首页

> 学术期刊知识库

首页 学术期刊知识库 问题

函数与方程思想论文答辩

发布时间:

函数与方程思想论文答辩

三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. ●难点磁场 已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围. ●案例探究 〔例1〕已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R). (1)求证:两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围. 命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”. 技巧与方法:利用方程思想巧妙转化. (1)证明:由 消去y得ax2+2bx+c=0 Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4〔(a+ c2〕 ∵a+b+c=0,a>b>c,∴a>0,c<0 ∴ c2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=- ,x1x2= . |A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2 ∵a>b>c,a+b+c=0,a>0,c<0 ∴a>-a-c>c,解得 ∈(-2,- ) ∵ 的对称轴方程是 . ∈(-2,- )时,为减函数 ∴|A1B1|2∈(3,12),故|A1B1|∈( ). 〔例2〕已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围. (2)若方程两根均在区间(0,1)内,求m的范围. 命题意图:本题重点考查方程的根的分布问题,属★★★★级题目. 知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制. 解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ∴ . (2)据抛物线与x轴交点落在区间(0,1)内,列不等式组 (这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过) ●锦囊妙计 1.二次函数的基本性质 (1)二次函数的三种表示法: y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n. (2)当a>0,f(x)在区间〔p,q〕上的最大值M,最小值m,令x0= (p+q). 若- 0时,f(α) |β+ |; (3)当a>0时,二次不等式f(x)>0在〔p,q〕恒成立 或 (4)f(x)>0恒成立 ●歼灭难点训练 一、选择题 1.(★★★★)若不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的取值范围是( ) A.(-∞,2 B. -2,2 C.(-2,2 D.(-∞,-2) 2.(★★★★)设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)的值为( ) A.正数 B.负数 C.非负数 D.正数、负数和零都有可能 二、填空题 3.(★★★★★)已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间〔-1,1〕内至少存在一个实数c,使f(c)>0,则实数p的取值范围是_________. 4.(★★★★★)二次函数f(x)的二次项系数为正,且对任意实数x恒有f(2+x)=f(2-x),若f(1-2x2)0且a≠1) (1)令t=ax,求y=f(x)的表达式; (2)若x∈(0,2 时,y有最小值8,求a和x的值. 6.(★★★★)如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围. 7.(★★★★★)二次函数f(x)=px2+qx+r中实数p、q、r满足 =0,其中m>0,求证: (1)pf( )<0; (2)方程f(x)=0在(0,1)内恒有解. 8.(★★★★)一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元. (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案 难点磁场 解:由条件知Δ≤0,即(-4a)2-4(2a+12)≤0,∴- ≤a≤2 (1)当- ≤a<1时,原方程化为:x=-a2+a+6,∵-a2+a+6=-(a- )2+ . ∴a=- 时,xmin= ,a= 时,xmax= . ∴ ≤x≤ . (2)当1≤a≤2时,x=a2+3a+2=(a+ )2- ∴当a=1时,xmin=6,当a=2时,xmax=12,∴6≤x≤12. 综上所述, ≤x≤12. 歼灭难点训练 一、1.解析:当a-2=0即a=2时,不等式为-4<0,恒成立.∴a=2,当a-2≠0时,则a满足 ,解得-2<a<2,所以a的范围是-2<a≤2. 答案:C 2.解析:∵f(x)=x2-x+a的对称轴为x= ,且f(1)>0,则f(0)>0,而f(m)<0,∴m∈(0,1), ∴m-1<0,∴f(m-1)>0. 答案:A 二、3.解析:只需f(1)=-2p2-3p+9>0或f(-1)=-2p2+p+1>0即-3<p< 或- <p<1.∴p∈(-3, ). 答案:(-3, ) 4.解析:由f(2+x)=f(2-x)知x=2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x2-2|<|1+2x-x2-2|,∴-2<x<0. 答案:-2<x<0 三、5.解:(1)由loga 得logat-3=logty-3logta 由t=ax知x=logat,代入上式得x-3= ,� ∴logay=x2-3x+3,即y=a (x≠0). (2)令u=x2-3x+3=(x- )2+ (x≠0),则y=au ①若0<a<1,要使y=au有最小值8, 则u=(x- )2+ 在(0,2 上应有最大值,但u在(0,2 上不存在最大值. ②若a>1,要使y=au有最小值8,则u=(x- )2+ ,x∈(0,2 应有最小值 ∴当x= 时,umin= ,ymin= 由 =8得a=16.∴所求a=16,x= . 6.解:∵f(0)=1>0 (1)当m<0时,二次函数图象与x轴有两个交点且分别在y轴两侧,符合题意. (2)当m>0时,则 解得0<m≤1 综上所述,m的取值范围是{m|m≤1且m≠0}. 7.证明:(1) ,由于f(x)是二次函数,故p≠0,又m>0,所以,pf( )<0. (2)由题意,得f(0)=r,f(1)=p+q+r ①当p<0时,由(1)知f( )<0 若r>0,则f(0)>0,又f( )<0,所以f(x)=0在(0, )内有解; 若r≤0,则f(1)=p+q+r=p+(m+1)=(- )+r= >0, 又f( )<0,所以f(x)=0在( ,1)内有解. ②当p<0时同理可证. 8.解:(1)设该厂的月获利为y,依题意得� y=(160-2x)x-(500+30x)=-2x2+130x-500 由y≥1300知-2x2+130x-500≥1300 ∴x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45 ∴当月产量在20~45件之间时,月获利不少于1300元. (2)由(1)知y=-2x2+130x-500=-2(x- )2+ ∵x为正整数,∴x=32或33时,y取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.

“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。

以上3个网站最好,你去看看吧!

用配方的方法来求最快,如,x2+4x+3=0,可以配方为(x+2)2-1=0,那么它的值域是.大于或等于-1…2.用点描绘出一元二次方程的图象,看它和x轴有多少个交点,有多少个交点,那么方程就有多少个解…

