用机制主要是使COX1丝氨酸530不可逆的乙酰化,从而使该酶失活,阻断了TXA2的形成。目前已发现多个COX基因多态性位点[8],不同COX的单核苷酸多态性(single nucleotide polymorphisms,SNPs)可影响COX的蛋白结构或构象,使其对阿司匹林抑制作用的敏感性极不均一,构成一些病人AR的结构基础。Maree等[9]将144位冠心病患者按COX1单核苷酸多态性分为五组[A842G,C22T(R8W),G128A(Q41Q),C644A(G213G) 和C714A(L237M)],均给予阿司匹林口服,发现A842G与C50T完全连锁不平衡。携带含有突变体842G等位基因的患者与野生型A842相比,花生四烯酸诱导的血小板激活和血清血栓烷B2 (TXB2 ,TXA2 的下游产物)产生更明显,提示携带突变体842G等位基因的患者对阿司匹林治疗较不敏感。表明COX1的遗传变异性可以影响花生四烯酸诱导的血小板聚集和血栓形成,病人对阿司匹林的反应部分决定于COX1的基因型。GonzalezConejero等[10]的研究则显示COX1 50T等位基因可能与阿司匹林抵抗有关。 血小板糖蛋白(GP)Ⅱb/Ⅲa基因多态性 血小板糖蛋白GPⅡb/Ⅲa是细胞黏附受体整合素家族中的一员,含有纤维蛋白、纤维连接蛋白、von willbrand factor(vWF)等黏附蛋白的特异结合位点,参与血小板黏附和聚集。AR可能和血小板膜GPⅡb/Ⅲa受体复合物的多态性有关,GPⅡb/Ⅲa受体是血小板活化的最后共同通路。编码GPⅡb/Ⅲa的基因具有高度的多态性。GPⅡb/Ⅲa基因(包括编码GPⅡb和GPⅢa的基因) 突变、缺失或插入导致表型改变,进而引起血小板功能改变。迄今已发现C157T、A1163C、A1553G、T1565C等多个GPⅢa多态性位点,较为常见的是外显子2第1565位氨基酸的突变,即T1565C(Leu33Pro) ,编码Leo的位点称为PLA1(HPA1a),编码Pro的位点称为PLA2 (HPA1b)。关于GPⅡb基因多态性的研究较少,主要有GPⅡbMax/Max +(G2603A,V837M),HPA3a/3b(T2622G,Ile843Ser) ,GPⅡbG1063A(Glu324Lys) 等多态现象,其中研究最为广泛和深入的是GPⅡb残基843位Ile/Ser的变异,它与人类血小板抗原3 (HPA3) 相关。大量证据表明,GP受体多态性是动脉血栓形成的遗传危险因素,它能造成黏附受体成分的表达、功能和免疫遗传学的多样性。血小板激动剂(如TXA2)通过细胞内信号激活GPⅡb/Ⅲa受体,介导纤维蛋白原及其受体结合,然后促进血小板聚集。阿司匹林通过干扰COX非依赖性细胞内信号转导并使GPⅡb和GPⅢa分子乙酰化来抑制GPⅡb/Ⅲa的活化。尽管还未完全弄清,但目前所知的COX非依赖性信号转导途径可能包括跨膜蛋白受体、磷脂酶、Ca2 +释放、腺苷酸环化酶、鸟苷酸环化酶和蛋白激酶C等。某些弱的激动剂(如ADP、肾上腺素和胶原蛋白)导致的GPⅡb /Ⅲa激活可被阿司匹林部分抑制。在PLA2基因型存在时,抗血小板作用可以因这种替代途径减少而降低。Agnieszka Slowik等[11]研究发现PLA2等位基因是男性患者大血管病变所致卒中独立的危险因素。该研究分别选取92例大血管病变所致卒中患者及184例对照者,103例小血管病变所致卒中患者及206例对照者,182例心因性卒中患者及182例对照者。结果显示小血管病变及心因性卒中患者与对照者相比,PLA2等位基因出现的频率相似,无统计学意义;而大血管病变所致卒中的男性患者PLA2出现频率高( vs ;P= ,OR=;CI为~)。Grove等[12]检测了1191例健康人和1019例冠心病患者的PLA2频率,在这些患者中529例以前有过心肌梗死史。结果健康人中28%为PLA2基因型,28%的冠心病患者(除外心肌梗死患者)为PLA2基因型,35%的心肌梗死患者为PLA2阳性。健康对照与心肌梗死患者之间PLA2基因频率有统计学差异。因此,他们认为斯堪的纳维亚人PLA2基因型与心肌梗死而不是冠心病的危险增加有关。Szczeklik A研究的结果提示与PLA1相比,PLA2等位基因更倾向于促进血栓的形成从而参与了阿司匹林抵抗的发生。Papp E等[13]研究也发现,阿司匹林抵抗患者中PLA2等位基因出现的频率要明显高于那些对阿司匹林有良好反应的受试者,而且该研究中所有PLA2/A2 基因型患者对阿司匹林的抗血小板反应均不良。这就提示PLA2等位基因可能与阿司匹林疗法反应的不充分、不敏感相关。然而,Macchi等[14]的研究发现PLA1等位基因更容易对小剂量阿司匹林治疗发生抵抗。 血小板糖蛋白GPⅠa/Ⅱa受体基因多态性 GPⅠa/Ⅱa (整合素α2β1 )位于连接血小板与胶原纤维(Ⅰ、Ⅱ型)或非胶原纤维( Ⅲ、Ⅳ型)的二价阳离子键的中间。在正常个体与那些先天遗传存在α2基因的四个等位基因的个体中,其血小板表面表达的GPIa/Ⅱa是不同的。