函数与方程思想毕业论文

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文

★ 大学生数学毕业论文  ★

大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

初三 就写 论文 厉害 佩服啊你可以 按这个 模式 写一下一、目的要求从一元二次方程、一元二次不等式与二次函数的关系出发,掌握利用二次函数图象求解一元二次不等式的方法。二、内容分析1.本小节首先对照学生已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法。然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法。2.本节课学习一元二次不等式的解法,这是这小节的重点,关键是弄清一元二次方程、一元二次不等式与二次函数的关系。三、教学过程复习提问:1.当x取什么值的时候,3x-15的值(1)等于0;(2)大于0;(3)小于0。(这是初中作过的题目)2.你可以用几种方法求解上题?新课讲解:像3x-15>0(或<0)这样的不等式,常用的有两种解法。(1)图象解法:利用一次函数y=3x-15的图象求解。注:①直线与x轴交点的横坐标,就是对应的一元一次方程的根。②图象在x轴上面的部分表示3x-15>0。(2)代数解法:用不等式的三条基本性质直接求解。注这个方法也是对比一元一次方程的解法得到的。复习提问:画出函数的图象,利用图象回答:(1)方程的解是什么;(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0。(这也是初中作过的题目)新课讲解:1.结合二次函数的对应值表与图象(表、图略),可以得出,方程的解是x=-2,或x=3;当x<-2,或x>3时,y>0,即;当-2经上结果表明,由一元二次方程数的解是x=-2,或x=3,结合二次函数图象,就可以知道一元二次不等式的解集是{x|x<-2,或x>3};一元二次不等式的解集是{x|-2<3}。< p>提出问题:一般地,怎样确定一元二次不等式与的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线与x轴的相关位置的情况,也就是一元二次方程的根的情况(2)抛物线的开口方向,也就是a的符号。新课讲解:1.总结讨论结果:(1)抛物线(a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程的判别式三种取值情况(Δ>0,Δ=0,Δ<0)来确定。因此,要分二种情况讨论。(2)a<0可以转化为a>0。2.分Δ>O,Δ=0,Δ<0三种情况,得到一元二次不等式与的解集。(见教科书)3.讲解教科书例1--例4。4.归纳解一元二次不等式的步骤。(1)把二次项系数化成正数;(2)解对应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向,写出不等式的解集。课堂练习:教科书节第一个练习第1~3题。(第3题相当于求函数的定义域,下一章将学习函数)归纳总结:(可以让学生自行归纳,可参考教科书“小结与复习”中的表)拓广引申:例 对任何实数x,不等式都成立,求k的取值范围。解:当k=0时,原不等式化为2x>0,不是对任何实数x都成立。当k<0时,抛物线开口向下,不等式也不是对任何实数x都成立。因此,我们有故当时,不等式恒成立。四、布置作业1.教科书习题第1、3、6、7题。2.选作:对任何实数x,不等式都成立,求k的取值范围。(k>1)

例析一次函数的常见问题一次函数是初中数学的重要内容之一,在历年的中考中,不仅一些基础题出现,而且一些联系实际的应用题也频频“亮相”。因此,现就有关一次函数的一些常见问题举例分析如下:一、有关字母的取值(取值范围)例1已知y=(k2-1)x2+(k+1)x+k是一次函数,求k的值。简析掌握一次函数的定义“形如y=kx+b(k、b为常数k≠0)的函数,叫做一次函数”是解决这类问题的关键,一定不要忽视了k≠0的隐含条件,否则就会出错。解由题意,得k2-1=0,k+1≠0。∴k=1。二、确定一次函数的表达式例2已知一次函数的图象经过点(3,0)和点(2,5),求这个一次函数的表达式。简析这是一道最常见最基础的确定一次函数关系式的问题,在一次函数y=kx+b(k、b为常数k≠0)中有两个待定系数k和b,需要两个独立的条件,常见的求函数关系式的题型主要有利用定义求表达式,利用一次函数的性质求表达式等。确定一次函数表达式的一般步骤:(1)设出含有待定系数的一次函数关系式;(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程(方程组);(3)解方程(方程组),求出待定系数;(4)把求出的待定系数的值代入所设的关系式。解设一次函数的表达式为y=kx+b(k≠0)由题意,得3k+b=0,2k+b=5,解之得k=-5,b=15。∴这个一次函数的表达式为y=-5x+15。三、一次函数的图象所在象限例3一次函数在同一坐标系下的图象是图1中的()。简析一次函数y=kx+b(k≠0)的图象是一条直线,它所经过的象限是由k、b的符号决定的,理解掌握它们的关系,才可以轻松熟练的解答此类问题。解选(A)。四、有关一次函数图象的交点(一)与坐标轴的交点问题。(略)。(二)两个一次函数的图象交点问题。例4已知两条直线y=2x-3和y=6-x。①求它们的交点坐标;②利用函数图象解不等式:2x-3>6-x;③求这两条直线与轴围成的三角形的面积。简析①二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于求自变量的取值,使两个函数的值相等;从“形”的角度看,解方程组相当于确定两条直线的交点坐标。②一次函数与二元一次方程组之间的关系是解决一次函数与一元一次不等式的基础,正确理解交点坐标与自变量、函数值之间的关系,是解决这类问题的关键。③直线与坐标轴围成的三角形的面积是常见的一次函数综合性较强的题目,它涉及了许多关于坐标、函数的基础内容。这里,正确求出两条直线的交点坐标,是解决直线与坐标轴围成三角形的面积的前提。解①解方程组y=2x-3,y=6-x得x=3,y=3。∴直线y=2x-3和y=6-x的交点为(3,3)。②在同一平面直角坐标系中分别画出直线y=2x-3和y=6-x,(如图2),可以看出,两直线的交点为(3,3)。又由图所示,当x>3时,对于同一个x,直线y=2x-3上的点在直线y=6-x上相应点的上方,这时,2x-3>6-x,所以不等式的解集为x>3。③设直线y=2x-3与x轴的交点为A点,直线y=6-x与x轴的交点为B点。令y=0,分别代入两直线表达式得A(3/2,0)、B(6,0),∴AB=6-3/2=9/2,又由①知两直线的交点为(3,3)∴这两条直线与轴围成的三角形的面积为:S=12×92×3=274。五由函数图象提供信息的问题例5《邹城日报》2007年9月12日报道了“养老保险执行新标准”的消息。尚河中学课外活动小组根据消息中提供的数据,绘制出邹城企业职工养老保险个人月缴费y(元)随个人月工资x(元)变化的图象,如图3,请你根据图象提供的信息解答下面的问题:(1)赵工程师5月份的工资是3500元,这月他个人应缴养老保险元;(2)小王5月份的工资是550元,这月他个人应缴养老保险元;(3)李师傅5月份个人养老保险56元,求他5月份的工资是多少。简析这是以图象提供信息为特征,考查一次函数的综合应用题。解决这类问题首先应具备阅读图象的能力,然后要有分类的数学思想,要注意“分段”地观察图象,即自变量分成若干“段”,观察各“段”中图象的变化情况,逐一加以分析。解从图象易得(1)填元;(2)填元;(3)设中间线段所在直线的解析式为y=kx+b(k≠0),由图象,知该直线过点(557,)和(2786,)∴2786k+b=。解之得k=7/100,b=0∴y=7x/100。∴当y=56时,x=800,即李师傅5月份的工资为800元。(A)(B)(C)(D)y=2x-3y=6-x118

这位几星期后的校友 自己写吧。。。 没办法啊。。。 不过可以看一下参考书 上面有一些内容应该能用的上。。。。。。。再次表示同情以及无奈。。。。。

数学思想方法与中学数学论文

初中数学概念教学论文

范文一

一、问题的提出

数学概念是反映数学对象的本质属性的思维形式,是数学基础知识的核心,是构建数学理论大厦的基石,是形成数学知识体系的主要元素,是导出数学定理和数学法则的基础,是数学思想与方法的载体。正确理解数学概念既是掌握数学基础知识的前提,也是进行判断、推理、计算和证明的依据,许多数学问题的解决常常离不开数学概念。只有真正掌握了数学中的基本概念,才能把握数学的知识系统,才能有正确,合理,迅速地进行运算,推理和论证。因此,搞好数学概念的教学,帮助学生了解数学概念的发生、发展的过程,把握数学概念的本质特征,体会蕴含在数学概念中的数学思想方法,掌握数学概念在解决数学问题中的应用,从而有效地训练学生的思维,培养学生的创新精神和创造能力,是提高数学教学效益的关键。

二、理论依据

1.《数学课程标准》强调:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型。要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,首先要为学生提供一个具体的问题情境,学生通过感知概念的表象等方式,进而理解概念的本质,初步建立新的知识结构的过程。重点指向的是学生学习概念内核,最后达成运用概念,巩固、拓展的环节。

2.教育心理学理论。布鲁纳认为,获得的知识如果没有完满的结构将它联系在一起,那是一个多半会被遗忘的知识,一串不连贯的论据在记忆中仅有短促的可怜的寿命。因此,概念教学必须返璞归真,揭示数学概念的形成过程,让学生从概念的现实原型,概念的抽象过程,数学思想的指导作用,形象表述和符号化的运用等多方位理解一个数学概念,使之符合学生主动建构的教育原理。

3.数学教育学指出,教学中应加强对基本概念的理解和掌握,对一些核心概念要贯穿于初中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。有效的数学概念教学,决不是以让学生学会概念为终极目标,而是让学生在参与数学活动的过程中生成和建构数学概念,更要让学生在知识和能力上获得全面的发展,从而促进数学素养的有效提升。

三、概念生成教学的案例研究

笔者以浙教版八年级上册《中位数与众数》为课例进行了一次尝试,让学生经历这样一个过程,不但能使学生逐步掌握概念本质,还能使学生感受到探究与合作的无限快乐,感觉到自己精神,智慧力量的增长,使学生的个性得到充分的发展,学习效率提高。

本节教材是八年级下册第四章统计初步第三节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节课的重点在于众数与中位数的求法与应用;众数与中位数概念的形成与定义既是重点又是难点。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。

数学概念教学的核心是“归纳”:将凝结在数学概念中的数学家的思维活动的线索揭示出来,用一些学生熟悉的典型事例作载体,引导学生分析各事例的.具体属性、抽象概括出本质属性、归纳总结得出数学概念等思维活动而获得数学概念。我追求一种有意义的活动式学习,主动建构,必要变式训练,重过程也重结果。

1.创设问题情境,揭示数学概念来源

学生的思路应该在学生自己的头脑中产生,教师的作用在于系统地给学生发现事物的机会,启动学生在允许的条件下亲自去发现尽可能多的东西。

因此在教学中,教师应创设情境,使学生在情境中像数学家那样去想数学,经历比较,抽象,概括,假设,验证和分化等一系列的概念形成过程,从中学到研究问题和提出概念的思想方法,在获得概念的同时培养学生的探索能力和创新精神。形成数学概念首先要有十分相关的感性材料,让数学知识与学生的现实生活密切结合,使学生感受到数学是有趣的,是有实际意义的,不仅有利于学生对于所研究对象的感性认识,并在此基础上认识其本质,还能促进数学直觉的形成,数学思维的发展,更能促进学生在以后遇到相关问题时自觉地运用有关的数学经验去思考、解决问题。

2.提供探究任务,明晰数学概念内涵

为鼓励全体学生积极参与并提高课堂效率,我们要求学生自主探索和小组合作学习,利用表格呈现出“众数、中位数”意义。学生清晰地认识到了自己的工作目标,就可以形成与获得所希望的成果,利用别的数集验证或纠正猜想,使合作学习取得成功。由此让学生熟悉归纳猜想的数学思想方法,体验克服困难的兴奋与团结协作的价值。概念的形成是一个积累渐进的过程,因此在概念的的教学中要遵循从具体到抽象,从感性认识到理性认识的原则。学生的思维特点是从具体形象思维逐步向抽象思维过渡的,这种过渡在很大程度上还是依靠丰富的感性材料,所以数学概念不是靠教师讲出来的,而是靠学生自己去感悟,体验的。

3.回归问题原型,实施适度变式训练

在教学中可借助富有探究性、挑战性的问题,让学生在尝试中亲自体验数学概念,通过自己的思考建立起对概念的理解,逐渐认识概念本质。为了巩固学习成果和检验迁移水平,我们将情境改造,形成“貌似神非”和“貌非神是”的新问题,加强变式训练。为了激发学生的内驱力,最有效的方法就是“重视教学与现实生活的联系”使学生引起认知冲突,直面数学困惑,置身于渴望解决问题的情境之中。

4.通过自主评价,深化数学概念理解

通过自主评价,促使学生反思他们的体验和获得的知识等,提高反思性学习的能力。计算平均数的时候,所有的数据都参加运算,它能成分利用数据所提供的信息,在现实生活中较为常用;但它容易受到极端值的影响。中位数的优点计算简单,受极端值影响较小,但不能充分利用所有数据的信息。一组数据中某些数据多次重复出现时,众数往往是人们特别关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。

四、几点思考

1.学生自我表述概念时必须准确

语言是思维的物质载体,数学概念是用科学、精练的数学语言概括表达出来的,它所揭示事物的本质属性必须确定,无矛盾,有根有据并合情合理。所以概念形成之后,应及时让学生用语言表述出来以加深对概念的印象,促进学生内化。同时培养学生正确的表述概念,能促进学生思维的深刻性。

2.教师必须做好引导工作

教师在学生的探究活动中应该扮演一个什么样的角色,应对学生提供多大力度的干预,其分寸较难把握。探究活动与巩固操练的时间如何安排,如何将“接受式”与“活动式”有机结合彰显各自的优点,教师必须做好引导员,引导学生去感受概念引入的必要性与合理性;引导学生合理地进行概念的抽象;引导学生进行概念的“数学化”来培养语义转化能力;引导学生学会在概念的定义中进行科学的归纳;引导学生在概念的应用中深化对概念的认识和理解、体会概念的价值,从而让课堂有机、有序、高效地达成目标。

学好概念是学好数学最重要的一环,对概念的理解透彻了,就能认识到数学的价值,获得运用知识的能力。根据新课标对概念教学的具体要求,优化教学设计,真正使学生在参与的过程中产生内心的体验和创造,达到认识数学思想和本质的目的,培养学生运用数学知识解决实际问题的能力,以及培养学生逻辑思维和空间想象的能力。

范文二

初中教学是一门纯基础的自然科学,学生从正负数的引入,数域的拓展开始,接触的是比小学数学更为抽象的内容。由于它的纯基础性逐步凸现,学生感受到的是比小学数学更枯燥无味的内容,如何提高学生学习数学的兴趣,充分发挥45分钟的课堂效益,将枯燥的内容生动化,变乏味为有趣,提高数学课堂教学效果,长期以来,一直是初中数学老师孜孜以求而探索的问题。本文从我教学中的实践,谈及数学教学的艺术与技巧及如何调动学生学习数学的积极性,启动学生的求知欲望,发挥学生的主体作用,搞好数学教学的几点思考与实践。