GPIa基因位于第5号染色体上,对于这一基因的一些相关研究,揭示它的一些有症状或无症状的多态现象,以及由此引起的受体的结构和功能的改变,以及血小板表面的GPⅠa/Ⅱa受体多拷贝间的差异。α2GPIa多态性—807CT(phe224)和873GA(Thr246)已被证实与血小板表面受体不同的表达有关。基因型807TT(873AA)与受体的高密度表达有关,而807CC(873GG)则与低密度表达有关。杂合子则与中间受体表达的水平有关。第三种多态性是由于1648位点上G到A被替换所致,这同时也引起505位点(Br系统)上Glu/Lys被替换。同时,GPIa807C/T与Glu505 lys之间存在基因相关,且Br的多态性与位于核苷酸环化酶837(CT)上的一个稀有多态性相连结,携带等位基因I(807T/873T/873A /Brb)者表现出高水平的GPⅠa/Ⅱa,而携带等位基因Ⅱ(807C /837T/873G/Brb)和Ⅲ(807C/837C/873G/Bra)者则表现出低水平的血小板整合素。胶原是一种重要的血小板聚集诱导剂,血小板胶原受体血小板膜糖蛋白Ⅰa/Ⅱa密度增加可能是血栓形成的潜在危险因素和阿司匹林抵抗的原因,血小板膜糖蛋白Ⅰa/Ⅱa基因多态性可以增加血小板膜胶原受体的密度[15],从而降低阿司匹林疗效。 ADP受体P2Y1基因的变化 ADP是血小板聚集的重要介质,ADP的调节作用是通过与血小板表面G蛋白偶联P2Y受体相连接而实现的。迄今为止已有8种P2Y受体亚型被克隆,对P2Y1和P2Y12的研究较清楚。Gαq偶联P2Y1受体与ADP结合,使钙离子释放,改变血小板形状,使血小板聚集。另一种主要的受体P2Y12与G蛋白Gi偶联,抑制腺苷酸环化酶,活化磷酸肌酸激酶3,活化GPⅡb/Ⅲa受体。任何一个受体的抑制均会引起血小板聚集的显著减少。ADP通过P2Y1和P2Y12受体刺激血小板的激活和聚集,这些受体的突变与止血异常有关,任何一个受体的抑制均会引起血小板聚集的显著减少。阿司匹林以协同方式减少这些情况的发生[16]。P2Y12和阿司匹林的复合拮抗作用已在临床上被证实可显著减少血栓事件的发生[17]。因此,ADP受体P2Y1基因的相应功能变化能够改变ADP的信号功能,并且能降低对阿司匹林(包括P2Y12抑制剂,如噻氯匹啶和氯吡格雷)的反应性,导致血栓前状态的产生和对阿司匹林的反应性降低。Fontana等[18]在98名健康研究对象中发现了P2Y12受体5种多态性,其中4种是完全连锁不平衡。这导致两种单倍体产生,H1 (86%)和H2 (14% ) 。携带H2单倍体的受试者使用较低浓度的ADP (2 μm) ,血小板聚集增多。纯合子H1 (H1 /H1)平均聚集率为34. 7% (n= 74) ,有一个H2等位基因(H1 /H2,n= 21)聚集率为67. 9% ,在有2个H2等位基因(H2 /H2,n=3)聚集率高达82. 5%。这提示P2Y12多态性在阿司匹林抵抗中可能起作用。近来发现P2Y1 受体A1622G多态性与血小板对ADP反应不同相关。携带少见的G等位基因对ADP反应更强。Jefferson等[19]在332例男性有心肌梗死史的患者中研究发现阿司匹林抵抗患者与P2Y1基因C893T多态性密切相关。携带杂合子C893T等位基因患者与携带常见纯合子C893等位基因者相比阿司匹林抵抗率高出3倍,机制尚不清楚。以上综述了近年来关于基因多态性与阿司匹林抵抗关系的研究结果。由于没有国际公认的对阿司匹林抵抗的定义,多数研究样本量较小,研究结果间还存在很多矛盾,迄今为止遗传对阿司匹林抵抗的作用并不确切。所以仍需继续开展大规模和不同种族人群中的前瞻性研究来证实这些基因多态性与AR有关。【参考文献】[1] Lordkipanidze M,Pharand C, Palisaitis DA, et al. Aspirin resistance:truth or dare[J].Pharmacol Ther,2006,112:733743.[2] Bhatt D, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy[J].Nature Rev,2003,2:1528.[3] WeberA A, Przytulski B, Schanz A, et al. Towards a definition of aspirin resistance: a typological approach[J]. Platelets,2002,13:3740.[4] Lee PY, Chen WH, Ng W, et al. Lowdose aspirin increases aspirin resistance in patients with coronary artery disease[J].Am J Med,2005,118:723727.[5] Zczeklik A , Musia J , Undas A , et al. Aspirin resistance [J].J ThrombHaemost,2005,3 : 16551662.