一 、运用实验方法,利用学生求新心理,上好入门课

对于初中学生,虽然在小学学过数学,但初中数学则从一个全新的角度入手,出现在他们面前的,是过去从来没有接触过的极其抽象的内容,因此,上好入门课,是学生学好初中数学的基础。学生走进校门,教师就要牢牢抓住学生的求新心理,使他们对学习数学产生浓厚的兴趣,通过一些活动、有趣的自然现象有效地激发学生的学习兴趣和求知欲望。例如正负数的引入,除了教材上的温度计、海拔高度之外,我还让学生自己设计了一些相反意义的量,如从岳阳到武汉和株州都是200公里,但一个往北一个向南,数学上怎样记叙?等等,这些仅靠在小学数学学过的记数方法已不能正确地反映,很自然的就引入了负数概念,这些学生生活中司空见惯的问题能得到合适的解决,立即吸引了学生的注意力,把学生带进了一个崭新的数学世界,从而激发他们在抽象的数学世界探索奥秘的兴趣。这样,同学们带着浓厚的学习兴趣和明确的求知目的进入到了数学课的学习中。

二、运用电教手段,利用学生的求趣心理,培养发展学生的学习兴趣。

抽象的数学概念学生感到枯燥而导致厌学,如何将抽象的数学概念融入到新奇有趣的情境中,是课堂教学的一个难题,如果在教学中能结合教材内容,介绍一些能用数学知识解释的自然景观,数学史方面的奇闻轶事,设计一些有趣的演示或学生探索性的小实验就能引发学生的好奇心,激发学生探知奥秘,获取知识的欲望。在教学中,我利用电教手段,创设情景,形象生动,新颖独特地将学生引入到学习中。例如在讲“圆”这一节时,既对学生进行了爱国主义教育,又引发了学生的求知欲望;在讲“求平均数”这一节时,我首先给同学们放了一段我国女排与古巴女排的比赛录象,其中有宋世雄的解说:“平均身高”,“这个平均身高是怎样计算出来的?有没有很简单的计算方法呢?”随着这个问题的提出,我把每个队员的身高都写出来,同学们身临其境,进入了积极的思维状态,但同时也出现思维受阻表情,对出现的问题产生了“迷惑”,于是我抓住时机,导入新课,这就是我们今天要解答的“迷”。这样同学们带着具体问题在积极思维的状态下进入了新知识学习。用这样的方式上课,把学生的学习情绪从一开始就引入最佳状态,大大激发了学生的求知欲和创造欲,寓知识于趣味之中,令学生信心大增,收到了事半功倍的效果。

三、从生活实例引入,结合实验、活动,辅以电教手段,增强学生感性认识。

学生学习数学兴趣的高低,学习成绩的好坏,取决于学生对所学知识的感知、理解和记忆程度。如果学生对所学知识兴趣强,他们的理解和记忆就强,反之则弱。因此,要获得好的教学效果,首先必须让学生有活跃的思维,所授知识通过学生大脑的思考和筛选,达到理解记忆的目的。这就要求教师在讲授新的知识时,注重教学方法的艺术化,充分调动学生的主观能动性,让学生的思想活动围绕着所授新知识而展开。著名教育家杜威说过,“教材对学生永远不是从外面灌进去的,学习是主动的,它包含着心理的积极开展,决定学习质量的是学生而不是教材”。对于这些童心极重的初中学生来说,一个小球在讲台上滚动一下也会觉得有趣。强烈的好奇心使他们对于发生在生活中的自然现象,往往会产生直接的兴趣。因此,从生活实例出发,提出问题引导学生思考,根据教学内容安排一些有趣的实践活动,辅之以电教手段,既能提高其学习兴趣,又能巩固已学知识,培养其观察能力和思维能力。如在讲“圆”这一节时,我从生活实例出发提出问题引导学生思考,“为什么车轮要设计为圆形?设计为多边形是什么结果?”这一问题的提出,引发了同学们的思考,同时唤起了他们探知究竟的欲望,我抓住这一时机,导入新课,给出圆的定义。同时指出,正是因为轮周上每一点到轮轴的距离相等,车轮在运动中才没有震动的感觉,于是同学们带着问题积极主动的进入到新课的学习中。

四、巧妙开导,巧讲、精练,给学生以主动权。

教学活动要通过学生主动的参与,积极的活动,自动的学习才能达到目的。学生主体作用是否充分发挥,关系着教学的成败。在传授新知识的过程中,教师的主导作用就体现在能否充分调动学生的学习积极性,使之最大限度地发挥其主观能动性上。只有教师的主导作用发挥得恰到好处,学生的主体作用才能充分体现出来。如在讲“勾股定理”这一节时,课前我准备了一批教学卡片,引入新课后,我介绍了在一千多年前,我国数学家就证明了这条定理,引发了同学们的自豪感和好奇心,接着利用教学卡片与学生一起拼出各种能证明结论的图形,在不知不觉中就引导学生对定理进行了证明。让学生参与到教学活动中来,他们通过自己动手动脑,对知识的领悟会更透彻,对问题的体会会更深刻而体会到主动学习的乐趣。因此,教师应该精心策划每一堂课,创设一定的条件,使学生的思维经常处于兴奋状态。

总之,提高教育质量是一项复杂的系统工程,受多方面因素的制约,但教学过程中,以学生为主体,充分发挥教师的主导作用,则是一条基本教学原则,教师的教和学生的学都必须抓住让学生形成良好的学习方法,培养学生的学习能力这一中心环节。苏霍姆林斯基指出:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”伟大的教育家陶行知也认为:“先生的责任不在教,而在教学生学”。教师的责任不是帮助学生把锁打开,而是交给他开锁的钥匙,这就要求我们在教学过程中注重发挥学生的主体作用,使其能力在教与学的过程中得到完美的发展。

心理学家认为:学习动机中最现实、最活跃的成分是兴趣。如果能让学生对数学科产生比较稳定的兴趣和爱好,那么只要在学习和生活中出现能用所学有关数学知识解决的问题,他们的大脑就立刻处于兴奋状态,进入接收知识,发展思维,锻炼意志的最佳时机。因此,初中数学教学,一开始就要注意培养和发展学生对数学的兴趣,让他们心灵得到科学的熏陶,艺术的振撼,从而不断发展提高他们学习数学的兴趣,变“被动”为“主动”、变“苦学”为“乐学”,就必然能提高数学教学质量,获得最佳的教学效果。

初中数学中的数学思想是我为大家带来的论文范文,欢迎阅读。

摘 要:数学思想及数学方法是数学课程的精华,同时也是将理论知识转变为应用能力的途径。

当前,初中阶段的数学课程所包含的思想及方法主要有:整体思想、归纳思想、类比思想、辩证思想等。

教师想要帮助学生掌握学习方法,提高数学素养,就应重点培养学生的数学思想。

关键词:数学思想 初中数学 方法体系

数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。

目前,在初中阶段,主要数学思想方法有:转化思想、方程思想、分类讨论的思想、数形结合的思想等。

一、转化思想

所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。

我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。

数学问题的解决过程就是一系列转化的过程。

转化是化繁为简、化难为易、化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析、解决问题的能力有着积极的促进作用。