[6] Horiuchi advance in antiplatelet therapy: the mechanisms, evidence and approach to the problems [J]. Ann Med,2006,38 : 162172.[7] CambriaKiely JA, Gandhi PJ. Possible mechanisms of aspirin resistance [J]. J Thromb Thrombol,2002,13:4956.[8] Ulrich CM, Bigler J, Sibert J, et al. Cyclooxygenase 1 (COX1) polymorphisms in AfricanAmerican and Caucasian populations[J].Hum Mutat,2002,5:409410.[9] Maree AO, Curtin RJ , Chubb A, et al. Cyclooxygenase1 hap lotype modulates platelet response to aspirin[J]. J Thromb Haemost,2005,3: 2 3402 345.[10] GonzalezConejero R, Rivera J, Corral J, et al. Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure [J] . Stroke,2005,36 : 276280.[11] Agnieszka Slowik, Tomasz Dziedzic, et al. A2 alelle of gp3a gene is a risk factor for strok caused by largevessele disease in males[J]. Stroke,2004,35:1 5891 593.[12] Grove EL , Orntoft TF ,Lassen JF , et al . The platelet polymorphism PLA2 is a genetic risk factor for myocardial infarction [J] . J Intern Med,2004 ,255 :637644.[13] Papp E, Havasi V, Bene J, et al. Glycoprotein 3A gene (PlA) polymorphism and aspirin resistance: is there any correlation[J].Ann Pharmacother,2005,39:1 0131 018.[14] Macchi L, Christiaens L, Brabant S, et al. Resistance in vitro to low dose aspirin is associated with platelet PlA1 (GP 3a) polymorphism but not with C807T (GP 1a/4a) and C5T Kozak (GP 1ba) polymorphisms[J].J Am Coll Cardiol,2003,42:1 1151 119.[15] Kunicki TJ, Orchekowski R, Annis D,et al. Variability of integrin α2β1 activity on human platelets[J].Blood,1993,82: 2 6932 703.[16] Andre P, LaRocca T, Delaney SM, et al. Anticoagulants ( thrombin inhibitors) and aspirin synergize with P2Y12 receptor antagonism in thrombosis [J].Circulation,2003,108: 2 6972 703.[17] Steinhubl SR, Berger PB, Mann JT , et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial[J]. JAMA,2002,288: 2 4112 420.[18] Fontana P,DupontA, Gandrille S, et al. Adenosine diphosphateinduced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects[J].Circulation,2003,108: 989995.[19] Jefferson BK, Foster JH,McCarthy JJ , et al. Aspirin resistance and a single gene[J]. Am J Cardiol,2005,95: 805808.