在学习《平行四边形和梯形的认识》时,对于梯形的认识和学习可引导学生通过作适当的辅助线,比如做梯形的高、平移一条腰或者平移一条对角线把梯形分割或补成三角形和平行四边形来解决问题。

从而把生疏的、新的问题转化为熟悉的、旧的问题,把困难的问题转化为容易的问题。

二、方程思想

所谓方程思想,主要是指建立方程(组)解决实际问题的思想方法。

教材中大量地出现这种思想方法,如列方程解应用题、求函数解析式、利用根的判别式、根与系数关系、求字母系数的值等。

方程建模的思想对人的教育价值体现在两个方面:一个是建模,另一个是化归。

学生学习方程的意义在于:一是学习在生活中从错综复杂的事情中,将最本质的东西抽象出来,这个过程是非常难的,很有训练的价值;二是在运算中遵循最佳的途径,将复杂问题简单化,这种优化思想对于思维习惯的影响是深远的。

教学时,可有意识地引导学生发现等量关系从而建立方程。

如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把它们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉地去找三个等量关系建立方程组。

在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。

三、分类讨论思想

“分类讨论”是一种逻辑方法,是中学数学中一个极其重要的数学思想方法,同时也是一种重要的解题策略,当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。

近年来,在各地中考试题中涉及“分类讨论”的问题十分常见,因为这类试题不仅考查我们的数学基本知识与方法,而且考查了我们思维的深刻性.在解决此类问题时,因考虑不周全导致失分的较多,究其原因主要是在平时的学习中,尤其是在中考复习时,对“分类讨论”的数学思想渗透不够.在数学中,当问题所给的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,得到每一类的结论,最后综合各类的结果得到整个问题的解答,这种“化整为零、各个击破、再集零为整”的方法,叫做分类讨论法。

1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。

2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的'结论,最后综合各类结果得到整个问题的解答。

实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。

4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。

由于学生的思维的全面性还不完善,缺乏实际的经验,这样呢,在分类讨论问题时,学生不知道从哪个方面、哪个角度去分析、去讨论,才能有利于问题的解决,这是教学过程中的一个难点,所以在教学过程中,培养学生的分类思想显得特别重要,即结合具体的解题过程,适当向学生介绍一些必要的分类知识,引导他们去发现、去尝试、去总结,这对他们学习知识、研究问题、提高技能是大有帮助的。

四、数形结合的思想

“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要思想方法,它是指把代数的精确刻画与几何的形象直观相统一,将抽象思维与形象思维相结合的一种方法。

数形结合的思想贯穿于初中数学教学的始终。

数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型。

(2)建立几何模型解决有关方程和函数的问题。

(3)与函数有关的代数、几何综合性问题。

(4)以图象形式呈现信息的应用性问题。

采用数形结合思想解决问题的关键是找准数与形的契合点。

如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。

数形结合是数学中一种重要的思想方法,它将抽象的数学语言与直观的图形结合起来,使代数问题几何化或使几何问题代数化,为问题的解决提供了简洁明快的途径。

在实践中我们发现,学生在解决问题的过程中经常会面对问题时无从下手,这时如果学生能灵活运用数形结合的方法,往往能很快找到解决问题的窍门。

总之,在初中数学教学中,渗透数学思想方法,可以克服就题论题、死套模式。

数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析、解决问题的能力,从而使思维品质和能力有所提高。

提高学生的数学素质,必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。

参考文献:

[1]陈振宣.《中学数学思想方法》.上海科技教育出版社

[2]郑敏信.《数学方法论》.广西教育出版社

上面的好长啊~我也来答:生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。 数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。

函数思想方法的论文开题报告范文

数学小课题开题报告

在教学中引导学生掌握审题的具体步骤和方法。以下是我为大家分享的2017年关于数学小课题的开题报告范文。

题目:初中数学主体合作学习方式的探究开题报告

一.本选题的意义和价值:

理论意义:国家课程改革的基本思想:以学生发展为本,关心学生需要,以改变学生学习方式为落脚点,强调课堂教学要联系学生生活,强调学生要充分运用经验潜力进行建构性学习。同时《初中数学新课程标准》突出体现基础性、普及性、和发展性,使数学教育面向全体学生,从而实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。动手实践、自主探索与合作交流是学生学习数学的重要方式。由此可见在数学学习中合作这种学习方式的确很重要。

应用价值: 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式。 主体合作学习作为一种新型的教学方式,在新课标下已成为数学课堂教学探讨的焦点问题之一。

通过本课题的研究,有利于充分确立学生的主体地位,有利于建立各教学要素之间的相互作用、彼此协调、取向一致的关系;使初中数学教学中学生的学习方式、教师的指导方式得到有效的改善,有利于激发学生学习的兴趣,达到数学教学 学习快乐、快乐学习 的目的。从而提高学生的学习效果,培养学生的合作,交流,创新的能力,进而提高学生的综合素质。

省内外同类研究现状述评:我国自90年代初期起,开始探讨合作学习,出现了合作学习的研究与实验,并取得了较好的效果,不少学生从中受益,教师们在实践中也开发了一些行之有效的实施策略。但目前国内对合作学习的研究主要是在高等学校,中学阶段的合作学习刚刚起步,随着素质教育的全面推进,初中阶段需要进一步开展合作学习,小学阶段尚未看到数学与合作学习整合的研究课题。因此现在进行初中数学与合作学习整合的研究带有前瞻性。国内目前的合作学习研究比较多的是提出一些原则,而对实践的、具体层面的、可操作的方式与途径的研究则比较少,本课题注重合作学习方式的探索,可以弥补这方面的不足。

二 研究内容、目标、思路

什么是主体合作学习形式就是通过小组目标 、小组分工、角色分配与转换 、集体奖励等形式,激发每个学生 荣辱与共 人人为我,我为人人 道德情感,通过感染舆论,集体荣誉体验等活动,使每个学生都感悟到只有自己努力对小组做贡献,人人都能获得必需的数学。

学习方式现状的调查与分析。

目前数学教与学形式上存在着种种弊端,要么是学习没有目标,或目标不能落实;要么教师责任心不强,对学生的问题不闻不问,要么是教师主观臆断,脱离学生实际,总之数学学习形式亟待改变。

主体合作学习在学习数学中的作用。

高效率地利用时间,使学生有更多主动学习的机会。更有利于培养学生社会合作精神与人际交往能力。能使学生互相取长补短,缩小两端学生的差距,双方都能获益,尤其对后进生有很大的帮助。更有利于培养学生主动探究、团结合作、勇于创新的精神。

教师在主体合作学习中的角色和地位。

转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和角色也发生了改变。教师在小组中不是局外人,而是学习目标的制造者,程序的设计者,情景的创造者,讨论的参与者,协调者,鼓励者和评价者。

如何引导学生合作学习?