CRISPR的全称Clustered Regularly Interspaced Short Palindromic Repeats,意为成簇规律间隔短回文重复序列,Cas则是CRISPR-associated (Cas) systems。 CRISPR/Cas 系统是原核生物的免疫系统,这个系统可以识别出外源 DNA,并将它们切断,沉默外源基因的表达,用来抵抗外源遗传物质比如噬菌体病毒和外源质粒的入侵。这与真核生物中RNA干扰(RNAi)的原理是相似的。正是由于这种精确的靶向功能,CRISPR/Cas 系统被开发成一种高效的基因编辑工具。在自然界中,CRISPR/Cas系统拥有多种类别,其中 CRISPR/Cas9 系统是研究最深入,应用最成熟的一种类别。 CRISPR/Cas9 利用一段小 RNA 来识别并剪切 DNA 以降解外来核酸分子。现在使用的 CRISPR/cas 9 系统是由最简单的 type II CRISPR 改造而来,该系统由单链的 guide RNA 和有核酸内切酶活性的 Cas 9 蛋白构成。 ⚠️nature video视频: CRISPR: 基因编辑原理及应用 基因敲除:sgRNA+Cas9 基因敲入:sgRNA+Cas9+目的基因(HDR模版) 5‘端开始数20个碱基这一段是需要设计的,这一段用来识别目的基因上的靶标,并通过碱基互补配对原理与靶点位置结合。 gRNA再往后数76个碱基,是另一段transactiviting RNA (tracrRNA)。它的序列是一定的,就像转运RNA一样可以形成空间结构,然后就可以和Cas9酶相结合。 这样一条完整的gRNA就可以识别靶点,并且把与它自身结合的Cas9酶带到这个靶点,引导Cas9酶在靶点处对目的基因的双链DNA进行切断,从而达到基因编辑的目的。 目前又很多在线工具可以用于设计sgRNA 不同的导入方式基因标记效率和脱靶效率不同 参考: CRISPR实验究竟怎么做?手把手教给你 CRISPR/Cas9 基因编辑全套操作和解决方案(TAKARA 讲解)
CRISPR技术再分子生物学发挥重要的作用,许多细菌免疫复合物都相对复杂,其中科学家掌握了对一种蛋白Cas9的操作技术,并先后对多种目标细胞DNA进行切除。CRISPR/Cas9基因编辑系统具有非常精准、廉价、易于使用,并且非常强大的特点。其迅速成为生命科学最热门的技术;给科研工作者提供暨大帮助。
[](javascript:void(0);)
|
CRISPR/Cas系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶(Cas)在序列识别处切割外源基因组DNA,从而达到防御目的。
根据Cas蛋白的特点,可将CRISPR/Cas系统分为Ⅰ、Ⅱ、Ⅲ型。Ⅰ型和Ⅲ型系统需要借助复杂的蛋白复合体发挥作用,Ⅱ型系统仅借助 Cas9蛋白和sgRNA即可对靶目标进行编辑,结构简单,操作容易,因此目前主要使用Ⅱ型CRISPR/Cas9 系统。
CRISPR/Cas自诞生以来,迅速发展,已经成为生命科学领域最耀眼、最有前景的技术。尤其是近两年,在全世界科学家的共同努力下,CRISPR/Cas相关新进展新突破不断涌现。
一、基因编辑技术的发展史
基因编辑可以分为三代,第一代:ZFN;第二代:TELEN;第三代:CRISPR/Cas。这三个基因编辑技术都利用了DNA修复机制,所以我们先来了解一下DNA修复机制( 图1 )。[图片上传失败...(image-8dab49-1625385468208)]
图1-NHEJ修复(左),HDR修复(右)
NHEJ(Non-homologous end joining)
非同源性末端接合
NHEJ修复机制不需要任何模版,修复蛋白直接将双股裂断的DNA末端彼此拉近,在DNA连接酶的帮助下重新接合( 图1 )。
HDR(Homology directed repair)
同源重组修复
当细胞核内存在与损伤DNA同源的DNA片段时,HDR才能发生。
NHEJ的机制简单又不依靠模版,因而NHEJ的活性相对于HDR高出许多。但NHEJ修复出错的概率较高,容易造成移码突变等,基因编辑正是利用了这一点( 图1 )。
的识别切割机制
融合锌指模块和FokI切割结构域形成ZFN ;以二聚体的形式靶向切割每个锌指结构;特异识别3个碱基 ;组装多个锌指结构(识别12-18bp)形成的ZFN对可特异切割基因组靶点 ( 图2 )。
[图片上传失败...(image-3f1d8d-1625385468209)]
图2-ZFN基因编辑原理图
的识别切割机制
两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点;设计灵活识别特异性强( 图3 )。
[图片上传失败...(image-6dcfc-1625385468209)]
图3-TELEN基因编辑原理图
的识别切割机制
crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA( 图4 )。
[图片上传失败...(image-c85235-1625385468209)]
图4-CRISPR/Cas9基因编辑原理图
ZFN、TELEN、CRISPR/Cas9比较
[图片上传失败...(image-dd6344-1625385468209)]
图5-三种基因编辑的比较
二、CRISPR/Cas技术的介绍
CRISPR/Cas9 系统的发现
1987年,在大肠杆菌的基因组中首次发现了一个特殊的重复间隔序列——CRISPR序列,随后,在其他细菌和古菌中也发现了这一特殊序列。
2005年,发现这些CRISPR序列和噬菌体的基因序列匹配度很高,说明CRISPR 可能参与了微生物的免疫防御。
2011年,CRISPR/Cas系统的分子机制被揭示:当病毒首次入侵时,细菌会将外源基因的一段序列整合到自身的CRISPR的间隔区;病毒二次入侵时,CRISPR 转录生成 前体crRNA (pre-crRNA), pre-crRNA 经过加工形成含有与外源基因匹配序列的crRNA,该crRNA与病毒基因组的同源序列识别后,介导 Cas 蛋白结合并切割,从而保护自身免受入侵。
2013年,发现CRISPR/Cas9系统可高效地编辑基因组。随后张锋等使用CRISPR系统成功的在人类细胞和小鼠细胞中实现了基因编辑。
从此开始,CRISPR/Cas9技术给生命科学领域带来了巨大冲击,CRISPR/Cas9相关研究成果频频登上CNS等顶级期刊,近两年更是成为诺贝尔奖热门候选。
CRISPR/Cas技术的原理
CRISPR/Cas9系统的工作原理是 crRNA( CRISPR-derived RNA )通过碱基配对与 tracrRNA(trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA (single guide RNA ),从而引导 Cas9 对 DNA 的定点切割(图4)。
CRISPR/Cas技术的优势
设计简单,简明的碱基互补设计原则,识别不受基因组甲基化影响,能靶向几乎任意细胞任意序列,方便同时靶向多个靶点,切割效率高。
三、CRISPR/Cas的脱靶效应
PAM**** (Protospacer adjacent motif )
前间区序列邻近基序
PAM序列区是CRISPR/Cas9系统行使切割功能的基本条件。如果靶序列 3′端没有PAM序列,即使靶序列与sgRNA序列完全匹配,Cas9蛋白也不会切割该序列位点。 PAM序列主要影响CRISPR/Cas9的DNA切割效率。在细胞水平上,NGG介导的切割效率是最高的。
sgR****NA ****(Single guide RNA )
向导 RNA
sgRNA与目标基因组相结合的 20nt 序列区决定着 CRISPR/Cas 系统的靶向特异性。CRISPR/Cas9与靶位点识别的特异性其实主要依赖于sgRNA与靠近PAM区的10~12 bp的碱基配对,而其余远离PAM序列 8~10 bp 碱基的错配对靶位点识别的影响并不明显。目前研究结果均提示,可能靠近 PAM 的 8~14 bp 序列是决定特异性的关键,其他序列也均在不同程度上影响脱靶效应。
CRISPR/Cas9的脱靶效应给研究带来了一定程度上的不确定性,也是限制其发挥更大潜力的主要原因之一。
2017年5月30日, Nature 杂志子刊 Nature Methods 刊登了美国哥伦比亚大学研究人员的一篇文章,研究人员通过CRISPR/Cas9成功修复了导致小鼠失明的基因后,对小鼠进行全基因测序,发现修复后的小鼠基因组有超过1500个单核苷酸突变,以及超过100个位点发生大片段插入或缺失( 图6 )。文章的结论无疑引发了巨大震动,也给正在进行中的CRISPR/Cas9带来了不确定性。