引导学生合作学习关键在于精心设计讨论话题。从教师这方面看,设计话题应突出趣味性、情景性、可操作性、创造性。

小组学生合作学习评价对象和方法。

评价的对象包括评价自己、评价同学等。评价的内容主要是学习态度、合作精神、学习能力、团队合作等几个方面。合作学习作为系统的学习方式,必须具备相应的评价机制,建立合理的合作学习评价机制能够把学生个体间的竞争,变为小组间的竞争,把个人计分改为小组计分,把小组总体成绩作为评价依据,形成一种组内成员合作,组间成员竞争的格局。把整个评价的重心由孤立的个人竞争达标转向大家合作达标。

本课题试图通过小组合作学习方式转变的实践过程,把学生自主学习与合作学习有机地结合起来,从而让学生真实地感受、理解、掌握数学思想、知识技能的形成过程,激发学生学习数学的兴趣,促进学生的数学思维能力、生活能力协同发展,培养学生能数学地分析、解释、解决现实生活问题的能力及运筹优化的意识和创新精神。

在教师指导下,学生逐步养成自主意识、合作意识和自我管理的能力。真正的实现自主学习与小组合作学习相融合。

转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和作用也发生了改变,教师不再是单纯的知识传授者,而应该转变为学习者学习的向导、参谋、设计师、管理者和参与者。通过课题的研究,培养出一支具有先进教育理念,有一定教科研水平的教师队伍。

研究视角 本课题从新课标合作学习的角度出发,以小组活动为基本方式,建立合作研究的多元互动,注重开放的合作过程,强调合作方式的建构。

研究方法:

②. 调查法:运用座谈、问卷等方式,向学生了解数学学习的现状,并对此作出科学的分析。

④. 实验法:在学习方式的实验阶段,通过实验班与对照班比较分析的方式,研究这一学习方式的实践操作效果。

⑤.行动研究法:在课题实施研究过程中,通过学习、实践、反思、评价分析,寻找得失原因,不断提高小组合作的能力。

⑥. 经验总结法: 在教学实践和研究的基础上,根据课题研究重点,随时积累素材,探索有效措施,总结得失,寻找有效的小组 合作 的途径、方法和原则。通过各种方式全面搜集反映小组 合作 学习中事实材料,经过分析、整理和加工到理性认识的高度,作为 合作 学习方式的理论依据。

研究阶段

⑴准备阶段(2015年4月 2015年5月):

⑵实施过程(2015年6月 2015年1月)

根据课题设计方案,有计划、有步骤进行行动研究。不断实践,定期总结,每学期都有阶段成果。

⑶总结阶段(2015年2月 2015年5月)

在以上成果总结的基础上,对课题进行全面、科学的总结。写出结题报告,召开成果汇报会。

课题研究的现实背景和意义:

从我校历年来的质量分析和龙胜县20XX年数学小考质量分析来看,学生丢分的原因主要是是不认真审题。其实在日常教学中,每次数学作业或测试题,都可听到老师们埋怨学生 太粗心了 , 不认真审题 等等,学生也为自己的不认真审题表现很后悔。在期中与期末质量分析上,任课教师总结得最多的一句就是 学生太粗心太马虎,不认真审题。

可见学生的审题能力困惑着我们每位教师,也困惑着每位学生。特别是农村的小学生,由于养成了粗心大意、对自己要求不严格、没有责任心等不良习惯,多数学生都不能做到认真审题再做题。

通过问卷调查,审题这最重要的一个步骤在实际操作中往往被大多数学生忽略或者轻视,从而直接影响了学生的解题速度和正确率,间接导致了学生对数学学习的畏惧和恐慌。小学生由于审题不清,导致解错题的现象十分普遍。学生的审题能力薄弱,审题习惯令人担忧。

审题能力是一种综合性的数学能力,我想通过对小学生数学学习审题能力培养的研究,促使学生的分析、判断和推理能力以及学生的创造性思维能力从无到有,从低水平向高水平发展,从而提高数学的解题能力。

概念界定与理论依据

理论依据 :

在《小学数学教学大纲》中明确指出: 在小学,使学生学好数学,培养起学习兴趣,养成良好的学习习惯,对于提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义公民,具有十分重要的意义。 审题是一种能力,更是一种习惯。小学生数学学习审题能力的培养能促进学生养成良好的学习习惯。

课题的实施方案

研究内容

研究农村小学生审题能力弱的原因。

研究农村小学生数学学习审题能力培养方案。

针对学习内容,研究学生审题的方法。

研究农村小学生数学学习审题习惯的培养。

具体的操作措施

研究农村小学生审题能力弱的原因。通过问卷、谈话调查任课教师对培养学生审题能力的态度、方法、能力和学生解题审题习惯。对班级个别审题能力特别弱的学生进行深入了解与分析,找到审题能力弱的原因。

针对学习内容,研究学生审题的方法。基于学习内容不同,审题的方法也会有所不同。小学数学各年级从教学内容上均分为数与代数、空间与图形、统计与概率、实践活动(综合应用)四大板块,呈螺旋式上升,其中计算和解决问题占了相当大的比重。根据内容的不同探索出相应的有效的审题方法。

研究农村小学生数学学习审题习惯的培养审题习惯主要包括读题习惯、解题习惯、检查习惯。加强读题训练,研究读题方法。读题是审题的第一步。读题时要做到不添字,不漏字,把题目读顺,养成指读两三遍的习惯。读题时要求做到 口到、眼到、手到、心到 ;指导方法,培养良好的解题习惯。

在教学中引导学生掌握审题的具体步骤和方法。如首先认真读题,弄清题目说了一件什么事情,哪些数量是已知条件,所求问题是什么,并能用自己的语言准确复述题意;然后可以划出题中的关键字、词,并正确理解其含义;分析并找出题中的数量关系,知道要解决问题还需哪些条件,怎样求出这些条件等,遇到不懂的及时作上记号,养成用符号标记习惯;研究学生认真检查的良好习惯培养。

农村小学生做题往往没有检查的好习惯,这就特别需要教师进行引导,让学生体会到检查的好处,并且结合学生实际情况进行奖励,形成一种氛围。检查是一种对于审题的'最后补救。

研究步骤与方法

第二阶段:20XX年11月 20XX年7月课题实施阶段,按照方案分析原因,制定对策,并付诸实践。先调查学生审题能力差的原因,再与学生共同探讨审题的方法及注意事项,通过实践与训练,让学生分析自己的得与失,组织学生交流成功的做法与经验,并强化训练,让学生养成审题的良好习惯。最后测试成效并与探究前比较,总结经验,将研究成果推广到数学教研组。同时,撰写可以研究相关论文。

方法的选择:

(1)调查研究法。通过调查了解农村小学生审题能力弱的原因。以及研究前后的变化。

(2)个案研究法。通过对班级个别审题能力特别弱的学生进行了解,制定相应措施,实施强化训练,观察结果,探索规律,总结经验。

(4)文献研究法。通过阅读与查找相关文献的研究,为此课题奠定理论基础;同时,了解同类课题研究的现状,为本课题研究提供借鉴,为创新性研究奠定基础。

(5)师生合作研究法。通过师生共同探讨、研究、训练、分析、总结等寻找提高审题能力的有效途径。

研究预期成果和成果形式

(1)在研究中探索出学生有效审题的方法和途径,通过研究提高农村小学生审题能力和培养农村小学生认真审题的良好学习习惯。

(2)课题研究报告一份。

我将以饱满的工作和探究热情,按照课题实施方案,一步一个脚印地去探究与实施,我想通过本课题的研究,在研究中探索出学生有效审题的方法和途径,通过研究培养农村小学生认真审题的良好学习习惯。希望我的课题研究工作在上级领导的指导与关怀下,通过我的努力能取得圆满成功!

论文题目:关于泰勒公式的应用

课题研究意义

在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?

通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。

文献综述

主要内容

Taylor公式的应用

Taylor公式在计算极限中的应用

对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。 满足下列情况时可考虑用泰勒公式求极限:

(1)用洛比达法则时,次数较多,且求导及化简过程较繁;

(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;

(3)所遇到的函数展开为泰勒公式不难。

当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。

Taylor公式在证明不等式中的应用

有关一般不等式的证明

针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路:

(1)写出比最高阶导数低一阶的Taylor公式;

(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。

有关定积分不等式的证明

针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。

证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。

有关定积分等式的证明

针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。

证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor

余项作适当处理。

Taylor公式在近似计算中的应用

利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。

研究方法

为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。

进度计划

为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。

数学与应用数学幂函数论文,行咯,多少字的,姐给.

1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。

小学数学思想与方法论文范文

随着国家素质教育目标的提出和新课程改革的推行,探究式教学开始在小学数学教学中逐渐被推广,数学的教学在小学生的教育中占据着至关重要的地位。下面是我为大家整理的小学数学小论文,供大家参考。

课堂教学设计,是解决教学问题的一种特殊设计活动,课堂教学设计不仅是一门科学,更是一门艺术,其中学生对教学内容的认知是课堂教学的重心,是教学活动的中心,更是达到课堂教学目的的重要保证。数学作为小学基本课程之一,担负着学生基础数理逻辑思维和抽象思维培养的重任。下面笔者就小学数学课堂教学设计认知能力培养的方法创新谈几点看法。

一、小学数学课堂教学设计中认知能力培养的现状与问题分析

(一)小学数学课堂教学设计认知能力培养的现状

创新趋势已经显现。随着经济发展科技进步,教学硬件设施逐步高科技化,教师队伍整体素质提升,对先进教学设施地运用逐步常态化,同时针对小学生的年龄特点在课堂教学设计中进行了认知能力培养方法的探索,取得了一定的成效。课堂教学设计仍以依赖型为主。目前在我国的教育尤其是基础教育中,由于学生的学习技能欠缺,基础薄弱,数学课堂教学设计仍以依赖型为主。在依赖型的教学设计中,认知能力培养的重要性被忽视,讲授的知识大多只局限于课本和测验中,学生的学习内容与生活实际割裂,这种情况下虽然教师能够更容易地控制课堂进度,在短期内取得相对较好的教学效果。但长远来看不利于学生学习能力和运用知识能力的培养,更不利于学生学习兴趣的养成。

(二)小学数学课堂教学设计认知能力培养存在的问题

在教学思维方式上的创新存在不足。目前,大多数教师在数学课堂学生认知能力培养方法设计上的创新多为形式创新,过于追求新器材多媒体教学,花哨的设计使学生一时无法抓住关键,复杂的教具让数学课变成了手工课、观影课,课堂教学设计的创新若只停留在“形”上,对教学目的的实现反而会产生不利的影响。对学生学习能力把握有偏差。学生在每个年龄阶段的学习能力和表现特点都不同,数学作为一门相对抽象和枯燥的学科。如果教师对学生学习能力把握有偏差,没有按照学生学习能力所能达到的水平进行课堂教学设计,就很容易造成认知能力培养方法的失败,无法真正达到教学目的。对学生认知主动性培养不足。多数教师都以完成教学目标为目的,而在教授知识的同时将培养学生学习主动性放在相对次要的位置,这就容易导致前文所说的依赖型学习方式无法改变,学生对数学这门课程的认知只能停留在一门学科而不是一个兴趣上。

二、小学数学课堂教学设计中认知能力培养方法的创新方向

(一)教学思维方式的创新

思维决定思路,方式决定方法,教育教学创新中思维方式的创新至关重要。教师的教学思维方式很大程度上将影响学生的思维水平。推动教学思维方式的创新,要使教师真正认识到教学思维方式创新的重要性。针对小学数学课程的特点和学生特点,在教学研讨活动中要积极学习先进经验,发扬探索精神,改进教学方式,为数学课堂教学设计中认知环节的创新打好基础。通过动手操作培养认知能力,帮助学生思维。根据小学生年龄特点,数学课堂教学要重视操作认知,学生在操作过程中动用手、口、脑等多种感官,积极思维,也有助于发展思维。设计北师大版小学数学三年级下册图形的运动(轴对称)一课时,注重让学生动手把心形卡、五角星、银杏树叶按教师要求对折,帮助学生认知对折后重合,从而了解这样的图形是轴对称图形。学生常常是一边操作一边思考,他们亲身经历了所学知识的发生发展过程,认知、掌握学习知识的方法和途径。通过思考问题培养认知能力,激活学生思维。问题是思维的动力。小学生需要在教师的引导下组织自己的思维活动。因而教师要在教学中精心设计具有启发性、思考性的问题,可以激活学生思维的浪花,调动学生思维的主动性和创造性。通过思考、讨论教师提出的问题,正确把握小学生的认知需求,激发学习兴趣、获得数学知识和技能。

(二)在课堂教学设计中科学运用认知能力培养方式

小学数学课堂教学设计要围绕教学目标来开展,认知能力培养作为课堂教学设计的一个重要部分,要始终坚持既定的教学目标,准确分析教学内容中的重点、难点,针对小学生知识水平和数学课程特点,摒弃过于繁复和抽象的认知概念,使认知能力培养方式符合教学需要,维护课堂教学设计的整体性、层次性、延续性和针对性。教学厘米的认识,让学生认识一厘米有多长时,我借助直尺上“厘米”这个长度单位,指导学生测量一个手指的宽度、衣服上纽扣的宽度,帮助学生建立“一厘米”的表象,让学生的认知活动直观、具体,初步感知长度单位、感受生活中处处有数学。