[图片上传失败...(image-f21b76-1625385468208)]
图6--动物体内实验中CRISPR/Cas9编辑后发生意想不到的突变
仔细分析后,发现该文章并不十分严谨,文章仅有两只小鼠作为实验组,一只作为对照组,数量不足以证明结论是否只是个例。而且单碱基突变是生物体内自然现象,不能全归于CRISPR/Cas9。整个实验只基于一个sgRNA数据,且该sgRNA特异性评分很低,造成脱靶效应也应该在预料之中( 图7 )。
[图片上传失败...(image-751d94-1625385468208)]
图7--针对 Nature Methods 文章的回应
经过一系列的研究和改进,目前CRISPR系统的脱靶性已经很低,当然,要想达到理想的状态,还有很长的路要走。
四、CRISPR/Cas技术的进展
2016年6月,张锋在 Science 发表文章,发现CRISPR/Cas13a能有切割细菌的特定RNA序列。
2016年9月,Jennifer Doudna在 Nature 发表文章,证实CRISPR/Cas13a可以用于RNA检测。
2017年2月22日,美国纪念斯隆.凯特林癌症中心(MSK)研究人员在 Nature 杂志发文,使用腺相关病毒(AAV)介导,将CRISPR/Cas9基因编辑技术应用于CAR-T疗法。该研究既解决了传统CAR-T疗法的随机整合可能存在的潜在危害,又大大降低了CAR-T细胞发生分化或癌化的风险,赋予了CAR-T技术全新的高效性、稳定性、安全性。
2017年8月2日,Shoukhrat Mitalipov在 Nature 发表长文,使用CRISPR/Cas9技术修正了植入子宫前的人类胚胎中一种和遗传性心脏病有关的变异。该研究证实了通过编辑人类胚胎进行治疗遗传病是安全可行的。值得一提的是,该成果受到了基因编辑领域大牛George Church等人的质疑。
2017年8月11日,杨璐菡等在 Science 发表文章,通过CRISPR/Cas9技术敲除猪基因组中的内源逆转录病毒(PERV)序列,并克隆出多只PERV失活小猪。向最终实现使用猪器官进行人体器官移植的终极目标迈进了一大步。
2017年9月,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术敲除与镉吸收和积累相关基因的水稻育种成功。该研究从根本上解决了水稻镉污染的问题,将扭转我国部分农作物重金属超标的问题,进而改善部分人群重金属慢性中毒的问题。
2017年10月4日,张锋在 Nature 发表论文证实CRISPR/Cas13a能够在哺乳动物细胞中编辑特定的RNA。CRISPR/Cas13a能够达到RNAi相似的降低基因表达的效率,而且有更强的特异性,且对细胞内天然的转录后调控网络的影响更小。
2017年10月19日,Jennifer Doudna在 Nature 发表文章,设计了高精确性的Cas9变体—HypaCas9。该研究极大地降低了Cas9的脱靶效应,且不降低靶向切割效率。
2017年10月25日,张锋在 Science 发表文章介绍CRISPR新系统--REPAIR,可以高效的进行RNA的单碱基修复。因为不改变DNA序列,所以为通过基因编辑治疗遗传病而又不永久影响基因组提供了新可能。
2017年10月25日,哈佛大学Broad研究所的David Liu实验室在 Nature 发表长文,报道了新型腺嘌呤基因编辑器——ecTadA-dCas9,可以将A·T碱基对转换成G·C碱基对,该技术首次实现了不依赖DNA断裂即可进行基因编辑的技术,即单碱基基因编辑技术。该技术高于其它基因组编辑方法的效率,且几乎没有随机插入、删除或其它突变等不良副作用,因此为今后大范围治疗点突变遗传疾病提供了极大的便利。
五****、展望
近几年CRISPR/Cas基因编辑技术飞速发展,推广应用到了生物、医学、农业以及环境等多个领域,造就了一批批科研奇迹,尤其是在遗传病的治疗、疾病相关基因的筛查与检测、肿瘤治疗以及动植物的改造、病原微生物防治等领域有着巨大的潜力,也将深远地影响整个世界。
特别感谢:BioArt主编给予的帮助和意见以及吉满生物吴晨提供图1-图5的图片。
|
| |
重写生命的“剪刀”被发现,剪断基因重新组合,脑洞之大你敢信?但却有人做到了,改变生命的链接,一起来看本期的“剪刀”-CRISPR/Cas9基因编辑技术。