(三)认知能力培养要多与生活实际相联系

小学生由于表达和理解能力的限制,对于相对抽象的数学概念很难理解和掌握,因此,在教学中认知能力的培养更要注意与实际生活相联系。教师要养成换位思考的习惯,多从学生的角度想问题,选取学生普遍能够理解的例子进行讲授,由生活实际展开,提炼知识点,再与生活实际相联系,形成环状记忆,当学生在生活中再次遇到相关事物时自然会联想到相应的数学知识点,这将有助于学生真正掌握相关知识,活学活用,又能减少机械记忆复习所消耗的时间和精力,更有助于学生学习能力的提升。设计北师大版小学数学三年级下册《长方形面积》时,有意从猜一猜两位粉刷匠叔叔谁刷的墙面大导入新课,在学生获得长方形面积计算公式之后,让他们通过分别计算两块墙面的面积来验证课前的猜测。拓展练习时,注意设计应用性练习题:1.学校给老师新发了一张办公桌,长140厘米、宽80厘米。教师想给整个桌面铺上玻璃,要买多大玻璃板?2.班里小亮家要装修新房,客厅的长6米、宽4米,需要买多少平方米的地板?如果一平方米90元,需要多少钱?在数学教学中,充分创设生活情境、营造氛围,能够加深学生对所学知识的体验和认知,将所学知识转化为能力。让数学教学生活化、日常生活课堂化,用数学、学数学,引导学生用已有的认知解决实际问题,丰富学生生活体验,有利于帮助学生养成用数学的眼光看待身边事物的习惯,有利于提高学生的数学素养。

(四)注意观察学生的反馈

无论什么样的课堂教学设计,最终都要落在实践上,都要经过学生反馈的检验。数学课堂教学认知能力的培养,在科学分析学生学习能力和基础知识水平的基础上,设计出的创新型认知方案,实践过程中要注意收集学生的反馈,比如学生喜欢那个部分不喜欢那个部分,哪一类学生适应这种方案哪一类学生不适应,在创新方案下教学目标达到的比例是否有所提升等,根据收集到的反馈对既有方案进行改良,然后继续进行实践,再收集、再改良、再实践。教育上的创新不能是一蹴而就的,认知能力培养的创新应该是一个螺旋式上升的过程,在不断积累反馈的过程中,达到质的飞跃。

新课程改革强调学生在获取知识技能、构建知识体系、达成知识目标过程中的情感体验,这种体验就是数学情感。它是学生数学学习过程中的态度,是获得成功时的内心体验和心理感受,更是明确学习动机、激发学习兴趣以及克服困难和探索新知的意志品质,它贯穿于学习活动的始终。数学学习逻辑性、系统性强,要求学生思维严谨、缜密,为了避免学生因枯燥而产生厌烦和畏惧的心理,有些教师常用数学家的事迹、数学趣味故事等灵活多样的方法激发学生的兴趣,把数学情感、数学文化渗透于课堂,以培养学生良好的意志品质、积极的情感态度和严谨的思维习惯,从而使数学课堂更高效,使小学数学教学不仅成为引导学生获得数学知识和技能的过程,也成为学生感受、体验和领悟的过程,更成为对学生情感、态度和价值观进行感染、渗透的过程。

一、利用认知过程进行数学情感渗透

小学数学教学目标的达成有两条主线构成。一条是获得知识和技能(结果)的明线,另一条是大胆质疑、积极探索、取得成功的情感体验(过程),即暗线。这两条线交织在一起,相依共存,互为补充。在教学过程中,认知因素与情感因素密切相关、相互作用,积极的学习情感能够促进知识技能的形成,而知识技能形成的过程中又可升华这种情感体验。如解决“鸡兔同笼”“平行四边形、三角形、梯形的面积计算”等具有严密逻辑性的数学问题,对于年龄小、注意力持续时间短、自控能力差的小学生来说是一个艰难的过程,此时应巧妙穿插学习情感和态度教育,鼓励学生理清学习思路,不怕困难认真思考,采取问题推导的形式,引导学生寻找数量、图形之间的关系,以及相互关系转化,推导出结论,促使学生在“山重水复疑无路”的困难面前,感受到“柳暗花明又一村”的新境界。在此过程中,学生通过独立思考、合作交流等形式,举一反三,不断总结发现解决问题的思路及方法,完成知识的迁移,体验到了成功的喜悦。由此可见,在数学认知过程中,认知与情感相互依存、相互促进、相互发展。在课堂中进行情感渗透,有助于培养浓厚的数学兴趣和良好的思维习惯,为逐步提升学习能力,形成高效课堂打下坚实的基础。

二、通过背景知识进行数学情感渗透

“初步认识数学与人类生活的密切联系并感受数学对人类历史发展的作用,对学生进行数学价值与数学历史发展的渗透。”这是新课标提出的要求,也是高效课堂的需要。通过对数学发展历史的了解,学生可以接触到广泛的数学知识,可以体会到数学在人类发展历史中的作用和价值,可以感受到学好数学知识的重要性。在学习“万以内数的认识”一课时,可以先引导学生了解数字的由来,即原始人用小石子、绳子打结或在树木上刻出划痕表示简单的数概念,当有了10块小石子后,用大一点的物体表示一个十即“逢十进一”。接着引导学生了解文字出现后,记录方法虽然有效但不统一,对于很大的数字记录十分不便,于是发明了罗马数字表示。最后了解公元八世纪印度人发明了只含有1,2,3,4,5,6,7,8,9九个符号的记数法,并且约定数字位置决定数值大小,例如,数字89中8表示8个十,9表示9个一,这一发明被商人带入阿拉伯后称为阿拉伯数字,使用至今成为世界数学的通用语言,恩格斯称它为“最美妙的发明”。又如,在认识“方向”时,结合认识东、南、西、北方位,向学生介绍“指南针”这一背景知识,让学生了解指南针是我国古代四大发明之一,它的出现为人类文明与进步做出了巨大贡献。渗透这些数学背景知识引导学生了解历史,感受古人的聪慧以及对科学知识的追求和向往,增强学生的民族自豪感和求知责任感,激发学生学好数学的自信心,促进学生进一步体会到数学的神奇与价值,使课堂更加高效。

三、挖掘生活素材进行数学情感渗透

数学是为了适应高速发展的现代社会而生成的应用性学科,主要解决现实生活中的各种问题,是一切学科的基础。数学新课标要求,“数学内容要更加生活化”。那些从人们的日常生活中提炼而成数字、图形、符号、公式方便了人们生活,形成了独特的魅力。通过“认识图形”的教学,使学生感受到图形的变化组合丰富了我们的生活,美化了我们的环境。通过“统筹方法”“认识时间”的学习,帮学生初步树立合理安排时间的意识,使学生明白珍惜时间的重要性;通过回收废品的情景教学解决比多比少的问题,通过捐书、买书情景教学解决进位加法问题;通过种树活动情景教学解决除法问题等,这些情景的设计蕴涵着一种思想,把品德教育渗透在具体的数学情景中,通过创设情景,在解决问题的过程中即时对学生进行环保、爱心、安全等思想情感的渗透,促使学生形成健康发展的情感态度。经常在数学活动中进行正面教育引导,能够培养学生树立正确的人生观和价值观,提高学习有效性并以此指导自己的行为,使积极的态度情感成为学生学习的动力源泉。

四、借助典型事例进行数学情感渗透

数学归纳思想在各学段之特点和教学启示

第一章 导论

相关百科

热门百科

首页
发表服务